Как найти проекции вектора на координатные оси

Векторное описание движения является полезным, так как на одном чертеже всегда можно изобразить много разнообразных векторов и получить перед глазами наглядную «картину» движения. Однако всякий раз использовать линейку и транспортир, чтобы производить действия с векторами, очень трудоёмко. Поэтому эти действия сводят к действиям с положительными и отрицательными числами – проекциями векторов.

Проекцией вектора на ось называют скалярную величину, равную произведению модуля проектируемого вектора на косинус угла между направлениями вектора и выбранной координатной оси.

_?_

На левом чертеже показан вектор перемещения, модуль которого 50 км, а его направление образует тупой угол 150° с направлением оси X. Пользуясь определением, найдём проекцию перемещения на ось X:

sx  =  s · cos(α)  =  50 км · cos( 150°)  =  –43 км

Поскольку угол между осями 90°, легко подсчитать, что направление перемещения образует с направлением оси Y острый угол 60°. Пользуясь определением, найдём проекцию перемещения на ось Y:

sy  =  s · cos(β)  =  50 км · cos( 60°)  =  +25 км

Как видите, если направление вектора образует с направлением оси острый угол, проекция положительна; если направление вектора образует с направлением оси тупой угол, проекция отрицательна.

На правом чертеже показан вектор скорости, модуль которого 5 м/с, а направление образует угол 30° с направлением оси X. Найдём проекции:

υx  =  υ · cos(α)  =  5 м/c · cos( 30°)  =  +4,3 м/с
υy  =  υ · cos(β)  =  5 м/с · cos( 120°)  =  –2,5 м/c

Гораздо проще находить проекции векторов на оси, если проецируемые векторы параллельны или перпендикулярны выбранным осям. Обратим внимание, что для случая параллельности возможны два варианта: вектор сонаправлен оси и вектор противонаправлен оси, а для случая перпендикулярности есть только один вариант.

Проекция вектора, перпендикулярного оси, всегда равна нулю (см. sy и ay на левом чертеже, а также sx и υx на правом чертеже). Действительно, для вектора, перпендикулярного оси, угол между ним и осью равен 90°, поэтому косинус равен нулю, значит, и проекция равна нулю.

_?_

Проекция вектора, сонаправленного с осью, положительна и равна его модулю, например, sx = +s (см. левый чертёж). Действительно, для вектора, сонаправленного с осью, угол между ним и осью равен нулю, и его косинус «+1», то есть проекция равна длине вектора: sx = x – xo = +s .

Проекция вектора, противонаправленного оси, отрицательна и равна его модулю, взятому со знаком «минус», например, sy = –s (см. правый чертёж). Действительно, для вектора, противонаправленного оси, угол между ним и осью равен 180°, и его косинус «–1», то есть проекция равна длине вектора, взятой с отрицательным знаком: sy = y – yo = –s .

На правых частях обоих чертежей показаны другие случаи, когда векторы параллельны одной из координатных осей и перпендикулярны другой. Предлагаем вам убедиться самостоятельно, что и в этих случаях тоже выполняются правила, сформулированные в предыдущих абзацах.

Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу – его концом. Направление указывается от его начала к концу отрезка.

Логотип baranka

Сдай на права пока
учишься в ВУЗе

Вся теория в удобном приложении. Выбери инструктора и начни заниматься!

Получить скидку 3 000 ₽

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline{a}$ (рис. 1).

а) вектор $overline{a}$. б) вектор $overline{AB}$

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

«Проекция вектора на ось. Как найти проекцию вектора» 👇

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $overline{a}↑↑overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $overline{a}↑↓overline{d}$

Определение 6

Длиной вектора $overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A’$ – начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B’$ – конец искомого вектора. Вектор $overline{A’B’}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $overline{AB}$ на ось $l$, изображенные на рисунке 6.

Решение.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A’$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B’$ (рис. 7).

Полученный на оси $l$ вектор $overline{A’B’}$ и будет искомой геометрической проекцией.

Замечание 1

Заметим, что если угол между вектором и осью острый, то проекция сонаправлена с осью, а если тупой, то проекция противоположно направлена с осью.

Числовая проекция

Как мы уже знаем, результатом алгебраической проекции будет неотрицательное действительное число.

Определение 9

Числовой (алгебраической) проекцией на ось будем называть неотрицательное число, равное длине вектора геометрической проекции.

Рассмотрим это понятие на примере задачи:

Пример 2

Найти числовую проекцию вектора $overline{F} на сонаправленную ему ось $x$, если угол между ними равняется $α$ (рис. 8). (рис. 8).

Решение.

Введем на рисунке следующие обозначения:

Видим, что длина вектора геометрической проекции, равняется длине $XY$. Из определения косинуса получим, что

$XY=|overline{F}|cosα$

где $|overline{F}|$ – длина вектора $overline{F}$. Это и будет искомая алгебраическая проекция на ось.

Другие случаи можете видеть на рисунке 9.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Преподаватель который помогает студентам и школьникам в учёбе.

Проекция вектора на ось в физике – формулы и определения с примерами

Содержание:

Проекция вектора на ось:

Вы уже знаете, что вектор имеет модуль и направление. При решении задач часто используется понятие проекция вектора на ось. Что такое проекция вектора? Как ее определяют?

Начнем с понятия проекция точки на ось.

Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.

На рисунке 24 точка Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось в физике - формулы и определения с примерами

Как определяют проекцию вектора на ось

Проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора, взятая со знаком «+» или «-». Знак «+» берут, если угол между вектором и осью острый, а знак «-» — если угол тупой.

На рисунке 25 проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами на ось Ох обозначена через Проекция вектора на ось в физике - формулы и определения с примерами а проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами — через Проекция вектора на ось в физике - формулы и определения с примерами
Проекция вектора на ось в физике - формулы и определения с примерами
Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число положительное, т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а — острый. Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число отрицательное Проекция вектора на ось в физике - формулы и определения с примерами т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, б — тупой.

А если вектор перпендикулярен оси? Тогда его проекция на эту ось равна нулю (рис. 26).

Проекция вектора на ось в физике - формулы и определения с примерами

Проекцию вектора можно выразить через его модуль и угол между вектором и осью.

Рассмотрим треугольник Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а. Его гипотенуза Проекция вектора на ось в физике - формулы и определения с примерами катет Проекция вектора на ось в физике - формулы и определения с примерами а угол между ними равен Проекция вектора на ось в физике - формулы и определения с примерами Следовательно,

Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью.

Это правило справедливо при любых углах между вектором и осью. Подтвердите это с помощью рисунков 25 и 26.

Обратим внимание на еще одно важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.

Проекция вектора на ось в физике - формулы и определения с примерами

С помощью рисунка 27, а, б убедитесь, что из векторного равенства Проекция вектора на ось в физике - формулы и определения с примерами следует равенство для проекций: Проекция вектора на ось в физике - формулы и определения с примерами Не забывайте о знаках проекций.

Можно ли найти модуль и направление вектора по его проекциям на координатные оси

Проекция вектора на ось в физике - формулы и определения с примерами

Рассмотрим вектор Проекция вектора на ось в физике - формулы и определения с примерами лежащий в плоскости Проекция вектора на ось в физике - формулы и определения с примерами (рис. 28). Его проекции на оси Проекция вектора на ось в физике - формулы и определения с примерами определим из рисунка: Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора из треугольника ACD: Проекция вектора на ось в физике - формулы и определения с примерами Разделив Проекция вектора на ось в физике - формулы и определения с примерами на Проекция вектора на ось в физике - формулы и определения с примерами получим: Проекция вектора на ось в физике - формулы и определения с примерами По значению косинуса находим угол Проекция вектора на ось в физике - формулы и определения с примерами

Таким образом, вектор, лежащий в заданной плоскости, полностью определяется двумя проекциями на оси координат.

Вектор в пространстве определяется тремя проекциями: Проекция вектора на ось в физике - формулы и определения с примерами(рис. 29).
Проекция вектора на ось в физике - формулы и определения с примерами
 

Главные выводы:

  1. Проекция вектора на ось — это длина отрезка, заключенного между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «-».
  2. Если угол между вектором и осью острый, то его проекция на эту ось положительна, если угол тупой — отрицательна, если прямой — равна нулю.
  3. Проекция вектора на ось равна произведению его модуля на косинус угла между вектором и осью.
  4. Проекция суммы векторов на ось равна сумме их проекций на эту ось.

Пример №1

Проекция вектора на ось в физике - формулы и определения с примерами

1. Определите сумму и разность взаимно перпендикулярных векторов Проекция вектора на ось в физике - формулы и определения с примерами (рис. 30). Найдите модули векторов суммы Проекция вектора на ось в физике - формулы и определения с примерами и разности Проекция вектора на ось в физике - формулы и определения с примерами

Решение

Сумму векторов Проекция вектора на ось в физике - формулы и определения с примерами находим по правилу треугольника (рис. 31, а) или параллелограмма (рис. 31, б). Так как векторы Проекция вектора на ось в физике - формулы и определения с примерами взаимно перпендикулярны, модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора: Проекция вектора на ось в физике - формулы и определения с примерами Разность векторов Проекция вектора на ось в физике - формулы и определения с примерами определим по правилам вычитания векторов (рис. 32, а, б).

Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим аналогично:

Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Пример №2

Выразите вектор Проекция вектора на ось в физике - формулы и определения с примерами через векторы Проекция вектора на ось в физике - формулы и определения с примерами (рис. 33). Как связаны между собой проекции этих векторов на оси Ох и Оу?

Решение

Проекция вектора на ось в физике - формулы и определения с примерами

По правилу треугольника находим: Проекция вектора на ось в физике - формулы и определения с примерами Отсюда Проекция вектора на ось в физике - формулы и определения с примерами Определив координаты Проекция вектора на ось в физике - формулы и определения с примерами начальных и конечных точек векторов Проекция вектора на ось в физике - формулы и определения с примерами находим проекции этих векторов: Проекция вектора на ось в физике - формулы и определения с примерами Проекция вектора на ось в физике - формулы и определения с примерами

Вычислением убедимся, что проекции векторов связаны теми же равенствами, что и сами векторы: Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Путь и перемещение
  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Колебательное движение
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними

x

x1 x2

,

y

y1 y2

,

z

z1 z2

.

(8.

)

2

2

2

3

Замечание. На плоскости (в двумерном пространстве) можно также задать прямоугольную систему координат Oxy. С помощью введенной системы координат любую точку или ее радиус-вектор можно представить парой чисел (x, y). Все соотношения, полученные нами ранее для координат векторов и точек трехмерного пространства, будут справедливы и на плоскости с той лишь разницей, что из них нужно всюду убрать третью координату z. Аналогичные рассуждения можно повторить и для произвольной прямой (одномерного пространства).

Определение 9.1. Осью называется прямая с лежащим на ней единичным вектором (ортом), задающим положительное направление на прямой.

На рисунке ось будем изображать в виде направленной прямой. Пусть в пространстве задана ось l и точка А, не принадлежащая оси.

Определение 9.2. Основание перпендикуляра, опущенного из точки А на пря-

мую l, точка A‘ называется проекцией (ортогональной проекцией) точки на ось.

В случае, если точка А принадлежит оси l, то проекция точки на ось совпадает с самой точкой А.

Пусть задан некоторый вектор a AB . Находя проекции начала и конца вектора a на ось l, получим вектор aAB‘ , где A‘, B‘ — соответственно проекции точек А, В на ось l.

Определение 9.3. Проекцией вектора a на ось l будем называть положительное число, равное a‘ , если вектор a‘ и ось l направлены одинаково (см. рис. 12) и отрица-

тельное число a‘ , если вектор a‘ и ось l направлены противоположно (см. рис. 13).

26

a

В

В

a

А

А

a

l

a

l

А’

В’

B’

A’

Рис. 12

Рис. 13

Проекцию вектора

на

ось l

будем обозначать прl

. Таким образом, соглас-

a

a

но определению прl

или прl

a

a

a

a

.

Замечание. Если a 0 или a l , то прl a 0 .

Теорема 9.1. Проекция вектора a на ось l равна произведению длины вектора a на косинус угла между вектором a и осью l, где под углом понимается наименьший из двух углов, образуемых вектором и осью.

Таким образом,

прl

cos

(0 ) .

(9.1)

a

a

Доказательство. В зависимости от величины угла

возможны следующие

случаи (рис. 14):

1. Если 900 , то прl a a a cos .

2. Если

900 1800 , то прl

cos( )

cos .

a

a

a

a

3. Если

900 , то пр

0

cos . ▲

a

a

l

a

a

a

a

a

l

l

l

Рис. 14

27

Следствие 9.1. Проекция вектора на ось есть число положительное, если уголмежду вектором и осью острый, и отрицательное, если угол тупой. Если уголпрямой, то проекция вектора на ось равна нулю.

Следствие 9.2. Проекции равных векторов на одну и ту же ось равны между

собой.

Свойства проекций векторов на ось

1) прl

прl

прl (

).

a

b

a

b

2) прl (

) прl

,

R.

a

a

Доказательство:

1) обозначим c a b . Рассмотрим прl c

a

прl

a прl b (рис.15); ▲

c

b

b

a

с

a

b

a

b

l

с

Рис. 15

2) в зависимости от знака возможны следующие случаи:

прl (

по теореме 9.1

cos прl

a) 0 :

a

)

a

cos

a

a

.

прl (

по теореме 9.1

( cos ) прl

b) 0 :

a

)

a

cos( )

a

a

.

прl (

см. замечание копр.9.3

0 прl

c) 0 :

a

) прl (0)

a

. ▲

Таким образом, линейные операции над векторами сводятся к соответствующим линейным операциям над проекциями этих векторов.

Замечание. Все рассуждения, приведенные выше, будут также справедливы, если вместо оси l рассматривать произвольный ненулевой вектор. Проекцию (ортого-

28

нальную проекцию) вектора a на вектор b (на направление вектора b ) будем обо-

значать прb a .

Теорема 9.2. Декартовы прямоугольные координаты a1 , a2 , a3 вектора a рав-

ны соответственно проекциям этого вектора на оси Ox, Oy и Oz.

Можно дать еще одно определение координат вектора.

Определение 9.4. Координатами вектора a в прямоугольной декартовой системе координат Oxyz называются проекции этого вектора на соответствующие координатные оси.

Рассмотрим задачу о нахождении длины вектора по его координатам.

Задача. Пусть дан вектор a , который относительно прямоугольного декар-

тового базиса {i, j, k} имеет координаты: a {a1 , a2 , a3}. Найдем длину вектора a .

Решение. Найдем проекции вектора a OA на координатные оси и обозначим их OA1,OA2 иOA3 . Согласно теореме 9.2, OA1 a1 , OA2 a2 , OA3 a3 . Построим пря-

моугольный параллелепипед так, что его три измерения равны OA1,OA2 иOA3 . Вектор

a в построенном параллелепипеде совпадает с диагональю (см. рис. 9). Так как квадрат диагонали в прямоугольном параллелепипеде равен сумме квадратов его сторон, то

a2

a2

a2 .

(9.2)

a

1

2

3

Таким образом, длина вектора равна корню квадратному из суммы квадратов координат этого вектора.

Замечание. Длина вектора AB , где A(x1 , y1 , z1 ) , B(x2 , y2 , z2 ) , согласно формулам (8.2), (9.2), находится по формуле

(x

x )2

( y

y )2

(z

z )2 .

(9.3)

AB

2

2

2

1

1

1

29

Соседние файлы в папке Вектора

  • #
  • #
  • #
  • #
  • #
  • #

В математике существуют два определения:

1) геометрическая проекция вектора — вектор;

2) проекция вектора на ось — число.

Геометрическая проекция вектора — это вектор, который можно получить, если провести перпендикуляры от концов вектора до выбранной оси. Проекция начала вектора соответствует началу геометрической проекции, а проекция конца вектора соответствует концу геометрической проекции.


Ваш браузер не поддерживает HTML5 видео

Для вектора

v→

 геометрическая проекция на оси (t) — это вектор

vt→

.

Для вектора

n→

 геометрическая проекция на оси (y) — это вектор

ny→

.

Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.

векторы-проекция.png

ax=4bx=−3

Если длина вектора

a→

 равна

a→

 и

α

 — это острый угол, созданный вектором и осью (x), то скалярная проекция вектора вычисляется по формуле: 

ax=a→⋅cosα

.

Знак проекции вектора выбирается в зависимости от направления оси.

векторы-проекция-треугольник.png

На рисунке видно, что эту формулу можно получить из соотношения в прямоугольном треугольнике:

cosα=прилежащий катетгипотенуза=ax→a→

.

Обрати внимание!

Если вектор и ось проекций параллельны, то скалярная проекция на этой оси — число, которое равно длине вектора, если направления вектора и оси совпадают, или число, противоположное длине вектора, если направления вектора и оси — противоположные.

Если вектор и ось проекций перпендикулярны, то проекция вектора на этой оси равна (0).

Projekcijas_vekt.png

at=3bt=−5ct=0dt=0

Добавить комментарий