Спасибо за ответ Дина, у меня еще вопросы, : как рассчитать изменение в процентах величину на начало года?
Шамиль Жабраилов
Ученик
(96),
на голосовании
9 лет назад
Голосование за лучший ответ
Дина
Высший разум
(229864)
9 лет назад
если ты должен найти проценты каждой строки на начало года, то также каждую строку умножь на 100 и раздели на итог баланса. А если тебе надо проценты факта к началу года, то факт раздели на начало года и умножь на 100.Присылай таблицу, если не сможешь, помогу.
На этой странице вы узнаете
- Как найти процент от пирога?
- Как смешать цвета и получить проценты?
- Как с помощью нескольких кусочков восстановить весь оставшийся пирог?
Мы всё любим выгоду. Скидки, акции, карта постоянного клиента — приятные плюшки в шопинге, не так ли? Мы экономим благодаря тому, что магазины снижают стоимость товара на определенное количество процентов.
Но можно получать выгоду и от повышения процента. В каком случае? Если мы делаем вклады в банки. Любое повышение суммы вклада на процент означает, что мы стали чуть-чуть богаче.
Проценты
С процентами мы сталкиваемся почти ежедневно. Настало время разобраться, что это такое.
Процент — это одна сотая часть от чего-то.
То есть мы делим какую-то величину на 100 равных частей и берем из них только одну. Проценты обозначаются знаком “%”
Возьмем очень-очень большой пирог и разрежем его на 100 равных частей. Весь пирог будет равняться 100%. Каждый получившийся кусочек будет равен одному проценту от этого пирога.
Через процент мы можем найти, какую долю от целого составляет взятая часть. Это может быть половина, четверть или десятая, и любое из данных отношений можно записать через процент. То есть процент показывает, какое количество равных частей (из 100) мы берем от числа или величины.
Рассмотрим число 100. Пусть это будет не просто абстрактное число, а 100 рублей.
Один процент от 100 рублей будет по определению равен 100100=1 рубль.
Как найти проценты
Чтобы найти какое-то определенное количество процентов от числа, нужно это количество умножить на 1% от числа.
Например, 9% от 100 рублей будет (9*frac{100}{100}=9) рублей.
57% от 100 рублей будет (57*frac{100}{100}=57) рублей.
Этим способом можно найти любой процент от любого числа. Возьмем 5290 рублей и найдем от них 25%:
(25 * frac{5290}{100} = 25 * 52,9 = 1322,5: рублей).
1 шаг. Разделить данное число на 100. Таким образом мы найдем 1% от числа.
2 шаг. Умножить получившееся значение на количество процентов, которое необходимо найти.
Пусть r — искомый процент от числа А, n — сам процент. Тогда справедлива формула:
(r = frac{А}{100} * n)
Например, нужно найти 83% от числа 3216, тогда по формуле:
(r = frac{3216}{100} * 83 = 32,16 * 83 = 2669,28)
Чтобы найти процент от числа, можно также умножить это число на процент, деленный на 100.
На самом деле, это будет та же формула, что мы вывели ранее, но с небольшими преобразованиями.
Рассмотрим выведенную ранее формулу:
(frac{A}{100} * n = frac{A * n}{100} = frac{n}{100} * A).
Найдем 30% от 450:
(frac{30}{100} * 450 = 0,3 * 450 = 135).
1 шаг. Разделить количество процентов на 100.
2 шаг. Умножить получившееся значение на данное в условии число.
Пользоваться можно любым из этих алгоритмов.
Иногда проценты могут представлять из себя простые дроби.
- 50% — это ровно половина от числа, поэтому число можно сразу разделить на 2.
50% от 20 будет (frac{20}{2} = 10).
- 25% — это четверть от числа, поэтому число можно сразу разделить на 4.
25% от 400 будет (frac{400}{4} = 100).
- 20% — это пятая часть от числа, поэтому число можно сразу делить на 5.
20% от 1000 будет (frac{1000}{5} = 200).
- 10% — это десятая часть от числа, поэтому число можно сразу делить на 10.
10% от 350 будет (frac{350}{10} = 35).
Но если мы можем найти процент от числа, как найти число по его проценту?
Допустим, у нас есть 4 кусочка пирога, и мы знаем, что каждый кусочек – 1% от него. По этим кусочкам мы можем восстановить все остальные части и найти целый пирог. Достаточно найти или сделать еще 96 таких же кусочков, чтобы вместо 4% получить 100%, то есть целый пирог.
Если мы знаем, что несколько кусочков равны между собой и составляют определенный процент от пирога, допустим, 10%, нужно восстановить оставшиеся 90% из точно таких же кусочков.
1 шаг. Выяснить, чему равен 1% от нужного числа;
2 шаг. Умножить полученное значение на 100.
Например, мы знаем, что 4500 — это 3% от какого-то числа. Действуя по этому алгоритму, решаем задачу:
Если 4500 — это 3%, то 1% будет равен (frac{4500}{3} = 1500).
Теперь умножаем полученное значение на 100: 1500 * 100 = 150000.
Ответом будет число 150000.
В более сложных задачах можно воспользоваться пропорцией.
Пропорция — это равенство между двумя отношениями.
Пропорцию можно представить в виде (frac{a}{b} = frac{c}{d}) или a : b = c : d, где a, d — крайние члены пропорции; b, c — средние члены пропорции.
Они так называются не просто так: крайние члены стоят с краю, а средние между ними.
Например, можно составить пропорцию: (frac{8}{4} = frac{25}{12,5}), где 8 : 4 = 2 и 25 : 12,5 = 2, то есть равенство выполняется.
Для пропорции будет справедливо уравнение a * d = b * c, то есть мы умножаем части дроби крест-накрест.
Произведение крайних членов пропорции будет равно произведению средних членов пропорции.
Рассмотрим пример, когда пропорция может пригодиться в решении задач с процентами.
Пример 1. В честь праздников магазин вводит на тортики скидку 15%. До скидок один тортик стоил 300 рублей. Сколько стоят тортики со скидкой?
Решение. Пусть 300 рублей — это 100%, а х рублей — 15%. Если мы разделим 300 на 100 и разделим х на 15, то получим 1% от 300. Следовательно, можно составить пропорцию:
(frac{300}{100} = frac{x}{15}).
Решим полученную пропорцию:
100 * x = 300 * 15
100 * x = 4500
x = 45
Получаем, что 15% от 300 будет равняться 45 руб.
Тогда, чтобы найти новую стоимость тортиков, необходимо из старой стоимости вычесть скидку:
300 — 45 = 255.
Ответ: 255 рублей.
Как увеличить процент
В решении задач нередко можно встретить формулировки “увеличилось на 25%” или “уменьшилось на 13%” и схожие с ними. Что значит увеличить число на процент?
Разберем на примере: как увеличить сет роллов на 50%?
Предположим, компания друзей решили устроить вечеринку и заказали сет роллов. Спустя какое-то время они поняли, что одного сета на всех не хватает. Чтобы всем досталось роллов, им нужно взять еще половину такого же сета.
Один сет – это 100%. А если мы добавим к нему еще половину такого же сета, то получим 100+50=150%. То есть мы к целому числу добавляем какой-то процент от него же. Это и есть увеличение числа на процент.
Например, нам нужно увеличить число 160 на 15%. 15% от 160 будет равняться (frac{160}{100} * 15 = 1,6 * 15 = 24).
Тогда, чтобы увеличить 160 на 15% нужно к 160 прибавить 15 процентов от него: 160 + 24 = 184.
Чтобы увеличить число а на r%, необходимо к этому числу прибавить r% от него.
(а + frac{r}{100} * a = a * (1 + frac{r}{100}))
Увеличим число 370 на 39%:
(370 + frac{39}{100} * 370 = 370 (1 + frac{39}{100}) = 370 * 1,39 = 514,3).
Уменьшение числа на процент работает точно так же, но в обратную сторону. В этом случае наши друзья решат, что одного сета роллов на них очень много, поэтому нужно убрать половину от него. То есть они из 100% вычтут 50% и получат 50% роллов.
Чтобы уменьшить число а на r %, необходимо из этого числа вычесть r % от него:
(а — frac{r}{100} * a = a * (1 — frac{r}{100})).
Уменьшим число 670 на 41%:
(670 — frac{41}{100} * 670 = 670 * (1 — frac{41}{100}) = 670 * 0,59 = 395,3).
Выше мы рассмотрели начисление простых процентов: они начисляются только на изначальную сумму.
Однако в экономических задачах встречаются и сложные проценты.
Сложный процент — это процент, который со временем начисляется не только на изначальную сумму, но и на те проценты, которые были начислены до этого.
Рассмотрим сложные проценты как процесс смешивания цветов. Например, смешали белый и синий и получили голубой.
Пусть белый — будет изначальное число, а синий — процент. Но потом оказалось, что оттенок получился недостаточно темный, поэтому еще раз добавили синий. В этот раз синий смешался уже не с чистым белым, а с голубым — то есть со смесью числа и процента.
Обратимся к задаче. В банке был взят вклад S на 2 года под 25% годовых. Какая сумма будет на вкладе через два года?
Каждый год сумма на вкладе будет увеличиваться на 25%.
Если мы увеличим S на 25%, то получим (S + frac{25}{100} * S =S(1 + frac{25}{100}) = S * 1,25). Следовательно, каждый год сумма будет увеличиваться в 1,25 раз.
Тогда в первый год мы получим 1,25S, а во второй год 1,252S.
Во второй год процент будет начислен не только на S, но и на 25% от S.
Подробнее можно расписать так:
1 год: (S + frac{25}{100} * S = S(1 + frac{25}{100}))
2 год: ((S + frac{25}{100} * S) + (S + frac{25}{100} * S) * frac{25}{100} = (S + frac{25}{100} * S)(1 + frac{25}{100}) = S(1 + frac{25}{100})(1 + frac{25}{100}).)
Следовательно, это будет сложный процент.
Вклады
Проценты, в том числе увеличение числа на процент, очень часто применяется в решении задач на вклады. Разберем несколько примеров таких заданий.
Но для начала определим, что такое банковский вклад?
Банковский вклад — сумма денег, которая передается банку и на которую ежегодно начисляются проценты.
В банковских вкладах работает система сложного процента: ежегодно процент будет начисляться и на первоначальную сумму, и на проценты, начисленные ранее.
Пример 1. Леша положил на вклад в банке 100 тысяч рублей под 10% годовых. Вклад был открыт на 4 года. После начисления процентов во 2 и 3 год Леша вносил равные дополнительные платежи. Чему были равны эти платежи, если через 4 года у Леши на вкладе оказалось 201,85 тысяч рублей?
Решение. Составим таблицу, с помощью которой проследим, как менялась сумма на вкладе с течением времени.
Что может быть в таблице в задачах с банковскими вкладами:
- сумма на вкладе до начисления процентов;
- сумма на вкладе после начисления процентов;
- дополнительные платежи.
Таблица может варьироваться в зависимости от задачи и отражать только актуальную информацию.
Введем переменные. Пусть S = 100 тысяч — первоначальный вклад, (k = 1 + frac{10}{100}) — коэффициент увеличения, х — взносы в конце 2 и 3 года.
Поскольку каждый год вклад увеличивается на определенное число процентов, намного удобнее будет ввести коэффициент увеличения, а не пользоваться выведенной ранее формулой. На самом деле, они не отличаются, просто коэффициент увеличения — это скобка, которая появляется при вынесении общего множителя.
(а + frac{r}{100} * a = a * (1 + frac{r}{100}) = a * k)
1. Сразу составим таблицу на 4 года и заполним известные данные. Мы знаем, что в самом начале вклад был равен S, а дополнительные взносы в 2 и 3 год равны х. Заполним соответствующие ячейки.
2. Дальше начислим процент на вклад. Пользуясь формулой, получаем:
(S + frac{10}{100} * S = S(1 + frac{10}{100}) = kS).
Поскольку в первый год дополнительных вложений не было, можем сразу заполнить и последнюю ячейку в первом году (просто перенесем данные из третьего столбика).
Заметим, что вклад в конце года и в начале следующего года одинаковый, поэтому сразу же можно будет переносить данные на следующую строчку.
3. Дальше аналогично начисляем процент. Во второй год у нас уже есть дополнительные вложения. Чтобы получить вклад в конце года, необходимо сложить сумму вклада после начисления процентов и дополнительные вложения.
Не забудем сразу перенести данные на начало третьего года.
Оставшиеся два года заполняем по такому же алгоритму.
Таблица готова.
4. По условию задачи вклад в конце четвертого года равен 201,85 тыс., поэтому мы можем составить уравнение:
k4S + k2x + kx = 201,85
5. Теперь мы можем заменить переменные на известные величины:
1,14 * 100 + 1,12x + 1,1x = 201,85
146,41 + 1,21x + 1,1x = 201,85
2,31x = 55,44
x = 24 тыс. рублей.
Ответ: 24 тыс. рублей
Пример 2. Маша хочет открыть вклад на 2 года, положив в банк целое число тысяч рублей. В конце каждого года вклад увеличивается на 20%. В начале второго года Маша пополнила вклад на 25 тысяч рублей. Найдите наименьший первоначальный вклад, при котором начисленные проценты за весь срок будут более 100 тысяч рублей.
Решение. Пусть S – вклад, который хочет открыть Маша, (k = 1 + frac{20}{100} = 1,2) – коэффициент увеличения, х = 25 – дополнительно вложение в начале второго года.
1. Составим таблицу.
Заметим, что в этой задаче проценты сразу будут начисляться и на дополнительные вложения, поскольку они сделаны в начале года
В конце расчетного периода вклад состоит из всех вложений, которые внесены на него, и процентов, начисленных на эти вложения. Следовательно, чтобы найти проценты, нужно из итоговой суммы вклада вычесть все вложения.
2. Получаем неравенство:
k2S + kx — (S + x) > 100
3. Подставим известные переменные и решим неравенство.
1,22S + 1,2 * 25 — S — 25 > 100
1,44S + 30 — S — 25 > 100
0,44 S > 95
(S > frac{95}{0,44})
(S > frac{9500}{44)
(S>frac{44 * frac{40}{44})
4. Поскольку S – целое число тысяч рублей, то ближайшее целое число, удовлетворяющее неравенству, будет S = 45.
Ответ: 45.
Пример 3. По вкладу «Альфа» к концу года банк увеличивает на 20% сумму, имеющуюся на счете на начало года. По вкладу Бета банк увеличивает на 15% в первый и второй год, и на целое число r % в третий год сумму, имеющуюся на счете на начало года. Найдите наименьшее значение r, при котором за три года вклад Бета окажется выгоднее вклада Альфа, если на них внесли одинаковую сумму первоначальных взносов.
Решение. Чтобы вклад Бета оказался выгоднее, через три года сумма на нем должна оказаться больше, чем через три года на вкладе Альфа. В этой задаче нам понадобится составить две таблицы: по одной для каждого вклада.
1. Введем переменные. Пусть S — первоначальный взнос, (k = 1 + frac{20}{100} = 1,2) — коэффициент увеличения для вклада Альфа, (l = 1 + frac{15}{100} = 1,15) — коэффициент увеличения для вклада Бета в первые два года, (x = 1 + frac{r}{100}) — коэффициент увеличения для вклада Бета в третий год.
2. Составим таблицу для вклада Альфа.
3. Составим таблицу для вклада Бета.
4. По условию должно получиться неравенство:
k3S < xl2S
5. Сократим S и подставим известные величины:
1,23 < x * 1,152
1,728 < 1,3225 x
(x > frac{1,728}{1,3225})
(x > frac{17280}{13225})
(1 + frac{r}{100} > frac{17280}{13225})
(frac{r}{100} > frac{4055}{13225})
(r > frac{405500}{13225})
(r > 30frac{8750}{13225})
6. По условию задачи r — целое число, а ближайшее минимальное целое число, удовлетворяющее неравенству r = 31.
Ответ: 31
С помощью таблицы можно решить любую задачу, связанную с вкладами. А знание процентов может очень пригодиться в жизни, например, чтобы посчитать скидки.
Фактчек
- Процент от числа — это одна сотая часть от него. Чтобы найти процент, необходимо число разделить на 100 равных частей, одна такая часть будет равняться 1% от числа. Эту операцию можно сделать в обратном порядке: если умножить 1% на 100, то получится первоначальное число. Процент также можно найти через пропорцию.
- Если необходимо увеличить или уменьшить число на определенный процент, то к этому числу нужно прибавить (вычесть) нужный процент от него.
- Банковский вклад — сумма денег, которая передается банку и на которую ежегодно начисляются проценты. В банковских вкладах работает система сложного процента: ежегодно процент будет начисляться и на первоначальную сумму, и на проценты, начисленные ранее.
- Чтобы решать задачи на банковские вклады, достаточно правильно составить таблицу, и, уже опираясь на нее, получить итоговое уравнение или неравенство.
Проверь себя
Задание 1.
Найдите 26% от числа 380.
- 100
- 98,8
- 281,2
- 26
Задание 2.
Известно, что 100 – это 20% от какого-то числа. Найдите это число.
- 20
- 100
- 5
- 500
Задание 3.
Магазин перед праздниками сделал скидку 11% на всю технику. В результате мультиварка стала стоить 3560 рублей. Сколько стоила мультиварка до скидок?
- 4000
- 3168,4
- 3951,6
- 4100
Задание 4.
Что такое сложный процент?
- Это процент, выраженный нецелым числом;
- Это процент, который со временем начисляется не только на изначальную сумму, но и на те проценты, которые были начислены до этого.
- Это процент, который большее 100;
- Ни один из приведенных выше вариантов.
Задание 5.
Число 200 уменьшили на 30%, а после этого полученный результат увеличили на 30%. Какое число получилось?
- 140
- 182
- 200
- 260
Ответы: 1. – 2 2. – 4 3. – 1 4. – 2 5. – 2
Как посчитать прирост в процентах?
Анонимный вопрос
5 июля 2018 · 377,5 K
Наставник по математике.
Помогаю воронежским школьникам разобраться в математике и… · 16 мая 2021
по этому алгоритму можно легко сравнить две величины в процентах :
1.Большее – меньшее
-
Результат разделить на то, с чем сравниваем (первоначальная цена, например)
-
умножить на 100%
31,3 K
Комментировать ответ…Комментировать…
Прирост (абсолютная величина) – это разность “того, что стало” с “тем, что было”, например, население было 100000, стало 101000, прирост составил 1000.
Прирост в процентах – относительная величина: делим прирост на “то, что было” и умножаем на 100%. В нашем примере 1000/100000*100%=1%
23,9 K
Комментировать ответ…Комментировать…
Не знаете, что дарить на день рождения? Подарите книгу 🙂 · 9 нояб 2018
Чтобы посчитать прирост, нам нужно знать, сколько было и сколько стало. Сразу начну с примера.
Например, ваша стипендия – 1900 рублей в месяц. Со следующего месяца её повышают до 2700, и вы хотите узнать ,сколько процентов составил прирост.
Вам нужно составить пропорцию: 1900 рублей – это 100%, а 2700 рублей – это х%.
Тогда чтобы найти х, вам нужно (2700рублей*100%)/19… Читать далее
175,5 K
а если же выполнить надо было на 10% а выполненно было всего на 4% тогда как посчитать ?
Комментировать ответ…Комментировать…
Умею считать математику.Читал правила кью. · 13 авг 2021
Формула прироста в процентах:
Прирост в процентах составляет % = (B-A)/A*100
A = Исходное значение
B = Конечное значение
Пример: На сколько процентов число 500 больше числа 400? Решение (500-400)/400*100=25% Читать далее
8,5 K
Комментировать ответ…Комментировать…
Более простым способом расчета является формула: ∆ ТР = ТР – 100%, где расчетные показатели темпа роста уменьшаются на 100%, т. е. исходную величину. Показатель темпа прироста в отличие от значений темпа роста может иметь отрицательное значение, поскольку темп роста (или снижения) показывает динамику изменений показателя, а темп прироста говорит о том, какой характер они носят.
10,7 K
Комментировать ответ…Комментировать…
Репетитор по математике/Финансовый консультант/Волонтер/Мама троих · 6 нояб 2021
Все просто:
Прирост%= (A2-A1)*100% : А1,
где А1- первоначальное значение; А2 – конечное значение.
Если получилось число со знаком “+”, то это действительно прирост; если с “-“, то это падение/уменьшение величины на полученный % 🙂.
3,8 K
Комментировать ответ…Комментировать…
Справка
Зачастую, в конце месяца перед маркетологом или сотрудником отдела продаж стоит задача подготовить отчет с показателями для руководства компании. В отчете требуется посчитать эффективность работы отдела за текущий и прошлый месяц — сравнить разницу за период по лидам или клиентам, продажам, выручки, заключенным договорам, привлеченным партнерам и т.д.
Зная формулу и применяя онлайн инструменты, рассчитать прирост будет не сложно.
Давайте разберемся на простом случае. Например, в феврале вы получили через интернет-магазин 602 заказа. В марте вы запустили контекстную рекламную кампанию и сделали E-mail рассылку по базе подписчиков. Количество заказов немного подросло и составило 964.
Получается, чтобы рассчитать разницу, вам нужно — (964 * 100% / 602) — 100 = 60,13%.
Инструкция
Инструмент определяет процентное или количественное изменение значения.
- Установите формат в котором будет производиться расчет — в процентах или штуках;
- В левое окошко укажите абсолютное значение;
- Во втором окне добавляем фактическое значение.
Программа моментально сравнит и выведет ответ.
Что важного в диджитал на этой неделе?
Каждую субботу я отправляю письмо с новостями, ссылками на исследования и статьи, чтобы вы не пропустили ничего важного в интернет-маркетинге за неделю.
Подписаться →
Как посчитать на сколько процентов изменилось (увеличилось или уменьшилось) заданное число или значение? Например: Прибыль компании в 2015 году была x рублей, в 2016 году – y рублей. Нужно узнать на сколько процентов изменилась прибыль. Величину в процентом измерении, обозначающая на сколько изменилось то или иное число, принято называть процентным увеличением или процентным уменьшением числа. Для того, чтобы рассчитать этот показатель, существуют специальные формулы. 1. Процентное увеличение числа высчитывается следующим образом: z = (( x – y ) / y ) * 100. Где z=это то самое процентное увеличение, которое нам необходимо получить. X – это конечное число, а y – первоначальный показатель. Например: прибыль компании в 2016 году исчислялась в 560 тысяч, а в 2017 изменилась и стала 864 тысячи. ((864000-560000)/560000*100=54,2% 2. Процентное уменьшение высчитывается по обратной формуле: z = (( y – x ) / y ) * 100. Например, прибыль фирмы в 2016 году исчислялась в 440 тысяч, а в 2017 изменилась и стала 360 тысяч. ((440000-360000)/440000*100=18,2% автор вопроса выбрал этот ответ лучшим Ксарфакс 5 лет назад Расчёт изменения в процентах Значения многих показателей и величин могут изменяться (увеличиваться или уменьшаться) во времени. Это может быть рост или падение численности населения, прибыли (доходов) компании и др. Существует нескольких формул, позволяющих узнать, на сколько процентов увеличилось / уменьшилось число, представляющее собой количественную характеристику показателя или величины. Пусть X1 – исходное значение, X2 – новое значение. 1) Если X2 > X1, то находим процент увеличения числа по формуле: (X2 / X1 – 1) * 100% 2) Если X2 < X1, то это значит, что значение величины / показателя уменьшилось. Процентное уменьшение можно найти 2 способами: (X1 / X2 – 1) * 100% |(X2 / X1 – 1)| * 100% – здесь получается отрицательное число, поэтому берём по модулю. Примеры 1) Среднегодовая температура в городе в 2016 году составляла +5 градусов Цельсия, а в 2017 году она стала равна +5,5 градусов Цельсия. Нужно рассчитать на сколько процентов увеличилась среднегодовая температура. Воспользуемся формулой, которая была приведена выше: (5,5 / 5 – 1) * 100% = 0,1 * 100% = 10%. Таким образом, среднегодовая температура увеличилась на 10%. 2) Среднемесячная зарплата в организации в январе составляла 43,4 тыс. рублей, а в феврале – 42 тыс. рублей. Здесь считаем процентное уменьшение: |(42 / 43,4 – 1)| * 100% = |(0,968 – 1)| * 100% = |-0,032| * 100% = 3,2%. Значит, среднемесячная зарплата уменьшилась на 3,2%. Процент (от латинского per cent — на сотню) — сотая часть числа. Зная это, легко посчитать, сколько процентов от заданного числа составляет некоторая величина.
Это же выражение можно записать иначе: TextExpert 5 лет назад Сначала нужно убедиться, что речь идет об одном и том же значении, которое на некотором временном отрезке увеличилось/уменьшилось на некоторое число. Только в этом случае можно применить расчет, который изучался еще в ранние школьные годы, когда проходили пропорции. Основной массе людей всегда легче представить вычисления в визуальном, а не в чисто цифровом виде, поэтому поможем им и предложим сделать так – представить квадрат, разбитый на 4 одинаковые части, куда и нужно записать наши исходные показатели. Например, прибыль фирмы была (в млн. рублей) в 2015 – 42, а в 2016 – 35: Мы присвоили 42 значение 100%, а 35 для нас пока неизвестны в процентном отношении. Как найти х? Нужно умножить числа из той диагонали, где они известны -35*100, получим 3500, которые делим на известное число из другой диагонали, а именно – 42, получим 83,34 (примерно, конечно). Теперь от этого числа нужно отнять 100 и получим -16,66. Цифра отрицательная, а значит произошло падение на 16,66%. Теперь проведем те же вычисления, но при 35 в 2015 и 42 в 2016: Вычисляем самостоятельно, но итоговый результат будет 20%. VVladanS 5 лет назад Ответ Умира краткий и точный, но мне хотелось бы добавить, что подспудно здесь подразумевается, что прибыль выросла, то есть y>x, y-x>0 . При положительной разности все путем, расцвет, прогресс, аля улю, гони гусей. Но есть бывает иногда и кризис. Тогда прибыль изменилась в сторону уменьшения и ответом будет утверждение, что Прибыль компании уменьшилась в 2016 году по сравнению с 2015 на (x-y)/x*100 %. Главное, что следует уяснить – при вычислении процентов вы можете делить разность только на первое, предшествующее по времени значение (в данном случае это значение x за 2015 более ранний год). Деление на значение для позднейшего года приведет к ответу на совсем другой вопрос – на сколько процентов в прошлом 2015 году была прибыль по сравнению со следующим 2016м годом? Самый простой способ – это считать с помощью пропорции. Например, первое число мы принимаем за стандарт. Соответственно, он равняется 100 %. Во втором случае мы имеем некое число, которое считаем по пропорции. Например: Прибыль компании в 2015 году была 500.000 долларов. В 2016 году прибыль была 610.000 долларов. Необходимо подсчитать, на сколько процентов увеличилась прибыль. Таким образом, выражаем х. Х = (610.000 · 100)/500.000 = 122 %. Выходит, что прибыль за 2016 год составляет 122 % от прибыли за 2015 год. И для того, чтобы узнать, на сколько именно процентов она стала больше, отнимаем от результата 100 %. 122 – 100 = 22 %. Таким образом, прибыль возросла на 22 %. Если в результате мы бы получили отрицательное число, значит, это говорит о том, что прибыль упала. Можно решать все и в одну строчку. Но плюс первого способа в том, что нет нужды запоминать формулы. Эл Лепсоид 5 лет назад Формула для расчета увеличения (или уменьшения) какой-то величины в процентах, сводится в нахождении разности между новым и старым значениями, отнесении (делении) этой разности к первоначальному значению и умножению на 100%. Знак перед результатом будет показывать, увеличилось или уменьшилось первоначальное значение. В математическом виде это будет выглядеть так: [(у-х)/х]*100%, где х – первоначальное значение, у – новое значение. Например.
TheSun 3 года назад Для того, чтобы определить, понять на сколько увеличилось или уменьшилось значение, число в процентном соотношении необходимо воспользоваться формулой приведенной ниже. Рассмотрим на примере. Прибыль компании в 2016 году составила 450 000, а в 2017 – 600 000. ((600000-450000) / 450000)* 100 = 33,3% Если нужно вычислить процентное уменьшение, тогда используем такую формулу: Например, прибыль в 2016 году составила 540000, а в 2017 году составила 320000. Используя формулу рассчитаем. ((540000-320000) / 540000) * 100 = 40,7% Узнать на сколько процентов увеличилось число, надо из того что стало вычесть то что было, то есть из большего числа меньшее. Теперь полученный результат разделить на то что было раньше, то есть опять на меньшее исходное число. Последнее действие, это результат предыдущего действия умножить на сто (процентов) получим процент роста) Ну и получить процент убавления, со знаком минус, надо из меньшего вычесть большее, так же результат разделить на исходное меньшее значение и умножить опять таки на сто процентов. Валентина МД 5 лет назад Чтобы найти увеличение или уменьшение прибыли в процентах, нужно найти разницу в прибыли в рублях, в нашем примере: (у-х). Полученную разность разделить на прибыль в исходном 2015 году (х) и умножить на 100 процентов. (у-х)/х*100%. Знаете ответ? |