Как найти проценты вещества в сплавах

Задачи на смеси и сплавы — подробнее

Концентрация какого-то вещества в растворе – это отношение массы или объема этого вещества к массе или объему всего раствора.

То же самое относится и к сплавам: содержание одного из металлов в сплаве – это отношение массы этого металла к массе всего сплава.

Обычно концентрация измеряется в процентах.

Что такое процент?

Напомню, что это сотая доля числа. То есть, если массу или объем разделить на ( displaystyle 100), получим ( displaystyle 1%) этой массы или объема.

Чтобы вычислить концентрацию в процентах, достаточно полученное число умножить на ( displaystyle 100%).

Почему?

Сейчас покажу: пусть масса всего раствора равна ( displaystyle M), а масса растворенного вещества (например, соли или кислоты) – ( displaystyle m). Тогда один процент от массы раствора равен ( displaystyle frac{M}{100}).

Как узнать, сколько таких процентов содержится в числе ( displaystyle m)?

Просто: поделить число ( displaystyle m) на этот один процент: ( displaystyle frac{m}{frac{M}{100}}=frac{m}{M}cdot 100), но ведь ( displaystyle frac{m}{M}) – это концентрация.

Вот и получается, что ее надо умножить на ( displaystyle 100), чтобы узнать, сколько процентов вещества содержится в растворе.

Более подробно о процентах – в темах  «Дроби, и действия с дробями»и «Проценты».

Поехали дальше.

Масса раствора, смеси или сплава равна сумма масс всех составляющих.

Логично, правда?

Например, если в растворе массой ( displaystyle 10) кг содержится ( displaystyle 3) кг соли, то сколько в нем воды? Правильно, ( displaystyle 7)кг.

И еще одна очевидность:

При смешивании нескольких растворов (или смесей, или сплавов), масса нового раствора становится равной сумме масс всех смешанных растворов.

А масса растворенного вещества в итоге равна сумме масс этого же вещества в каждом растворе отдельно.

Например: в первом растворе массой ( displaystyle 10) кг содержится ( displaystyle 3) кг кислоты, а во втором растворе массой ( displaystyle 14) кг – ( displaystyle 5) кг кислоты.

Когда мы их смешаем, чему будет равна масса нового раствора?

( displaystyle 10+14=24) кг.

А сколько в новом растворе будет кислоты? ( displaystyle 3+5=8) кг.

Перейдем к задачам.

Бонус: Вебинары из нашего курса подготовки к ЕГЭ по математике

ЕГЭ №11. Задачи на растворы, смеси и сплавы (и на проценты)

В этом видео мы научимся решать текстовые задачи на проценты, а так же на растворы, смеси и сплавы — на все, что содержит разные вещества в каком-то соотношении.

Задачи на смеси и сплавы очень часто попадаются на ОГЭ (№23) и профильном ЕГЭ (под номером 12).

Мы научимся очень простому способу сводить эти задачи к обычному линейному уравнению или к системе из двух таких уравнений.

Также мы научимся решать сложные задачи на проценты — в основном они на банковские вклады и кредиты и прочие финансовые штуки.

Это, в том числе, даст нам очень большой задел для “ экономической» задачи №17 (которая стоит аж 3 первичных балла).

ЕГЭ №17 Экономическая задача. Вклады

Экономические задачи в основном довольно простые, но дают аж 3 первичных балла!

Но это не совсем 3 балла нахаляву. Эти задачи требуют очень подробного и чёткого описания решения.

По сути, мы составляем математическую модель какой-то жизненной ситуации (например, связанной с банковскими вкладами или кредитами), и важно научиться ничего не пропускать при описании этой модели: описывать словами все введённые обозначения, обосновывать уравнения, которые мы записываем, и всё в таком духе.

Если не написать эти объяснения, вы гарантированно получите 0 баллов даже за правильно найденный ответ!

На этом уроке мы узнаем, как работают вклады, научимся решать и, главное, правильно оформлять решение таких задач.


Задачи на растворы, смеси и сплавы относятся к традиционным арифметическим и алгебраическим задачам, решение которых нередко вызывает трудности. Для решения таких задач нужно уметь рассуждать и уметь решать задачи на проценты и дроби, на составление уравнений и систем уравнений.

Давайте, сначала, определим, что это за задачи на смеси и сплавы. Довольно часто приходится смешивать различные жидкости, порошки, разбавлять что-либо водой или наблюдать испарение воды. В задачах такого типа эти операции приходится проводить мысленно и выполнять расчёты, а для этого надо четко понимать, что:

– масса раствора = масса воды + масса соли;

– масса сплава равна сумме масс металлов, входящих в этот сплав;

– масса смеси равна сумме масс компонентов этой смеси.

При решении задач на смеси, растворы и сплавы, мы используем их общее свойство, которое заключается в том, что масса смеси, раствора или сплава равна сумме масс их компонентов.

Введем понятие концентрации или процентного содержания вещества в растворе (смеси, сплаве).

Концентрация соли или процентное содержание соли в растворе – это отношение массы соли к массе раствора, записанное в виде процентов:

K=(mc/M)*100%,

где mс – масса соли, M – масса всего раствора, К – концентрация (процентное содержание) соли.

Концентрация вещества или процентное содержание вещества в смеси – это отношение массы вещества к массе смеси, записанное в виде процентов: K=(mв/M)*100%, где mв – масса вещества, M – масса всей смеси, К – концентрация (процентное содержание) вещества

Концентрация вещества или процентное содержание вещества в сплаве – это отношение массы вещества к массе сплава, записанное в виде процентов : K=(mв/M)*100%, где mв – масса вещества, M – масса всего сплава, К – концентрация (процентное содержание) вещества.

Пример раствора. Возьмем 180 грамм воды и добавим в воду 20 грамм соли. Получим раствор, его масса равна 180 + 20 = 200 грамм. Определим концентрацию соли (процентное содержание соли) в растворе: К= (20/(180+20))*100%=10% . Тогда процентное содержание воды 90%. (100%-10%=90%). Процентное содержание воды можно определить и так: Кв=(180/(180+20))*100%=90%. Результаты запишем в виде таблицы.


       

соль 20гр 10%
вода 180гр 90%
раствор 200гр 100%

Пример смеси. Возьмем и перемешаем одно ведро цемента с тремя ведрами песка. Получим смесь цемента с песком, её масса равна 1 + 3 = 4 (единиц массы). Определим концентрацию (процентное содержание) цемента в смеси : К=(1/(1+3))*100%=25%.. Концентрация (процентное содержание) песка в смеси 100%-25%=75%.

Результаты запишем в виде таблицы.


             

цемент 1 ведро 25%
песок 3ведра 75%
смесь 4 ведра 100%


Пример сплава. Сплав цинка и меди массой 600 гр. содержит 270 гр.меди. Определим концентрацию (процентное содержание) меди в сплаве:

Км= (270/600)*100%= 45%.

Концентрация (процентное содержание) цинка в смеси:

100%-45%=55%. Или Кц=((600-270)/600))*100%= 55%.

Результаты запишем в виде таблицы.



цинк 330 55%
медь 270 45%
сплав 600гр 100%


Масса вещества в растворе, смеси, сплаве.

Из формулы K=(m/M)*100%, где m масса вещества, М – масса всего раствора ( смеси, сплава), получим, что масса вещества в растворе находится по формуле: m=(M*K)/100%.

Например: а) Имеется 200 гр 40% раствора соли. Определите массу соли.

Решение : mc = (200*40%)/100 = 80г. Ответ: 80 г

б) Сплав меди и цинка массой 900г содержит 64% меди. Определите массу цинка в сплаве.

Решение: 1 способ. 100% – 64% = 36% цинка в смеси,

mц=(900*36%)/100%=324г.

2 способ. mм= (900*64%)/100%=576г, 900 – 576 = 324 г.

Ответ: 324г.

.

Последнее изменение: Четверг, 24 июля 2014, 21:53

Здравствуйте, дорогие читатели, подписчики и гости канала. Продолжаем разбор текстовых задач из ОГЭ 2021 года, входящие в 21 задание. В этом выпуске рассмотрим решение задач на проценты.

Задача №1

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Оформим задачи в виде таблицы.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Чтобы найти, сколько чистого вещества находится в растворе, нужно массу всего раствора умножить на его концентрацию. В четвертом столбце приведены расчеты, для вычисления чистого вещества (кислоты) в каждом растворе. Третий раствор получили смешиванием первого и второго раствора. В результате этого получили третий раствор массой 10 кг в котором содержится 6,2 кг кислоты.

Найдем концентрацию получившегося раствора:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Задача №2

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Когда в задаче сказано, что массы сплавов или веществ одинаковы, то лучше всего брать их равными 1 кг.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Масса четвертого сплава равна сумме трех сплавов, взятых каждого по 1 кг, т.е. 3 кг. В четвертом столбце найдена масса никеля в каждом сплаве на 1 кг. Значит в четвертом сплаве на 1 кг сплава, содержится 0,75 кг никеля.

Найдем концентрацию никеля в четвертом сплаве и его процентное содержание:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Следующие две задачи будут немного сложней. Каждая задача будет состоять из двух частей.

Задача №3

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Первая часть задачи, выделена зеленым цветом, первое предложение. Составим таблицу по первому предложению. За массу первого вещества возьмем Х, масса второго вещества – Y.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Вода добавляется в раствор, поэтому масса чистого вещества не изменится.

Составим уравнение:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Рассмотрим вторую часть задачи, в которой добавляется в раствор не вода, а водный раствор кислоты. Выделен красным цветом.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

В данном случае в раствор добавляем 10 кг кислоты, чистое вещество увеличится на 5 кг.

Составим уравнение:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

У нас получилось два уравнения. Составим систему уравнений, и найдем массу 30% – ного раствора кислоты, которую брали в начале задачи за Х.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Задача №4 Несколько раз встречалась на экзамене.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Первая часть задачи выделена синим цветом. В тексте написано “растворы различной концентрации”, значит на Х и Y возьмем концентрации раствором. Оформим все в таблицу:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Третий раствор, получаем сливанием вместе первого и второго вещества. В четвертом столбце найдем массу чистого вещества в первом и втором растворе. Составим уравнение по чистому веществу:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Составим таблицу по второй части задачи, которая выделена красным цветом. Во второй части сказано, что массы растворов взяты одинаковы. Возьмем массу первого и второго вещества равным 1 кг.

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Второе уравнение составим также по чистому веществу:

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

У нас получилось два уравнения. Составим систему уравнений, и найдем массу кислоты во втором растворе.

18 кг - это масса второго раствора.
18 кг – это масса второго раствора.

Спасибо, что дочитали. Вы меня очень поддержите, если поставите класс и подпишитесь на мой блог.

Путеводитель по каналу здесь

Текстовые задачи на концентрацию, смеси, сплавы из ОГЭ 2021

Формулы для расчета процентного содержания металлов в сплаве приведены под калькулятором.

PLANETCALC, Процентное содержание металлов в сплаве

Процентное содержание металлов в сплаве

Плотность первого металла

Плотность второго металла

Точность вычисления

Знаков после запятой: 2

Процентное содержание первого металла

Процентное содержание второго металла

Расчет процентного содержания металлов в сплаве двух металлов

Пусть нам известны физические характеристики сплава, масса и плотность, их можно просто померять, и плотности металлов, составляющих сплав (например, их можно узнать из справочника).
Имеем следующие очевидные соотношения:
m_1=V_1cdot rho_1\m_2=V_2cdot rho_2\V=V_1+V_2\m=m_1+m_2,
где
m – масса сплава,
V – объем сплава,
m₁ – масса первого металла,
V₁ – объем первого металла,
ρ₁ – плотность первого металла,
m₂ – масса второго металла,
V₂ – объем второго металла,
ρ₂ – плотность второго металла.

m₁, V₁, m₂, V₂ – четыре неизвестных на четыре уравнения – существует единственное решение.

Выполнив подстановки, можно получить довольно громоздкие формулы для m₁ и m₂
m_1 = frac{rho_1(V rho_2-m)}{rho_2 - rho_1}\m_2 = m - frac{rho_1(V rho_2-m)}{rho_2 - rho_1}

Процентные соотношения получим, поделив массы металлов на массу сплава.

11. Сюжетные текстовые задачи


1. Вспоминай формулы по каждой теме


2. Решай новые задачи каждый день


3. Вдумчиво разбирай решения

Задачи на растворы, смеси и сплавы

(blacktriangleright) Концентрация вещества в растворе (сплаве) – это процент содержания этого вещества в растворе (сплаве): [text{концентрация вещества}=dfrac{text{масса вещества}}{text{масса раствора}}cdot 100%]

(blacktriangleright) Заметим, что в задачах из данной подтемы зачастую удобно составлять уравнения относительно кислоты или активного вещества.


Задание
1

#846

Уровень задания: Равен ЕГЭ

Сергей смешал раствор, содержащий (20%) кислоты и раствор, содержащий (40%) той же кислоты. В итоге у него получился раствор, содержащий (32,5%) кислоты, причём объём полученного раствора (4) литра. Сколько литров раствора, содержащего (20%) кислоты, использовал Сергей при смешивании?

Пусть (x) литров раствора, содержащего (20%) кислоты использовал Сергей при смешивании, тогда

(4 – x) литров раствора, содержащего (40%) кислоты использовал Сергей при смешивании,

(dfrac{20}{100}x) – объём кислоты в растворе, содержащем (20%) кислоты, (dfrac{40}{100}(4 – x)) – объём кислоты в растворе, содержащем (40%) кислоты.

Так как в итоге кислоты оказалось (dfrac{32,5}{100} cdot 4 = 1,3) литра, то:

[dfrac{20}{100}x + dfrac{40}{100}(4 – x) = 1,3,] откуда находим (x = 1,5).

Ответ: 1,5


Задание
2

#844

Уровень задания: Равен ЕГЭ

Один газ в сосуде А содержал (21%) кислорода, второй газ в сосуде В содержал (5%) кислорода. Масса первого газа в сосуде А была больше массы второго газа в сосуде В на 300 г. Перегородку между сосудами убрали так, что газы перемешались и получившийся третий газ теперь содержит (14,6%) кислорода. Найдите массу третьего газа. Ответ дайте в граммах.

Пусть (x) грамм – масса второго газа, тогда

(x + 300) грамм – масса первого газа,

(dfrac{21}{100}(x + 300)) грамм – масса кислорода в первом газе,

(dfrac{5}{100}x) грамм – масса кислорода во втором газе,

тогда масса кислорода в третьем газе составляет (dfrac{14,6}{100}(2x + 300)) грамм.

Так как третий газ возник в результате смешивания первого и второго, то:

[dfrac{21}{100}(x + 300) + dfrac{5}{100}x = dfrac{14,6}{100}(2x + 300),] откуда находим (x = 600). Таким образом, масса третьего газа равна (600 + 600 + 300 = 1500) грамм.

Ответ: 1500


Задание
3

#843

Уровень задания: Равен ЕГЭ

Иван случайно смешал молоко жирностью (2,5%) и молоко жирностью (6%). В итоге у него получилось 5 литров молока жирностью (4,6%). Сколько литров молока жирностью (2,5%) было у Ивана до смешивания?

Пусть (x) литров молока жирностью (2,5%) было у Ивана, тогда

(5 – x) литров молока жирностью (6%) было у Ивана,

(dfrac{2,5}{100}x) – объём жира в молоке жирностью (2,5%), (dfrac{6}{100}(5 – x)) – объём жира в молоке жирностью (6%).

Так как в итоге жира оказалось (dfrac{4,6}{100} cdot 5 = 0,23) литра, то:

(dfrac{2,5}{100}x + dfrac{6}{100}(5 – x) = 0,23), откуда находим (x = 2).

Ответ: 2


Задание
4

#841

Уровень задания: Равен ЕГЭ

В сосуде А содержится 3 литра 17-процентного водного раствора вещества Х. Из сосуда В в сосуд А перелили 7 литров 19-процентного водного раствора вещества Х. Сколько процентов составляет концентрация полученного в сосуде А раствора?

Концентрация в процентах – это отношение объёма вещества к объёму смеси, умноженное на 100(%). До переливания в сосуде А было (3 cdot 0,17 = 0,51) литра вещества Х, в сосуде В было (7 cdot 0,19 = 1,33) литра вещества Х.

После переливания объём вещества Х в сосуде А стал (0,51 + 1,33 = 1,84) литра, а объём всего раствора (3 + 7 = 10) литров. Тогда концентрация в процентах составила [dfrac{1,84}{10} cdot 100% = 18,4%.]

Ответ: 18,4


Задание
5

#2133

Уровень задания: Равен ЕГЭ

Во сколько раз больше должен быть объём (5)-процентного раствора кислоты, чем объём (10)-процентного раствора той же кислоты, чтобы при смешивании получить (7)-процентный раствор?

Пусть объём (5)-процентного раствора кислоты равен (x) литров, а объём (10)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,05x + 0,1y = 0,07(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = dfrac{3}{2} = 1,5,,]
таким образом, ответ: (1,5).

Ответ: 1,5


Задание
6

#2134

Уровень задания: Равен ЕГЭ

Во сколько раз больше должен быть объём (20)-процентного раствора кислоты, чем объём (14)-процентного раствора той же кислоты, чтобы при смешивании получить (18)-процентный раствор?

Пусть объём (20)-процентного раствора кислоты равен (x) литров, а объём (14)-процентного раствора равен (y) литров, тогда требуется найти значение величины (dfrac{x}{y}) при условии [0,2x + 0,14y = 0,18(x + y)
qquadLeftrightarrowqquad
dfrac{x}{y} = 2,,]
таким образом, ответ: (2).

Ответ: 2


Задание
7

#2629

Уровень задания: Равен ЕГЭ

Смешав (25)-процентный и (95)-процентный растворы кислоты и добавив (20) кг чистой воды, получили (40)-процентный раствор кислоты. Если бы вместо (20) кг воды добавили (20) кг (30)-процентного раствора той же кислоты, то получили бы (50)-процентный раствор кислоты. Сколько килограммов (25)-процентного раствора использовали для получения смеси?

Заметим, что вода – это раствор, не содержащий кислоту, то есть содержащий (0%) кислоты.
Пусть (x) кг – масса раствора с (25)-процентным содержанием кислоты, (y) кг – масса раствора с (95)-процентным содержанием кислоты. Составим схему, описывающую получение (40)-процентного раствора:

Заметим, что количество кислоты во всех трех растворах равно количеству кислоты в получившемся растворе. Найдем количество кислоты в первом растворе.
Если раствор весит (x) кг, а в нем (25%) кислоты, то в килограммах в нем (dfrac{25}{100}cdot x) кислоты.

Таким же образом можно посчитать количество кислоты в остальных растворах. Получим первое уравнение:

[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{0}{100}cdot 20=dfrac{40}{100}cdot (x+y+20)]

Аналогично составим схему, описывающую получение (50)-процентного раствора:

Значит, уравнение, описывающее эту ситуацию, будет выглядеть так:

[dfrac{25}{100}cdot x+dfrac{95}{100}cdot y+
dfrac{30}{100}cdot 20=dfrac{50}{100}cdot (x+y+20)]

Таким образом, решив систему из полученных двух уравнений, найдем (x). Для этого можно умножить оба уравнения на (100), чтобы сделать их проще на вид:

[begin{cases}
25x+95y+0=40(x+y+20)\
25x+95y+30cdot 20=50(x+y+20)
end{cases}]

Вычтем из второго уравнения первое и получим новую систему:

[begin{aligned} &begin{cases}
25x+95y=40(x+y+20)\
30cdot 20=10(x+y+20)
end{cases} quad Rightarrow quad begin{cases}
5x+19y=8(x+y+20)\
y=40-x end{cases} quad Rightarrow \[2ex] Rightarrow quad
&begin{cases}
3x-11(40-x)+160=0\
y=40-x end{cases} quad Rightarrow quad begin{cases}
x=20\y=20end{cases} end{aligned}]

Таким образом, раствора с (25%) кислоты было (20) кг.

Ответ: 20

УСТАЛ? Просто отдохни

Добавить комментарий