Как найти проекции следов прямой

Следы прямой

Следами прямой называют точки её пересечения с плоскостями проекций. В зависимости от того, какую плоскость проекций пересекает прямая в данной точке, различают горизонтальный, фронтальный и профильный след.

Прямые, занимающие общее положение, пересекают три плоскости проекций, линии уровня – две, а проецирующие прямые – одну.

Алгоритм построения следов на эпюре

Найдем следы прямой a, заданной отрезком AB. Как видно на рисунке ниже, AB занимает общее положение, поэтому для решения задачи необходимо построить проекции трех точек.

Следы прямой "a"

  1. Горизонтальный след Ha. Продлим фронтальную проекцию прямой a до пересечения с осью X в точке Ha”. Полученная точка – фронтальная проекция горизонтального следа. По линии связи на a’ найдем точку Ha‘. Она является горизонтальной проекцией горизонтального следа и совпадает с т. Ha.
  2. Фронтальный след Fa. Продлим горизонтальную проекцию a’ до пересечения с осью X в точке Fa‘. Полученная точка – горизонтальная проекция фронтального следа*. По линии связи на прямой a” найдем точку Fa“. Она является фронтальной проекцией фронтального следа и совпадает с т. Fa.
  3. Профильный след Wa строится аналогично. Для нахождения двух его проекций, Wa” и Wa‘, необходимо продлить a” и a’ до пересечения с осью Z.

На следующем рисунке показано построение следов горизонтали b​, заданной отрезком CD. Как и другие линии уровня, горизонталь пересекает только две плоскости проекций.

Следы линии уровня

Несмотря на то, что рассмотренный нами алгоритм универсален, лучше понять смысл геометрических построений позволяет наглядное изображение прямой в пространстве.

Примечание

* Фронтальный след прямой по определению является точкой, которая лежит во фронтальной плоскости. Её координата Y равна нулю. Из этого следует, что горизонтальная проекция F’ фронтального следа находится на оси X.

Построение следов прямой – типовая задача по начертательной геометрии.

В предыдущем уроке было рассмотрено положение прямой в пространстве.

Понятие следов прямой

Что такое след? Следы прямой – точки пересечения линии (прямой) с плоскостями проекций. Так как плоскостей проекций – 3, то и следов будет тоже три, однако на чертеже проекция следа совпадает со следом на соответствующей плоскости проекций.

А теперь понятным языком – горизонтальная проекция следа совпадает с горизонтальным следом, фронтальная проекция фронтального следа с фронтальным следом, а профильная проекция профильного – на профильной проекции.

В начертательной геометрии чаще рассматривают только два следа – горизонтальный и фронтальный.


Алгоритм построения следов прямой

Обратите внимание, что при построении следов первым действием затрагивают вторую проекции, то есть при построении горизонтального следа – фронтальную проекцию прямой, при построении фронтального следа – горизонтальную. Построение начинается с доведения до оси какой-либо проекции до пересечения с осью Ox.

Построение горизонтального следа прямой

Пусть задана прямая общего положения АB (рис. 1.). Определим горизонтальный след прямой.

Рис. 1.
Рис. 1.

1. Фронтальную проекцию доводим до пересечения с осью Оx (рис 2).

Рис. 2.
Рис. 2.

2. Из полученной точки пересечения, по линии связи опускаем точку на горизонтальную проекцию прямой, то есть проводи к оси перпендикуляр.

Рис. 3
Рис. 3

3. Полученная точка и будет являться горизонтальной проекцией горизонтального следа прямой – точка M’ (рис. 4). При этом точка М” полученная в первом действии является фронтальной проекцией горизонтального следа.

Рис. 4
Рис. 4

На рис. 4 точкой M’ обозначена горизонтальная проекция горизонтального следа прямой AB, эта точка совпадает с М горизонтальным следом (M’≡M).

Построение фронтального следа прямой

В целом алгоритм построения фронтального и горизонтального следа схожи:

Однако, в первом случае мы находили горизонтальный след, а точнее его горизонтальную проекцию, значит сейчас необходимо найти фронтальную проекцию фронтального следа

1. Точно также проекцию прямой AB, но горизонтальную, продляем до пересечения с осью Оx.

2. Проводим линию связи. Не забываем, что линия связи – вертикальная линия (для горизонтальной и фронтальной проекций), соединяющая две проекции одной точки.

3. Полученная точка на фронтальной проекции прямой и будет являться фронтальной проекцией фронтального следа прямой.

Рис. 5
Рис. 5

На рис. 5 точкой N” обозначена фронтальная проекция фронтального следа прямой AB, при этом эта точка совпадает с N фронтальным следом (N”≡N). А точка N’ – горизонтальная проекция фронтального следа.

Оба следа можно было найти на одном чертеже, разделение было необходимо для наглядности. На рис. 6 найдены оба следа прямой AB.

Рис. 6
Рис. 6

Построение следов прямых частного положения

Прямую общего положения, как и профильную прямую, характеризует наличие обоих следов на плоскостях проекций (П’ и П”).

Горизонтальная прямая имеет только фронтальный след и не имеет горизонтального следа, так как фронтальная проекция прямой не пересекается с осью Ox (рис. 7).

Рис. 7
Рис. 7

Фронтальная прямая имеет только один горизонтальный след и не имеет фронтального потому что горизонтальная проекция прямой не может пересечь ось Ox.

Горизонтально-проецирующая прямая не имеет фронтального следа, а горизонтальный след совпадает с ее выродившейся горизонтальной проекцией (рис. 8, слева).

Фронтально-проецирующая прямая не имеет горизонтального следа, а фронтальный след совпадает с ее фронтальной проекцией (рис. 8, справа).

Рис. 8
Рис. 8

Профильно-проецирующая прямая не имеет следов ни на одной из двух плоскостей проекций (П’ и П”) (рис 9).

Рис. 9
Рис. 9

Итак, в этом уроке были рассмотрен алгоритм построения следов прямых общего и частного положения.

В следующем уроке изучим взаимное положение точки и прямой.

Содержание:

Проецирование прямой линии:

Отрезок прямой линии определяется двумя точками. Следовательно, проекции двух точек определяют проекции отрезка прямой (рисунок 2.1). Проекции отрезка прямой в общем случае всегда будут меньше самого отрезка прямой. В общем случае по проекциям отрезка прямой нельзя определить углы наклона отрезка прямой к плоскостям проекций.

Прямые общего и частного положения

Прямые подразделяются на прямые общего и частного положения. Прямая, не параллельная и не перпендикулярная ни одной из плоскостей проекций, называется прямой общего положения (рисунок 2.1а).

Прямые, параллельные или перпендикулярные плоскостям проекций, называются прямыми частного положения (рисунок 2.16, в). Прямые, параллельные плоскостям проекций, называются по имени плоскости, которой они параллельны: горизонталь h, фронталь f и профильная прямая w.

Прямые, перпендикулярные плоскостям проекций, называются проецирующими:    горизонтально-проецирующая,    фронтально-проецирующая и профильно-проецирующая, в зависимости от плоскости, к которой они перпендикулярны.

Прямые, параллельные плоскостям проекций

Особенностью эпюра прямых, параллельных плоскостям проекций, является то, что две проекции прямой параллельны осям, а третья проекция наклонена к осям и является натуральной величиной прямой. Проецирование прямой линии в начертательной геометрии с примерами

Кроме того, по этой проекции прямой можно определить угол наклона прямой к той или иной плоскости проекций.

Среди упомянутых прямых особое место занимают горизонталь h и фронталь f (рисунок 2.2), которые обладают замечательными свойствами и поэтому часто применяются при решении различных задач.

Важнейшими свойствами горизонтали являются:    фронтальная

проекция горизонтали Проецирование прямой линии в начертательной геометрии с примерами

Проецирование прямой линии в начертательной геометрии с примерами

Прямые, перпендикулярные плоскостям проекций

Особенностью эпюра прямых, перпендикулярных плоскостям проекций, является то, что две проекции этих прямых параллельны осям, а третья проекция “вырождается” в точку на той плоскости проекций, которой эта прямая перпендикулярна. Первые две проекции проецирующих прямых являются их натуральной величиной. На рисунке 2.3    представлены эпюры горизонтально- (а), фронтально- (б) и профильно-проецирующих прямых (в). Проецирование прямой линии в начертательной геометрии с примерами

Определение натуральной величины прямой

Так как прямая общего положения проецируется на плоскости проекций с искажением, то задача определения натуральной величины (НВ) прямой по её проекциям является важной. С целью определения НВ прямой разработан метод прямоугольного треугольника, сущность которого понятна из пространственного чертежа (рисунок 2.4а).

Для того, чтобы определить натуральную величину прямой по её проекциям, необходимо на одной из её проекций (на любой) построить прямоугольный треугольник, одним катетом которого является сама проекция, а другим катетом – разность недостающих координат концов отрезка прямой. Тогда гипотенуза треугольника будет являться НВ прямой (рисунок 2.46). Недостающей координатой здесь названа та координата, которая не участвует в построении той или иной проекции прямой. Так, например, горизонтальная проекция прямой строится по координатам X и Y её концов. Проецирование прямой линии в начертательной геометрии с примерами

Координата Z в построениях не участвует и называется недостающей координатой. Таким образом, при построении прямоугольного треугольника на горизонтальной проекции прямой на катете откладывают разность аппликат, а при построении на фронтальной проекции – разность ординат.

При определении НВ прямой методом прямоугольного треугольника одновременно можно определить углы наклона прямой к плоскостям проекций (углы а° и Проецирование прямой линии в начертательной геометрии с примерами Они определятся как углы между гипотенузой и соответствующей проекцией прямой.

Следы прямой

Точки пересечения прямой с плоскостями проекций называются следами прямой. В точках следов прямая переходит из одного октанта в другой. Различают горизонтальный, фронтальный и профильный следы прямой и их соответствующие проекции. На рисунке 2.5 показаны пространственные чертежи прямых общего и частного положения и образование их следов. Прямые, параллельные плоскостям проекций, имеют только два следа, а прямые, перпендикулярные плоскостям проекций, – один след, совпадающий с той проекцией прямой, на которой она проецируется в точку.

Проецирование прямой линии в начертательной геометрии с примерами

Из пространственных чертежей следует методика построения проекций следов прямой на эпюре (рисунок 2.6).

Взаимное положение прямых

Прямые в пространстве    могут быть параллельными, пересекающимися, скрещивающимися и перпендикулярными.

Пространственные чертежи    и эпюры    параллельных и пересекающихся прямых представлены на рисунке 2.7а, б.

Проецирование прямой линии в начертательной геометрии с примерами

Признаком параллельных прямых на эпюре является параллельность их одноименных проекций.

Пересекающимися прямыми называются прямые, которые имеют общую точку – точку пересечения. Признаком пересекающихся прямых на эпюре является то, что проекции точки пересечения находятся на одной линии связи.

Частным случаем пересекающихся прямых являются перпендикулярные прямые. В соответствии с теоремой о проецировании прямого угла, прямой угол будет проецироваться на плоскость проекций в натуральную величину в том случае, когда одна из его сторон будет параллельна этой плоскости проекций (Рисунок 2.8). Проецирование прямой линии в начертательной геометрии с примерами

Cкрещивающимися прямыми называются непараллельные прямые, не имеющие общей точки. Скрещивающиеся прямые в пространстве не пересекаются, но на эпюре их одноименные проекции накладываются друг на друга, что создает впечатление пересечения. Признаком скрещивающихся прямых на проекциях является то, что проекции их мнимых точек пересечения не находятся на одной линии связи (рисунок 2.9а). В мнимых точках пересечения конкурируют две точки, принадлежащие разным прямым, или, другими словами, в мнимых точках конкурируют две прямые. Назовем эту область конкурирующим местом.

При рассмотрении скрещивающихся прямых возникает вопрос о видимости проекций прямых в конкурирующих местах. Этот вопрос может быть решен методом конкурирующих точек (конкурирующих прямых). Проецирование прямой линии в начертательной геометрии с примерами

Сущность метода заключается в следующем:

  1. Отметить конкурирующее место на рассматриваемой проекции;
  2. Обозначить конкурирующие точки или записать, какие прямые конкурируют;
  3. Провести через конкурирующее место линию связи;
  4. Вдоль линии связи сравнить недостающие координаты конкурирующих точек или конкурирующих прямых;
  5. На рассматриваемой проекции будет видна та точка или прямая, которая имеет наибольшую недостающую координату.

Так на рисунке 2.96 на горизонтальной проекции будет видна точка 1, принадлежащая прямой AВ, или, проще говоря, прямая АВ, так как аппликата прямой АВ вдоль линии связи наибольшая. На фронтальной проекции также будет видна прямая AВ. так как у неё в конкурирующем месте наибольшая ордината.

Метод конкурирующих точек (прямых) используется и при определении видимости проекций прямой и плоскости, двух плоскостей, прямой и поверхности, ребер многогранников и т.д. При этом считается, что плоскости и поверхности геометрически непрозрачны, а видимость прямой в точке встречи с плоскостью или в точках встречи с поверхностью меняется.

На рисунке 2.10 представлена пространственная схема определения видимости проекций прямой MN и плоскости ABCD, пересекающихся друг с другом в точке К. На горизонтальной проекции в конкурирующем месте будет видна прямая ВС, так как её аппликата больше, чем у прямой MN. На фронтальной проекции в конкурирующем месте будет видна прямая MN, так как ордината у неё больше, чем у прямой АВ. Проецирование прямой линии в начертательной геометрии с примерами

Пример: Определить длину растяжек для крепления антенны к крыше здания (рисунок 2.11).

Решение: Длина растяжек АВ и ВС определена методом прямоугольного треугольника на фронтальной проекции. Длину растяжки KD определять не следует, так как прямая KD является фронталью и её фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерамипредставляет НВ.

Пример: Построить следы прямой АВ и определить октанты, через которые проходит прямая (рисунок 2.12).

Проецирование прямой линии в начертательной геометрии с примерами

Решение: Задача решена в пространстве и на эпюре. Так как проекции прямой пересекают оси ОХ и 0Y, то в точках пересечения и будут находится проекции горизонтального, фронтального и профильного следов прямой. Далее по знакам координат точек М, К, N, L определяем, что прямая проходит через октанты ll, I, IV и VIII.

Пример: Определить взаимное положение прямых АВ и CD (рисунок 2.13).  

Проецирование прямой линии в начертательной геометрии с примерами

Решение: Анализ проекций двух заданных прямых приводит к выводу, что они являются профильными прямыми, так как обе их проекции параллельны осям 0Y и 0Z. Анализ взаимной параллельности одноименных проекций позволяет сделать предварительный вывод о том, что прямые АВ и CD параллельны друг другу. Однако такой вывод неправомерен, так как для профильных прямых следует проверить параллельность на профильной проекции. Построив профильные проекции Проецирование прямой линии в начертательной геометрии с примерами, видно, что прямые скрещиваются.

Пример: Разделить отрезок прямой АВ в отношении 2:3 (рисунок 2.14а). Проецирование прямой линии в начертательной геометрии с примерами

Решение: Так как отношение отрезков прямой линии равно отношению их проекций, то разделить в данном отношении отрезок прямой на эпюре – значит разделить в том же отношении любую его проекцию.

Задача решается исключительно графическим методом. Представленное решение задачи основано на теореме Фалеса: если на одной стороне угла отложить равные или пропорциональные отрезки и провести через засечки любые параллельные прямые, то другая сторона разделится на равные или пропорциональные отрезки. На рисунке 2.14а дано решение задачи в пространственной форме, а на рисунке 2.146 представлен эпюр решения задачи. На горизонтальной проекции вспомогательная прямая m проводится под произвольно углом, и на ней откладывается пять произвольных отрезков равной длины.

На рисунке 2.14в представлены ещё два способа деления отрезка прямой в заданном отношении.

Изготовление любой детали, строительство сооружений, разработка месторождений полезных ископаемых начинается с составления чертежей, планов и схем. Никакие словесные описания не могут заменить чертеж, который позволяет не только определить форму и размеры всех частей предмета, но и получить наглядное представление о нем.

Начертательная геометрия – один из разделов геометрии, в котором свойства пространственных фигур изучают по их изображениям на той или иной поверхности. Чаще всего за такую поверхность принимают плоскость.

Как и любая научная дисциплина, начертательная геометрия имеет терминологию, которую следует хорошо усвоить, чтобы понимать излагаемый материал.

В геометрии вообще и в начертательной геометрии в частности каждое последующее изложение основывается на предыдущем материале. Такая особенность изучаемого предмета требует систематической, последовательной работы над ним.

Потребность в отображении действительности появилась у человека давно. Об этом свидетельствуют многочисленные изображения первобытного человека на стенах пещер и камнях, на предметах и орудиях труда. С развитием человечества совершенствовалась и техника передачи различных символов (письменность, схемы, чертежи). В Древнем Китае, например, была разработана всеобъемлющая знаковая система, где каждому предмету или явлению соответствовал особый знак (иероглиф). В Древнем Египте при возведении сооружений архитекторы использовали чертежи в виде планов и фасадов.

Основные правила и методы построения изображений (планов зданий, земельных угодий, крепостных укреплений) по законам геометрии были разработаны в эпоху античности. В Древней Греции, за 300 лет до нашей эры, сделаны первые шаги к научному обоснованию метода центрального проецирования. В «Оптике» Евклида содержатся 12 аксиом и 61 теорема об условиях «видения» предметов.

Расцвет классической культуры сменился застоем, и только в эпоху Возрождения, благодаря усилиям школ живописи и архитектуры Италии, Нидерландов и Германии, в истории начертательной геометрии начинается новый период развития. К этому времени относится введение целого ряда основных понятий метода проецирования.

С развитием архитектуры, машинного производства, горной промышленности к изображениям предметов стали предъявлять все более высокие требования, что и привело к необходимости обобщения и систематизации знаний по «теории изображений». Работа знаменитого французского геометра и инженера периода Великой французской революции Гаспара Монжа (1746-1818) «Geometrie Descriptive» (1798 г.) представляет собой первое систематическое изложение общего метода изображения пространственных фигур на плоскости, поднявшее начертательную геометрию на уровень самостоятельной научной дисциплины.

Преподавание начертательной геометрии в России началось уже в первые годы XIX в. в Корпусе инженеров путей сообщения и чуть позже в Горном кадетском корпусе. Первый русский профессор начертательной геометрии Я.И. Севастьянов (1796-1849) в 1821 г. составил курс «Основания начертательной геометрии», ставший классическим учебным пособием по этому предмету.

Среди ученых, внесших наиболее значительный вклад в развитие начертательной геометрии, следует отметить академика Е.С. Федорова (1853-1919), преподававшего в Горном институте. На примере решения задач минералогии и кристаллографии он показал применимость методов начертательной геометрии к исследованиям закономерностей материального мира.

В настоящее время начертательная геометрия является базовой общетехнической дисциплиной, составляющей основу инженерного образования. Было бы, однако, большой ошибкой ограничивать значение начертательной геометрии лишь рамками теоретической основы черчения. Ее методы дают возможность решать самые сложные проблемы в различных областях: горно-геологических науках, химии, физике и др.

Образование проекций. Методы проецирования

В начертательной геометрии чертеж – основной инструмент решения различных пространственных задач. К выполняемому чертежу предъявляется ряд особых требований, четыре из которых являются наиболее существенными. Чертеж должен быть: 1) наглядным; 2) обратимым; 3) достаточно простым; 4) точным.

Остановимся более подробно на обратимости чертежа. Под этим свойством понимается возможность точного воспроизведения формы и размеров предмета по его изображению. Действительно, для всех видов технических и горно-геологических чертежей это требование является особенно важным, так как по чертежу в машиностроении изготавливается та или иная деталь, в горном деле осуществляется проходка горных выработок, в геологии – оценка запасов полезного ископаемого и т.д.

Основным методом получения изображений в начертательной геометрии является проецирование. Чтобы понять сущность проецирования, обратимся к рис.1.

Выбираем центр проецирования – произвольную точку Проецирование прямой линии в начертательной геометрии с примерами пространства – и поверхность проецирования, не проходящую через точку Проецирование прямой линии в начертательной геометрии с примерами, например плоскость проекций Проецирование прямой линии в начертательной геометрии с примерами. Чтобы спроецировать некоторую точку Проецирование прямой линии в начертательной геометрии с примерами пространства на плоскость Проецирование прямой линии в начертательной геометрии с примерами, необходимо через центр проецирования Проецирование прямой линии в начертательной геометрии с примерами провести проецирующую прямую Проецирование прямой линии в начертательной геометрии с примерами до ее пересечения в точке Проецирование прямой линии в начертательной геометрии с примерами с плоскостью Проецирование прямой линии в начертательной геометрии с примерами.

При этом точка Проецирование прямой линии в начертательной геометрии с примерами называется проекцией точки Проецирование прямой линии в начертательной геометрии с примерами на плоскости Проецирование прямой линии в начертательной геометрии с примерами. Проекцией фигуры называется совокупность проекций всех ее точек на выбранную поверхность проецирования (например, на рис.1 проекцией треугольника Проецирование прямой линии в начертательной геометрии с примерами на плоскости Проецирование прямой линии в начертательной геометрии с примерами является треугольник Проецирование прямой линии в начертательной геометрии с примерами). Описанный метод проецирования путем проведения проецирующих прямых через точки заданной фигуры и центр проецирования называется центральным.

Если проецирование осуществляется из бесконечно удаленной точки пространства (рис.2), то все проецирующие прямые окажутся взаимно параллельными. Этот метод проецирования называется параллельным, а направление Проецирование прямой линии в начертательной геометрии с примерами, по которому оно осуществляется, – направлением проецирования.

Если направление параллельного проецирования перпендикулярно плоскости проекций, то проецирование называется прямоугольным или ортогональным. Во всех остальных случаях параллельное проецирование называется косоугольным.

Проецирование прямой линии в начертательной геометрии с примерами

Изображения, полученные при помощи центрального проецирования, отличаются хорошей наглядностью, что объясняется устройством зрительного аппарата человеческого глаза. Однако этот метод имеет существенные недостатки. Во-первых, сложно построить изображение предмета. Во-вторых, построенные проекции имеют низкие метрические свойства, поэтому вследствие значительных искажений, возникающих при данном методе проецирования, определить истинные размеры предмета весьма сложно. По этим причинам способ центрального проецирования имеет ограниченное применение в практике и используется, когда от чертежа требуется прежде всего наглядность.

Несмотря на то, что параллельное проецирование, по сравнению с центральным, имеет меньшую наглядность, параллельные проекции, особенно ортогональные, обладают лучшей измеримостью и простотой построения.

Задачи, решаемые методами начертательной геометрии, принято делить на метрические и позиционные.

Метрические задачи имеют целью определение размеров различных предметов по их изображению. К таким задачам относится определение натуральной величины геометрических фигур, расстояний и углов между ними; в горно-геологической практике – это задачи на определение глубины и угла наклона буровых скважин, угла падения пласта полезного ископаемого, углов между осями горных выработок и т.п.

Позиционные задачи позволяют определить взаимное расположение различных объектов: точек, прямых линий, плоскостей, пространственных фигур. К этой категории задач относятся, например, установление точки встречи буровой скважины с плоскостью залежи, построение линии пересечения кровли и подошвы пласта полезного ископаемого с горной выработкой и многие другие.

Для быстрого и удобного решения пространственных задач в начертательной геометрии используют несколько систем изображений, особенности которых приведены в табл.1.

Таблица 1

Основные системы изображения, используемые при проецировании

Проецирование прямой линии в начертательной геометрии с примерами

Область применения той или иной системы изображений зависит, прежде всего, от целей, которые ставятся при построении чертежа. Из представленных в табл.1 систем наиболее широкое применение в техническом проектировании имеет эпюр (ортогональный чертеж). На его основе выполняются рабочие и сборочные чертежи, эскизы деталей, схемы и т.д. Поэтому в дальнейшем изложении курса основное внимание будет уделено именно этому методу построения.

Однако и другие методы проецирования находят применение в горно-геологических работах, поэтому в заключительных разделах будут рассмотрены основные правила изображения предметов при помощи векторных проекций, перспективы, аксонометрической проекции и, более подробно, – проекций с числовыми отметками.

  • Заказать чертежи

Ортогональный чертеж. Проецирование точки

Любой предмет пространства можно рассматривать как определенную совокупность отдельных точек этого пространства, поэтому для изображения различных предметов необходимо научиться строить изображения отдельной точки пространства.

Представим в пространстве три взаимно перпендикулярные плоскости (рис.3):

  • Проецирование прямой линии в начертательной геометрии с примерами – горизонтальную плоскость проекций;
  • Проецирование прямой линии в начертательной геометрии с примерами – фронтальную плоскость проекций;
  • Проецирование прямой линии в начертательной геометрии с примерами – профильную плоскость проекций.

Для наглядного изображения плоскостей проекций взята кабинетная проекцияПроецирование прямой линии в начертательной геометрии с примерами, известная из курсов геометрии и черчения средней школы.

Проецирование прямой линии в начертательной геометрии с примерами Кабинетная проекция относится к числу косоугольных, более подробно она будет рассмотрена в разделе «Аксонометрические проекции».

Плоскости проекций пересекаются по прямым, которые называются осями проекций и обозначаются Проецирование прямой линии в начертательной геометрии с примерами, Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами. Точка Проецирование прямой линии в начертательной геометрии с примерами – точка пересечения всех трех осей проекций – называется началом координат.

Представим себе также в пространстве некоторую точку Проецирование прямой линии в начертательной геометрии с примерами. Чтобы получить проекцию точки Проецирование прямой линии в начертательной геометрии с примерами на горизонтальной плоскости проекций, необходимо провести через эту точку проецирующую прямую, перпендикулярную плоскости Проецирование прямой линии в начертательной геометрии с примерами и найти точку пересечения Проецирование прямой линии в начертательной геометрии с примерами этой прямой с плоскостью Проецирование прямой линии в начертательной геометрии с примерами. Точка Проецирование прямой линии в начертательной геометрии с примерами называется горизонтальной проекцией точки Проецирование прямой линии в начертательной геометрии с примерами. Путем ортогонального проецирования точки Проецирование прямой линии в начертательной геометрии с примерами на фронтальную и профильную плоскости проекций образуются ее фронтальная и профильная проекции (соответственно точки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами).

Длины отрезков, измеряемые некоторой установленной единицей длины и равные расстояниям от точки Проецирование прямой линии в начертательной геометрии с примерами до горизонтальной, фронтальной и профильной плоскостей проекций, называются прямоугольными (декартовыми) координатами:

Три координаты точки однозначно определяют ее положение в пространстве.

Взаимно перпендикулярные плоскости, изображенные на рис.3, дают нам пространственный чертеж. Для получения трех проекций точки в плоскости чертежа плоскости проекций Проецирование прямой линии в начертательной геометрии с примерами, Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами условно совмещают с плоскостью чертежа. Это совмещение выполняется следующим образом.

Проецирование прямой линии в начертательной геометрии с примерами

Фронтальная плоскость проекций Проецирование прямой линии в начертательной геометрии с примерами принимается за плоскость чертежа, горизонтальная плоскость проекций Проецирование прямой линии в начертательной геометрии с примерами совмещается с плоскостью чертежа вращением вокруг оси Проецирование прямой линии в начертательной геометрии с примерами, а профильная плоскость проекций Проецирование прямой линии в начертательной геометрии с примерами – вращением вокруг оси Проецирование прямой линии в начертательной геометрии с примерами. Направление вращения на рис.3 показано стрелками.

При совмещении плоскости Проецирование прямой линии в начертательной геометрии с примерами с плоскостью чертежа положительное направление оси Проецирование прямой линии в начертательной геометрии с примерами совмещается с отрицательным направлением оси Проецирование прямой линии в начертательной геометрии с примерами, а отрицательное направление – с положительным направлением оси Проецирование прямой линии в начертательной геометрии с примерами. На чертеже изображение оси Проецирование прямой линии в начертательной геометрии с примерами принято обозначать Проецирование прямой линии в начертательной геометрии с примерами. При совмещении плоскости Проецирование прямой линии в начертательной геометрии с примерами с плоскостью чертежа положительное направление оси Проецирование прямой линии в начертательной геометрии с примерами совмещается с отрицательным направлением оси Проецирование прямой линии в начертательной геометрии с примерами, а отрицательное направление – с положительным направлением оси Проецирование прямой линии в начертательной геометрии с примерами. На чертеже изображение оси у принято обозначать Проецирование прямой линии в начертательной геометрии с примерами.

В результате образуется ортогональный чертеж, или эпюр (от франц. epure – чертеж, проект). На эпюре изображают только проекции геометрических объектов, а не сами объекты.

Любые две проекции точки, изображенные на эпюре, связаны между собой линией проекционной связи, перпендикулярной оси проекций (на чертеже ее обозначают штриховой линией):

Вследствие того, что отрезки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами являются изображением одной и той же координаты Проецирование прямой линии в начертательной геометрии с примерами, точки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами связывают дугой окружности с центром в начале координат.

Каждая проекция точки Проецирование прямой линии в начертательной геометрии с примерами определяется двумя координатами: горизонтальная проекция Проецирование прямой линии в начертательной геометрии с примерами – координатами Проецирование прямой линии в начертательной геометрии с примерами; фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерамиПроецирование прямой линии в начертательной геометрии с примерами, профильная проекция Проецирование прямой линии в начертательной геометрии с примерамиПроецирование прямой линии в начертательной геометрии с примерами.

Положение точки Проецирование прямой линии в начертательной геометрии с примерами может быть задано как графически, так и аналитически. Пример графического изображения точки Проецирование прямой линии в начертательной геометрии с примерами рассмотрен нами на рис.3. Аналитическая форма задания точки представляет собой числовое выражение трех координат точки Проецирование прямой линии в начертательной геометрии с примерами в выбранных единицах длины. Например, запись Проецирование прямой линии в начертательной геометрии с примерами означает, что Проецирование прямой линии в начертательной геометрии с примерами.

От аналитической формы задания точки легко перейти к графическому изображению этой точки на ортогональном чертеже.

Пример 1. Построить проекции точки Проецирование прямой линии в начертательной геометрии с примерами.

1.    Выбираем единичный отрезок (рис.4).

2.    С учетом знака откладываем на осях проекций координатные отрезки:

Проецирование прямой линии в начертательной геометрии с примерами

3.    Отмечаем точки Проецирование прямой линии в начертательной геометрии с примерами.

4.    Из построенных точек Проецирование прямой линии в начертательной геометрии с примерами – проводим линии проекционной связи, перпендикулярные осям проекций, и на их пересечениях отмечаем проекции точки Проецирование прямой линии в начертательной геометрии с примерами:

Проецирование прямой линии в начертательной геометрии с примерами

Проецирование прямой линии в начертательной геометрии с примерами

Две проекции точки, построенные на эпюре, однозначно определяют ее положение в пространстве. По двум проекциям заданной точки можно построить третью, и притом только одну.

Пример 2. Построить третью проекцию точки Проецирование прямой линии в начертательной геометрии с примерами по двум заданным (рис.5).

1.    Даны фронтальная и профильная проекции точки Проецирование прямой линии в начертательной геометрии с примерами: фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерами определяется координатами Проецирование прямой линии в начертательной геометрии с примерами,

Проецирование прямой линии в начертательной геометрии с примерами

профильная проекция Проецирование прямой линии в начертательной геометрии с примерами определяется координатами Проецирование прямой линии в начертательной геометрии с примерами

Проецирование прямой линии в начертательной геометрии с примерами

2.    Из имеющихся проекций проводим линии проекционной связи, перпендикулярные осям проекций, и определяем координатные отрезки Проецирование прямой линии в начертательной геометрии с примерами равные соответствующим координатам точки Проецирование прямой линии в начертательной геометрии с примерами:

Проецирование прямой линии в начертательной геометрии с примерами

3.    На пересечении линий проекционной связи с осями проекций отмечаем точки Проецирование прямой линии в начертательной геометрии с примерами.

4.    Строим третью, горизонтальную проекцию точки Проецирование прямой линии в начертательной геометрии с примерами (рис.6). Горизонтальная проекция Проецирование прямой линии в начертательной геометрии с примерами определяется координатами

Проецирование прямой линии в начертательной геометрии с примерами

При определении точки Проецирование прямой линии в начертательной геометрии с примерами по Проецирование прямой линии в начертательной геометрии с примерами перенос осуществляется с оси Проецирование прямой линии в начертательной геометрии с примерами на соответствующее по знаку направление оси Проецирование прямой линии в начертательной геометрии с примерами.

В зависимости от расположения точки относительно плоскостей проекций различают:

1)    точки общего положения, не принадлежащие плоскостям проекций (к ним относится, например, точка А на рис.3);

2)    точки частного положения, лежащие в плоскостях проекций Проецирование прямой линии в начертательной геометрии с примерами, на осях проекций Проецирование прямой линии в начертательной геометрии с примерами или в начале координат.

У точки общего положения все три координаты отличны от нуля.

Если точка лежит в плоскости проекций, то ее координата по оси, перпендикулярной этой плоскости проекций, равна нулю. Если точка лежит на оси проекций, то две другие ее координаты равны нулю. Если все три координаты точки равны нулю, то точка лежит в начале координат.

Рассмотрим некоторые частные случаи положения точки: когда точка лежит в какой-нибудь плоскости проекций или на какой-нибудь оси проекций.

Точка Проецирование прямой линии в начертательной геометрии с примерами рис.7 принадлежит горизонтальной плоскости проекций. Горизонтальная проекция Проецирование прямой линии в начертательной геометрии с примерами этой точки совпадает с самой точкой, фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерами лежит на оси Проецирование прямой линии в начертательной геометрии с примерами, а профильная проекция Проецирование прямой линии в начертательной геометрии с примерами – на оси Проецирование прямой линии в начертательной геометрии с примерами. Координата точки Проецирование прямой линии в начертательной геометрии с примерами по оси Проецирование прямой линии в начертательной геометрии с примерами равна нулю, и, следовательно, точка Проецирование прямой линии в начертательной геометрии с примерами лежит в начале координат.

Проецирование прямой линии в начертательной геометрии с примерами

Проецирование прямой линии в начертательной геометрии с примерами

Точка Проецирование прямой линии в начертательной геометрии с примерами рис.8 лежит на оси Проецирование прямой линии в начертательной геометрии с примерами. С самой точкой совпадают ее горизонтальная Проецирование прямой линии в начертательной геометрии с примерами и профильная Проецирование прямой линии в начертательной геометрии с примерами проекции, причем на ортогональном чертеже горизонтальная проекция лежит на оси Проецирование прямой линии в начертательной геометрии с примерами, а профильная – на оси Проецирование прямой линии в начертательной геометрии с примерами. Фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерами лежит в начале координат.

Октанты

Плоскости проекций Проецирование прямой линии в начертательной геометрии с примерами, Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами являются неограниченными поверхностями и при взаимном пересечении делят пространство на восемь трехгранных углов, или октантов (от лат. octans – восьмая часть).

Нумерация октантов в полупространствах приведена на рис.9. Знаки координат в каждом из октантов указаны в табл.2.

Проецирование прямой линии в начертательной геометрии с примерами

Таблица 2

Знаки прямоугольных координат в различных октантах

Проецирование прямой линии в начертательной геометрии с примерами

Проекции отрезка прямой линии. Точка на прямой

Прямую линию можно рассматривать как совокупность точек. Из школьного курса геометрии известно, что через две точки можно провести прямую и притом только одну.

Пусть нам даны на эпюре точки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами. Две проекции каждой из этих точек однозначно определяют их положение в пространстве (рис.10). Если мы соединим одноименные проекции точек, то получим проекции прямой. Точки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами ограничивают отрезок прямой и определяют положение этой прямой как бесконечной линии.

Таким образом, прямая линия на эпюре может быть задана двумя проекциями отрезка, принадлежащего этой прямой. По двум проекциям отрезка всегда можно построить его третью проекцию и притом только одну.

Если прямая не параллельна ни одной из плоскостей проекций, то она пересекает все плоскости проекций и не проецируется ни на одну из них в натуральную величину. Такую прямую называют прямой общего положения. Ни одна из ее проекций не параллельна осям. Прямая Проецирование прямой линии в начертательной геометрии с примерами на рис.10 – это прямая общего положения.

Проецирование прямой линии в начертательной геометрии с примерами

Точка принадлежит прямой линии, если ее проекции лежат на одноименных проекциях этой линии.

Если на прямой Проецирование прямой линии в начертательной геометрии с примерами мы выберем какую-либо точку Проецирование прямой линии в начертательной геометрии с примерами, то проекции этой точки будут лежать на одноименных проекциях прямой (рис.11).

Проецирование прямой линии в начертательной геометрии с примерами

Таким образом, если точка принадлежит заданной прямой, то для построения проекций этой точки на эпюре необходимо и достаточно знать положение хотя бы одной проекции точки, поскольку недостающие проекции легко найти в пересечении линий проекционной связи с соответствующими проекциями прямой.

Прямые частного положения

Прямая, параллельная одной или двум плоскостям проекций, называется прямой частного положения.

Рассмотрим пример, когда прямая параллельна одной плоскости проекций. В этом случае прямая проецируется на эту плоскость в натуральную величину, а две другие проекции -параллельны осям проекций.

Горизонтальная прямая – прямая, параллельная плоскости Проецирование прямой линии в начертательной геометрии с примерами (рис.12). Горизонтальная проекция отрезка горизонтальной прямой равна его натуральной величине. Фронтальная проекция горизонтальной прямой всегда параллельна оси Проецирование прямой линии в начертательной геометрии с примерами. Угол Проецирование прямой линии в начертательной геометрии с примерами между горизонтальной проекцией горизонтальной прямой и осью Проецирование прямой линии в начертательной геометрии с примерами является углом между этой прямой и фронтальной плоскостью проекций.

Фронтальная прямая – прямая, параллельная плоскости Проецирование прямой линии в начертательной геометрии с примерами. Фронтальная проекция отрезка (рис.13) фронтальной прямой равна его натуральной величине; горизонтальная проекция фронтальной прямой всегда параллельна оси Проецирование прямой линии в начертательной геометрии с примерами. Угол Проецирование прямой линии в начертательной геометрии с примерами между фронтальной проекцией фронтальной прямой и осью Проецирование прямой линии в начертательной геометрии с примерами является углом между фронтальной прямой и горизонтальной плоскостью проекций.

Профильная прямая – прямая, параллельная плоскости Проецирование прямой линии в начертательной геометрии с примерами. Профильная проекция отрезка (рис.14) профильной прямой равна его натуральной величине; горизонтальная проекция профильной прямой всегда параллельна оси Проецирование прямой линии в начертательной геометрии с примерами, а фронтальная – оси Проецирование прямой линии в начертательной геометрии с примерами. Угол Проецирование прямой линии в начертательной геометрии с примерами между профильной проекцией профильной прямой и осью является углом между прямой и горизонтальной плоскостью проекций; угол Проецирование прямой линии в начертательной геометрии с примерами между профильной проекцией прямой и осью Проецирование прямой линии в начертательной геометрии с примерами – углом между прямой и фронтальной плоскостью проекций.

Если прямая параллельна двум плоскостям проекций, т.е. перпендикулярна третьей плоскости проекций, то на эти две плоскости проекции прямая проецируется в натуральную величину, а третья проекция представляет собой точку. Такие прямые называют проецирующими.

Горизонтально-проецирующая прямая – прямая, перпендикулярная плоскости Проецирование прямой линии в начертательной геометрии с примерами(прямая Проецирование прямой линии в начертательной геометрии с примерами на рис.15). Фронтальная и профильная проекции отрезка горизонтально-проецирующей прямой равны его натуральной величине, а ее горизонтальная проекция представляет собой точку.

Проецирование прямой линии в начертательной геометрии с примерами

Фронтально-проецирующая прямая -прямая, перпендикулярная плоскости Проецирование прямой линии в начертательной геометрии с примерами (прямая Проецирование прямой линии в начертательной геометрии с примерами на рис.15). Горизонтальная и профильная проекции отрезка фронтально-проецирующей прямой равны его натуральной величине, а ее фронтальная проекция представляет собой точку.

Профильно-проецирующая прямая – прямая, перпендикулярная плоскости Проецирование прямой линии в начертательной геометрии с примерами (рис.16). Горизонтальная и фронтальная проекции отрезка профильно-проецирующей прямой равны его натуральной величине, профильная проекция профильно-проецирующей прямой представляет собой точку.

Проецирование прямой линии в начертательной геометрии с примерами

Определение натуральной величины отрезка прямой общего положения методом прямоугольного треугольника

Ортогональная проекция отрезка прямой общего положения на любую плоскость проекций всегда меньше длины самого отрезка. Рассмотрим правила определения натуральной величины отрезка прямой методом прямоугольного треугольника.

Предположим, что точки Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами лежат в I октанте (рис.17). Соединим эти точки и получим отрезок некоторой прямой Проецирование прямой линии в начертательной геометрии с примерами. Построим горизонтальную и фронтальную проекции этой прямой. Из точки Проецирование прямой линии в начертательной геометрии с примерами проведем линию, параллельную Проецирование прямой линии в начертательной геометрии с примерами, которая в пересечении с линией проекционной связи даст точку Проецирование прямой линии в начертательной геометрии с примерами.

Рассмотрим стороны прямоугольного треугольника Проецирование прямой линии в начертательной геометрии с примерами:

На ортогональном чертеже оказывается достаточно данных для построения треугольника, равного рассмотренному (рис.17). Для этого к горизонтальной проекции Проецирование прямой линии в начертательной геометрии с примерами «пристроен» второй катет – разность координат Проецирование прямой линии в начертательной геометрии с примерами. Гипотенуза Проецирование прямой линии в начертательной геометрии с примерами построенного треугольника – натуральная величина отрезка Проецирование прямой линии в начертательной геометрии с примерами.

Истинную величину отрезка можно определить, построив прямоугольный треугольник, катетом которого является и фронтальная проекция отрезка (рис.18): при этом второй катет окажется равным разности координат Проецирование прямой линии в начертательной геометрии с примерами. Для треугольника, построенного на профильной проекции отрезка, вторым катетом будет разность координат Проецирование прямой линии в начертательной геометрии с примерами.

Проецирование прямой линии в начертательной геометрии с примерами

На рис.18 истинная величина отрезка Проецирование прямой линии в начертательной геометрии с примерами определена три раза: гипотенузы построенных прямоугольных треугольников имеют равную длину и все они определяют истинную величину отрезка Проецирование прямой линии в начертательной геометрии с примерами.

Проецирование прямой линии в начертательной геометрии с примерами

В общем случае, натуральная величина отрезка прямой общего положения равна гипотенузе прямоугольного треугольника, одним катетом которого является проекция отрезка прямой, а вторым – разность «третьих» координат (табл.3).

Под термином «третья координата» подразумевается координата, которая отсутствует в проекции, выбранной в качестве катета прямоугольного треугольника. Так, горизонтальная проекция отрезка строится по координатам Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами, следовательно, «третьей» координатой в этом случае будет координата Проецирование прямой линии в начертательной геометрии с примерами. Аналогично у фронтальной проекции отрезка «третьей» координатой будем считать координату Проецирование прямой линии в начертательной геометрии с примерами, а у профильной – координату Проецирование прямой линии в начертательной геометрии с примерами.

Таблица 3

Геометрические элементы при определении истинной величины отрезка примой Проецирование прямой линии в начертательной геометрии с примерами методом прямоугольного треугольника

Проецирование прямой линии в начертательной геометрии с примерами

Координаты концов отрезка могут иметь разные знаки. Тогда разность координат определяется с учетом знака. Например, если координата Проецирование прямой линии в начертательной геометрии с примерами точки Проецирование прямой линии в начертательной геометрии с примерами положительная, а точки Проецирование прямой линии в начертательной геометрии с примерами отрицательная, то разность координат

Проецирование прямой линии в начертательной геометрии с примерами

Угол наклона прямой к плоскости проекций – это угол между прямой и ее проекцией. Следовательно, определяя истинную величину отрезка прямой методом прямоугольного треугольника, одновременно можно найти и угол ее наклона к плоскости проекций. Угол между гипотенузой и соответствующей проекцией отрезка равен углу наклона этой прямой к данной плоскости проекций.

Пример 3. Определить истинную величину отрезка Проецирование прямой линии в начертательной геометрии с примерами и угол наклона прямой к плоскости Проецирование прямой линии в начертательной геометрии с примерами (рис.19).

Проецирование прямой линии в начертательной геометрии с примерами

1.    По табл.3 определяем, что для нахождения угла наклона к плоскости Проецирование прямой линии в начертательной геометрии с примерами надо построить прямоугольный треугольник, в котором одним катетом будет горизонтальная проекция отрезка Проецирование прямой линии в начертательной геометрии с примерами, а вторым – разность координат по оси Проецирование прямой линии в начертательной геометрии с примерами.

2.    Определяем координаты по оси Проецирование прямой линии в начертательной геометрии с примерами точек Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами и их разность:

Проецирование прямой линии в начертательной геометрии с примерами

3.    Строим прямоугольный треугольник, в котором за катет принимаем горизонтальную проекцию Проецирование прямой линии в начертательной геометрии с примерами. В качестве второго катета откладываем расстояние, равное Проецирование прямой линии в начертательной геометрии с примерами.

4.    Гипотенуза построенного треугольника есть истинная величина отрезка Проецирование прямой линии в начертательной геометрии с примерами, а угол при вершине Проецирование прямой линии в начертательной геометрии с примерами(угол Проецирование прямой линии в начертательной геометрии с примерами) – угол наклона прямой к плоскости Проецирование прямой линии в начертательной геометрии с примерами.

Следы прямой

Следом прямой называется точка пересечения прямой линии с плоскостью проекций. Прямая общего положения пересекает все три плоскости проекций и, следовательно, имеет три следа. Прямая линия частного положения не имеет следа на плоскости проекций, если она параллельна этой плоскости.

Выберем две точки, точку Проецирование прямой линии в начертательной геометрии с примерами, лежащую в плоскости проекций Проецирование прямой линии в начертательной геометрии с примерами и точку Проецирование прямой линии в начертательной геометрии с примерами – в плоскости проекций Проецирование прямой линии в начертательной геометрии с примерами(рис.20). Через эти точки проведем прямую.

Точка пересечения Проецирование прямой линии в начертательной геометрии с примерами прямой линии с горизонтальной плоскостью проекций называется горизонтальным следом прямой; точка пересечения Проецирование прямой линии в начертательной геометрии с примерами прямой линии с фронтальной плоскостью проекций – фронтальным следом прямой; точка пересечения Проецирование прямой линии в начертательной геометрии с примерами прямой линии с профильной плоскостью проекций – профильным следом прямой.

Следы прямой совпадают с проекциями этих следов в той плоскости, где они расположены: Проецирование прямой линии в начертательной геометрии с примерами.

Поскольку точка Проецирование прямой линии в начертательной геометрии с примерами лежит в плоскости Проецирование прямой линии в начертательной геометрии с примерами, ее фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерами располагается на оси Проецирование прямой линии в начертательной геометрии с примерами, а профильная Проецирование прямой линии в начертательной геометрии с примерами – на оси Проецирование прямой линии в начертательной геометрии с примерами. Горизонтальная проекция Проецирование прямой линии в начертательной геометрии с примерами точки Проецирование прямой линии в начертательной геометрии с примерами также располагается на оси Проецирование прямой линии в начертательной геометрии с примерами, а профильная проекция Проецирование прямой линии в начертательной геометрии с примерами лежит на оси Проецирование прямой линии в начертательной геометрии с примерами. Горизонтальная проекция профильного следа Проецирование прямой линии в начертательной геометрии с примерами лежит на оси Проецирование прямой линии в начертательной геометрии с примерами, а фронтальная проекция Проецирование прямой линии в начертательной геометрии с примерами – на оси Проецирование прямой линии в начертательной геометрии с примерами.

Охарактеризуем особенности построения каждой проекции каждого из трех следов на ортогональном чертеже (рис.20).

Горизонтальный след Проецирование прямой линии в начертательной геометрии с примерами:

Проецирование прямой линии в начертательной геометрии с примерами

Фронтальный след Проецирование прямой линии в начертательной геометрии с примерами:

Профильный след Проецирование прямой линии в начертательной геометрии с примерами:

Необходимо отметить, что построение профильных проекций следов Проецирование прямой линии в начертательной геометрии с примерами может проводиться по двум уже построенным проекциям (горизонтальной и фронтальной), как было показано в разделе 1.2.

Пример 4. Построить проекции следов прямой Проецирование прямой линии в начертательной геометрии с примерами (рис.21).

1.    Находим фронтальную проекцию горизонтального следа Проецирование прямой линии в начертательной геометрии с примерами, продолжив Проецирование прямой линии в начертательной геометрии с примерами до пересечения с осью Проецирование прямой линии в начертательной геометрии с примерами.

2.    Из точки Проецирование прямой линии в начертательной геометрии с примерами проводим линию проекционной связи до ее пересечения с продолжением Проецирование прямой линии в начертательной геометрии с примерами Здесь расположена точка Проецирование прямой линии в начертательной геометрии с примерами.

3.    По двум проекциям Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами строим третью – Проецирование прямой линии в начертательной геометрии с примерами, которая может быть также построена как точка пересечения профильной проекции прямой с осью Проецирование прямой линии в начертательной геометрии с примерами.

4.    Находим горизонтальную проекцию фронтального следа Проецирование прямой линии в начертательной геометрии с примерами в пересечении Проецирование прямой линии в начертательной геометрии с примерами с осью Проецирование прямой линии в начертательной геометрии с примерами.

5.    Из точки Проецирование прямой линии в начертательной геометрии с примерами проводим линию проекционной связи до ее пересечения с фронтальной проекцией прямой Проецирование прямой линии в начертательной геометрии с примерами и получаем точку Проецирование прямой линии в начертательной геометрии с примерами.

6.    По двум проекциям фронтального следа Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами строим третью его проекцию – Проецирование прямой линии в начертательной геометрии с примерами, которая лежит в пересечении профильной проекции прямой с осью Проецирование прямой линии в начертательной геометрии с примерами.

7.    В пересечении Проецирование прямой линии в начертательной геометрии с примерами с осью Проецирование прямой линии в начертательной геометрии с примерами строим точку Проецирование прямой линии в начертательной геометрии с примерами (горизонтальную проекцию профильного следа).

8.    В пересечении Проецирование прямой линии в начертательной геометрии с примерами с осью Проецирование прямой линии в начертательной геометрии с примерами получаем фронтальную проекцию профильного следа – точку Проецирование прямой линии в начертательной геометрии с примерами.

9.    По двум проекциям Проецирование прямой линии в начертательной геометрии с примерами и Проецирование прямой линии в начертательной геометрии с примерами строим профильную проекцию профильного следа Проецирование прямой линии в начертательной геометрии с примерами Проецирование прямой линии в начертательной геометрии с примерами.

Взаимное положение двух прямых

Две прямые могут пересекаться, быть параллельными друг другу и скрещиваться.

Пересекающиеся прямые имеют одну общую точку. Если прямые линии пересекаются, то одноименные проекции этих прямых тоже пересекаются (рис.22, а), причем проекции точки пересечения лежат на одной линии проекционной связи.

Параллельные прямые лежат в одной плоскости и не имеют общих точек. Одноименные проекции двух параллельных прямых параллельны между собой (рис.22, б).

Скрещивающиеся прямые, в отличие от пересекающихся и параллельных прямых, не лежат в одной плоскости. Хотя одноименные проекции двух скрещивающихся прямых и могут пересекаться, но точки их пересечения не лежат на одной линии проекционной связи (рис.22, в).

Две точки, лежащие на скрещивающихся прямых и на одном перпендикуляре к плоскости проекций, называются конкурирующими. Проекции конкурирующих точек лежат в точке пересечения одноименных проекций скрещивающихся прямых (точки / и 2 на фронтальной плоскости проекций, точки 3 и 4 на горизонтальной плоскости проекций – см. рис.22, в)Проецирование прямой линии в начертательной геометрии с примерами.

Проецирование прямой линии в начертательной геометрии с примерамиПри помощи конкурирующих точек определяется взаимная видимость прямых и плоскостей относительно друг друга.

Проецирование плоских углов

Плоский угол проецируется на плоскость проекций без искажения, если плоскость угла параллельна плоскости проекций. Это справедливо в отношении любого угла – острого или тупого. Исключение составляет только прямой угол, который проецируется на плоскость проекций без искажения, если хотя бы одна его сторона параллельна плоскости проекций (рис.23).

Проецирование прямой линии в начертательной геометрии с примерами

  • Проецирование плоскости
  • Плоскость на эпюре Монжа
  • Позиционные задачи
  • Методы преобразования эпюра Монжа
  • Взаимное положение плоскостей, прямой линии и плоскости
  • Взаимное расположение точки, прямых и плоскостей
  • Перпендикулярность геометрических объектов
  • Метод замены плоскостей проекций

Следы прямой

Следом
прямой называют точку пересечения
прямой с плоскостью проекций. Прямая
общего положения пересекается со всеми
тремя плоскостями проекций и имеет три
следа. Прямая, параллельная одной
плоскости проекций, имеет два следа.
Прямая, параллельная двум плоскостям
проекций (проецирующая), имеет один
след. М
– горизонтальный след, N
–фронтальный след. Там, где отрезок АВ
пересекается с горизонтальной плоскостью
проекций, получаем горизонтальный след
М.
Фронтальный след N
получаем
при пересечении отрезка АВ
с фронтальной плоскостью проекции.
Профильный след рассматривать в задачах
не будем (рис. 29).


Рис.29

След
прямой

– это точка, лежащая на плоскости проекций
и самой прямой одновременно. Если точка
лежит на плоскости, то одна ее проекция
совпадает с самой точкой, а вторая
обязательно лежит на оси х.

Для
построения следов прямой АВ
на эпюре поступают следующим образом:
продолжают А”В”
до пересечения с осью х
и отмечают фронтальную проекцию М”,
из М”
восстанавливают перпендикуляр до
пересечения с А’В’
или ее продолжением. Получаем горизонтальный
след М’
и сам след М.

При
продолжении А’В’
до пересечения с осью х
получаем горизонтальную проекцию N’
фронтального следа. Из N’
восстанавливаем
до пересечения с А”В”
или ее продолжением для получения
фронтального следа N”.
N”

совпадает с фронтальным следом N
(рис.30). В наших примерах мы рассматриваем
только горизонтальные и фронтальные
следы прямых.

Рис.30

Два
следа прямой вполне определяют положение
прямой в пространстве. По следам прямой
можно определить через какие четверти
пространства она проходит, если отрезок
прямой продолжить в обе стороны. До
следа N
прямая проходит через I четверть, между
следами М
и N
– II четверть, за следом М
– III четверть. Можно записать: прямая,
заданная отрезком АВ,
проходит через I-II-III
четверти (рис.31)


Рис.31

Взаимное положение прямых

Две
прямые могут быть: пересекающимися,
параллельными, скрещивающимися.

Две
пересекающиеся прямые

имеют общую точку. На эпюре, при пересечении
одноименных проекций, есть общая точка
(рис.32).

У
параллельных
прямых

а
и b
одноименные проекции параллельны между
собой (рис.33).


Рис.32

Рис.33

Скрещивающиеся
прямые

не имеют общей точки. На эпюре точки
пересечения их одноименных проекций
не лежат на одной линии проекционной
связи (рис.34).

Рис.34

Две
точки скрещивающихся прямых, лежащие
на одном перпендикуляре к плоскостям
проекций, называются конкурирующими.
Конкурирующими точками в нашем примере
являются 1, 2, 3, 4. Точки 1 и 3 принадлежат
прямой а,
а 2, 4 – прямой b.
Точка 2 находится дальше от плоскости
π2.
На фронтальной проекции l” не увидим –
она закрыта проекцией 2″. На горизонтальной
проекции не будет видна проекция 3′, она
ближе к плоскости π1
и закрывается проекцией 4″. Определение
взаимного положения конкурирующих
точек необходимо для установления
видимости элементов изображаемого
объекта.

Плоскость Способы задания плоскости

Плоскость
на эпюре можно задавать:

1. тремя
точками, не лежащими на одной прямой;

2. прямой
и точкой, не лежащей не прямой;

3. плоской
фигурой;

4. двумя
параллельными прямыми;

5. двумя
пересекающимися прямыми;

6. следами
(рис. 35).

Следы
плоскости

Соседние файлы в папке Kompyuternaya_grafika

  • #
  • #

    15.03.20153.99 Mб12Геометрическое черчение учебно-методическое пособие.wbk

  • #

2.1. Задание прямой на эпюре

Прямая на чертеже может быть задана изображением прямой, точкой и направлением, отрезком прямой и двумя пересекающимися плоскостями.

Рисунок 2.1 – Проекции прямой
а                                                                  б
Рисунок 2.1 – Проекции прямой

Прямоугольной проекцией отрезка в общем случае является отрезок (второе свойство центрального и параллельного проецирования). На чертеже прямая m (Рисунок 2.1, а) и отрезок АВ (Рисунок 2.1, б) произвольно наклонены к плоскостям проекций. Такие прямые называются прямыми общего положения.

Прямая, не параллельная ни одной из плоскостей проекций, называется прямой общего положения.

Длина прямоугольной параллельной проекции отрезка общего положения всегда меньше длины самого отрезка.

2.2. Прямые частного положения

Прямая, параллельная или перпендикулярная какой-либо плоскости проекций, называется прямой частного положения.

Прямые, параллельные плоскостям проекций, называются прямыми уровня.

Прямая, параллельная горизонтальной плоскости проекций, называется горизонтальной прямой или горизонталью (Рисунок 2.2).

Рисунок 2.2 – Эпюр горизонтали
Рисунок 2.2 – Эпюр горизонтали

Если отрезок параллелен плоскости проекций π1, то его фронтальная проекция А2В2 параллельна оси проекций π12, а горизонтальная проекция отрезка А1В1 определяет истинную величину АВ:

А2А0=В2В0
А2В2 || π21

Прямая, параллельная фронтальной плоскости проекций, называется фронтальной прямой или фронталью (Рисунок 2.3).

Рисунок 2.3 – Эпюр фронтали

Рисунок 2.3 – Эпюр фронтали

Если отрезок параллелен плоскости проекций π2, то его горизонтальная проекция параллельна оси проекций π21, а фронтальная проекция отрезка C2D2 определяет истинную величину CD.

С1А0=D1D0

C1D|| π21

Прямая GH, параллельная профильной плоскости проекций, называется профильной прямой (Рисунок 2.4).

Рисунок 2.4 – Эпюр профильной прямой

Прямые, перпендикулярные плоскостям проекций, называются проецирующими.

Прямая EF, перпендикулярная горизонтальной плоскости проекций, называется горизонтально-проецирующей (Рисунок 2.4).

Прямая KL, перпендикулярная фронтальной плоскости проекций, называется фронтально-проецирующей (Рисунок 2.4).

Прямая MN, перпендикулярная профильной плоскости проекций, называется профильно-проецирующей (Рисунок 2.4).

Эпюры проецирующих прямых (EF, KL, MN) и профильной прямой GH

Рисунок 2.4 – Эпюры проецирующих прямых (EF, KL, MN) и профильной прямой GH

2.3. Метод прямоугольного треугольника

Метод прямоугольного треугольника позволяет по эпюру отрезка прямой общего положения определить его истинную величину.

Рассмотрим положение отрезка  АВ относительно горизонтальной плоскости проекций π1 (Рисунок 2.5).

Рисунок 2.5 – Определение истинной величины отрезка общего положения

Рисунок 2.5 – Определение истинной величины отрезка общего положения

На рисунке 2.5, а:

АА1 – расстояние от точки А до плоскости проекций π1;

ВВ1 – расстояние от точки В до плоскости проекций π1;

А1В1 – проекция отрезка АВ на π1;

∠(ABAK)=∠(ABA1B1)=α – угол наклона прямой АВ к плоскости проекций π1.

ΔАКВ – прямоугольный треугольник, в котором:

АК=А1В1 – катет, равный горизонтальной проекции отрезка АВ;

ВК=ВВ1АА11 – второй катет, равный разности расстояний от концов отрезка АВ до плоскости π(то есть, разности координат Z точек А и В);

АВ – гипотенуза ΔАКВ – истинная величина.

При известных координатах концов отрезка общего положения можно на эпюре определить его истинную величину (Рисунок 2.5, б) на любой из плоскостей проекций.

Истинная величина отрезка может быть найдена как гипотенуза прямоугольного треугольника, одним катетом которого является проекция этого отрезка на плоскость проекций (А2В2), а другим – разность координат концов этого отрезка до плоскости (Δ2), в которой ведется построение. Угол между истинной величиной (АВ) и проекцией (А2В2) определяет угол наклона (β) прямой к той плоскости проекций, в которой ведётся построение (Рисунок 2.6).

Определение истинной длины и угла наклона отрезка AB к плоскости проекций π2

Рисунок 2.6 – Определение истинной длины и угла наклона отрезка AB к плоскости проекций π2

2.4. Точка и прямая

Если точка принадлежит прямой, то её проекции:

  1. Принадлежат одноимённым проекциям данной прямой;
  2. Лежат на одной линии связи.

Рисунок 2.7 – Принадлежность точки прямой
Рисунок 2.7 – Принадлежность точки прямой
Точка С принадлежит отрезку АВ (Рисунок 2.7), так как:

  • С1А1В1;
  • С2А2В2;
  • С1С2⊥π21;

Если точка делит отрезок в каком-либо отношении, то проекции этой точки делят одноименные проекции данного отрезка в том же отношении:

{frac{A_2C_2}{C_2B_2}=frac{A_1C_1}{C_1B_1}=frac{AC}{CB}}
Справедливо и обратное утверждение.

Упражнение

Разделить точкой К отрезок EF в соотношении EK:KF=1:3 (Рисунок 2.8)
Рисунок 2.8 – Деление отрезка в заданном отношении
Рисунок 2.8 – Деление отрезка в заданном отношении
Решение:

    1. Проведём произвольную прямую из любого конца любой проекции отрезка, например, Е2.
    2. Отложим  на этой прямой от точки Е2 равные отрезки, количество которых равно сумме чисел, составляющих дробь (в нашем примере 1+3=4).
    3. Соединим последнюю точку 4 с другим концом фронтальной проекции отрезка – точкой F2.
    4. Из точки 1 проведём прямую, параллельную прямой (4F2) до пересечения с проекцией E2F2, таким образом будет найдена фронтальная проекция искомой точки К2.
    5. Горизонтальную проекцию точки К1 получим путём построения линии проекционной связи до пересечения её с горизонтальной проекцией отрезка.

    Упражнение

    Определить принадлежность  точки С отрезку прямой АВ (Рисунок 2.9).
    Рисунок 2.9 – Решение задачи определения принадлежности точки отрезку прямой
    Рисунок 2.9а – Решение упражнения 2. Способ 1.

    Рисунок 2.9 – Решение задачи определения принадлежности точки отрезку прямой
    Рисунок 2.9б – Решение упражнения 2. Способ 2.

    Ответ: точка С не принадлежит отрезку АВ, так как не выполняется условие принадлежности точки прямой.

    2.5. Следы прямой

    След прямой – точка пересечения прямой с плоскостью проекций.

    Прямая общего положения в общем случае может быть три следа:

    • горизонтальный след M1– точка пересечения прямой с горизонтальной плоскостью проекций π1;
    • фронтальный след N2– точка пересечения прямой с фронтальной плоскостью проекций π2;
    • профильный  след L3 – точка пересечения прямой с профильной плоскостью проекций π3.

    След прямой является точкой частного положения, поскольку он принадлежит плоскости проекций, следовательно, след прямой всегда совпадает с одной из своих проекций:

    • горизонтальный след совпадает со своей горизонтальной проекцией M≡M1,
    • фронтальный – с фронтальной проекцией N≡N2,
    • профильный – с профильной проекцией L≡L3 (Рисунок 2.10).

    Рисунок 2.10 – Построение следов отрезка прямой

    Рисунок 2.10 – Построение следов отрезка прямой АВ

    Построим следы отрезка АВ с плоскостями проекций (Рисунки 2.10, 2.11).

    Для построения горизонтального следа прямой АB необходимо:

    1. Продолжить фронтальную проекцию прямой АB до пересечения с осью X, точка пересечения М2 является фронтальной проекцией горизонтального следа;
    2. Из точки М2 провести линию проекционной связи до его пересечения с горизонтальной проекцией прямой АB или её продолжением. Точка пересечения М1 и будет являться горизонтальной проекцией горизонтального следа, которая совпадает с самим следом М.

    Чтобы построить фронтальный след отрезка АB прямой, необходимо:

    1. Продолжить горизонтальную проекцию прямой АB до пересечения с осью X, точка пересечения N1 является горизонтальной проекцией фронтального следа;
    2. Из точки N1 провести линию проекционной связи до его пересечения с фронтальной проекцией прямой АB  или ее продолжением. Точка пересечения N2 и будет являться фронтальной проекцией фронтального следа, которая совпадает с самим следом N.

    Ниже приводим алгоритм построения следов отрезка прямой АВ:

    A1B∩ xO =N1;       YN=0;                   ∈ xOz (π2)      ⇒      AB ∩ xOz=N

    A2B∩ xO =M2;       ZM=0;                  ∈ xOy (π1)     ⇒      AB ∩ xOy=M

    A1B∩ yO =L1;        XL=0;                   ∈ yOz (π3)     ⇒      AB ∩ yOz=L

    A2B∩ zO =L2;

    Рисунок 2.11 – Эпюр построения следов отрезка прямой
    Рисунок 2.11 – Эпюр построения следов отрезка прямой АВ

    Прямая, параллельная одной из плоскостей проекций, не имеет следа на плоскости, которой она параллельна, и пересекает только две плоскости. Прямая, параллельная двум плоскостям проекций (проецирующая прямая), имеет только один след, совпадающий с проекцией прямой на плоскость, к которой она перпендикулярна.

    2.6. Взаимное расположение прямых

    Две прямые в пространстве могут быть:

    • параллельными;
    • пересекающимися;
    • скрещивающимися.

    Параллельные прямые – прямые, пересекающиеся в несобственной точке.

    Если прямые в пространстве параллельны, то их ортогональные проекции взаимно параллельны, или сливаются, или представляют собой точки, на одной из плоскостей проекций (Рисунок 2.12).

    Рисунок 2.12 – Параллельные прямые
    Рисунок 2.12 – Параллельные прямые
    Пересекающиеся прямые – прямые, имеющие одну общую точку.

    Если прямые в пространстве пересекаются, то на чертеже одноименные проекции прямых пересекаются, при этом проекции точки пересечения прямых лежат на одной линии проекционной связи и делят соответствующие проекции отрезков прямых в равных отношениях (Рисунок 2.13).

    {{A_2B_2}cap{C_2D_2}=K_2}

     {{A_1B_1}cap{C_1D_1}=K_1}

     {frac{A_2K_2}{K_2B_2}=frac{A_1K_1}{K_1B_1}}

     {frac{C_2K_2}{K_2D_2}=frac{C_1K_1}{K_1D_1}}

     Рисунок 2.13 – Пересекающиеся прямые
    Рисунок 2.13 – Пересекающиеся прямые

    Скрещивающиеся прямые – прямые, не имеющие общих точек и не удовлетворяющие признакам параллельных и пересекающихся прямых (Рисунок  2.14).

    Рисунок 2.14 - Скрещивающиеся прямые
    Рисунок 2.14 — Скрещивающиеся прямые

    2.7. Проекции плоских углов

    Угол между двумя пересекающимися прямыми проецируется в истинную величину, если плоскость этого угла параллельна плоскости проекций.

    Проекции плоских углов
    Рисунок 2.15

    По проекциям (Рисунок 2.15) нельзя судить о величине угла между двумя прямыми. На чертежах видно, что острый угол может проецироваться в виде тупого, а тупой – в виде острого.

    Теорема о проецировании прямого угла в частном случае

    Теорема. Если одна из сторон прямого угла параллельна какой-либо плоскости, а другая – этой плоскости не перпендикулярна, то на эту плоскость прямой угол проецируется в виде прямого угла (Рисунок 2.16, а и б).

    Обратная теорема. Если одна из двух пересекающихся прямых параллельна некоторой плоскости проекций и проекции этих прямых на эту же плоскость пересекаются под прямым углом, то в пространстве эти прямые взаимно перпендикулярны.

    Рисунок 2.16 – Проецирование прямого угла

    Рисунок 2.16 – Проецирование прямого угла

    Дано: две пересекающиеся под прямым углом прямые АВ ⊥ ВС,

    причём ВС // π1 (Рисунок 2.16,б).

    Доказательство:

    1. Проведём через отрезок АВ проецирующую плоскость – σ, σ⊥π1;
    2. Прямые АВ и ВВ1 лежат в плоскости σ;
    3. ВСВВ1 так как ВС//π1, а ВВ1⊥π1;
    4. Следовательно, ВС⊥σ, а значит ВС перпендикулярна и любой прямой, лежащей в плоскости σ, в частности А1В1;
    5. Следовательно В1С1⊥σ;
    6. Так как В1С1//ВС, то В1С1А1В1.

    2.8. Задачи для самостоятельного решения

    1. Построить отрезок прямой  АВ // π1,  равный 35 мм и наклонённый к π2 под углом 25° (Рисунок 2.17).

    Построение отрезка прямой по его длине и углу наклона
    Рисунок 2.17

    2. Построить отрезок прямой CD по координатам его концов С (20; 15; 30), D (70; 40; 15) и определить истинную величину отрезка и углы наклона его к плоскостям проекций π2 и π1.

    3. Постройте проекции отрезков частного положения, расположенных под углом 30° к плоскости проекций π1 и 45° — к плоскости проекций π2.

    4. Определите взаимное положение прямых и постройте пересечение прямых АВ и CD прямой EF//π21 (Рисунок 2.18).

    Определить взаимное положение прямых

    Рисунок 2.18

Добавить комментарий