Задача 1 Разложить вектор По векторам и .
Пусть , т. е. ;
След., вектор .
Задача 2 Найти длину диагонали параллелограмма, построенного на векторах , если
Рассм. диагонали параллелограмма ;
Вычислим ;
;
Задача 3 Показать, что точки Являются вершинами параллелограмма и найти проекцию одной из диагоналей на большую сторону параллелограмма.
Рассм.
, след. – параллелограмм (так как две противоположные стороны параллельны и равны);
Рассм. Рассм. ; ,
След. – большая сторона параллелограмма ; рассм. диагональ ;
Вычислим Вычислим ;
.
Задача 4 Длина гипотенузы прямоугольного треугольника равна . Вычислить
Задача 5 Найти момент силы, приложенной в точке относительно точки, а также модуль и направляющие косинусы вектора силы
1) , где ; ;
;
2) ;
Направл. косинусы вектора : ; ; .
Задача 6 Треугольник построен на векторах Найти длину высоты , если векторы взаимно перпендикулярны и по модулю равны
Рассм. векторы рассм. ;
;
;
;
Задача 7 Найти координаты вершины тетраэдра, если известно, что она лежит на оси , объём тетраэдра равен , .
Пусть искомая вершина тетраэдра (т. к. т. );
Рассм. в-ры: ;
Рассм. смешанное произв-е:
Рассм. объём тетраэдра : ; ; ;
; ; ; след., возможные положения искомой т.: ; .
Задача 8 В треугольнике известны координаты двух вершин: И точки пересечения медиан . Составить уравнение высоты треугольника, проведённой из вершины .
1) Определим координаты точки Как середины отрезка :;
2) Определим координаты вершины , используя равенство , где ;
Рассм.
;
3) составим ур-е высоты : рассм. в-р ;
Рассм. т. И рассм. в-р ; тогда по условию задачи и и, след., ур-е прямой , проходящей через Перпендикулярно в-ру , можно записать в виде: т. е. .
Задача 9 В параллелограмме известны уравнения сторон и координаты точки пересечения диагоналей Составить уравнения двух других сторон и диагоналей параллелограмма.
1) определим координаты точки как точки пересечения прямых :
;
2) определим координаты точки из условия, что т. – середина отрезка :
;
3) составим уравнение диагонали как прямой, проходящей через точки : ;
4) составим уравнение стороны как прямой, проходящей через точку параллельно
Прямой ;
5) составим уравнение стороны как прямой, проходящей через точку Параллельно
Прямой ;
6) определим координаты точки как точки пересечения прямых :
;
7) составим уравнение диагонали как прямой, проходящей через точки : .
Задача 10 Составить уравнение плоскости, проходящей через точки
Пусть – искомая плоскость; рассм. векторы ;
Рассм. норм. вектор ;
Рассм. произв. т. и рассм. вектор ;
, т. е. ;
Задача 11 Составить уравнение прямой , которая, проходит через точку и пересекает две прямые и .
Рассм. направл. векторы прямых ;
Рассм. т.; рассм. векторы ;
Пусть – плоскость, в которой лежат прямые ; пусть – плоскость, в которой лежат прямые ; тогда искомая прямая есть линия пересечения плоскостей ;
;
;
В качестве направл. вектора прямой можно взять вектор ; выберем ;
Запишем канонические ур-я прямой Как ур-я прямой, проходящей через т. А параллельно
Вектору : ; параметрические ур-я прямой :
Задача 12 Составить уравнение геометрического места всех прямых, проходящих через точку перпендикулярно прямой .
Запишем канонич. уравнения прямой в виде: ; её направл. вектор ;
Рассм. произв. прямую , удовлетв. условию задачи; рассм. произв. точку и её направл. вектор ; , т. е. ;
Плоскость и есть искомое геометрическое место.
Задача 13 Вычислить определитель третьего порядка, пользуясь определением; результат проверить разложением
Определителя по первой строке.
1) Непосредственное вычисление:
2) Разложение по 1-й строке:
Задача 14 Решить систему линейных уравнений по правилу Крамера и с помощью обратной матрицы:
Запишем данную систему уравнений в матричной форме: , (1) , где ; ; ;
Рассм. опред-ль матрицы : ,
След., матр. – невырожденная и можно применять формулы Крамера и вычислять обратную матр. ;
1) решим с – му ур – й (1) по правилу Крамера, т. е. с помощью формул: , , , где ;
;
;
; , , ;
реш–е с–мы ур–й (1) в коорд. форме: вектор–решение с-мы (1): ;
2) получим реш–е с–мы ур–й (1) с помощью обратной матр. :
, след., матр.– невырожденная и существует обратная матр. ;
Умножим рав-во (1) слева на матрицу : , ; вычислим обратную матр. :
Находим алгебр. дополнения для всех эл-тов матрицы и составим из них м-цу :
Транспонируем м-цу и получим «присоединённую» м-цу
Разделим все эл-ты присоедин. м-цы на опр-ль и получим обратную матр. :
Находим теперь вектор-решение :
Задача 15 Установить, являются ли векторы линейно зависимыми.
Вычислим ранг системы векторов методом Гаусса, т. е. выпишем матрицу их координат и приведём её к ступенчатому виду:
ранг матрицы , след. данная система векторов линейно независима.
Задача 16 Исследовать систему линейных уравнений на совместность и в случае совместности найти её решение методом Гаусса.
Выпишем расширенную матрицу данной системы ур-й и приведём её к ступенчатому виду:
имеем ;
Так как , то по теореме Кронекера – Капелли данная система уравнений совместна, а так как , то система имеет бесконечное множество решений; объявим свободной переменной и выпишем общее решение системы в координатной форме:
общее решение системы имеет вид:
Задача 17 Найти матрицу преобразования, выражающего Через , если
Запишем данные преобразования в матричной форме: , где матрицы и
Вектор – столбцы имеют вид:
Рассм. ;
Вычислим матрицу .
Задача 18 Найти собственные числа и собственные векторы линейного преобразования, заданного матрицей
1) Находим собств. значения линейного преобразования , т. е. корни характеристического уравнения :
Рассм.
– собств. значения (действ.) лин. преобр-я ;
2) находим собств. векторы линейного преобразования , соотв. собств. значениям :
А) рассм.
Рассм. Пусть , тогда вектор ;
Б) рассм.
Рассм.
Пусть , тогда , вектор ;
Пусть , тогда , вектор ;
След. собств. векторы линейного преобразования суть:
; ; .
< Предыдущая |
---|
Свойства параллелограмма:
1. Противоположные стороны равны и параллельны
2. Противоположные углы равны
3. Точка пересечения диагоналей, делит их пополам
1. Длина диагонали параллелограмма через стороны, известную диагональ и угол.
a, b – стороны параллелограмма
D – большая диагональ
d – меньшая диагональ
α, β – углы параллелограмма
Формулы диагонали через стороны и углы параллелограмма (по теореме косинусов), (D, d):
Формулы диагонали через стороны и известную диагональ (по формуле- сумма квадратов диагоналей), (D, d):
2. Длина диагонали параллелограмма через площадь, известную диагональ и угол.
D – большая диагональ
d – меньшая диагональ
α, β – углы между диагоналями
S – площадь параллелограмма
Формулы диагонали через площадь, известную диагональ и угол между диагоналями, (D, d):
Формулы площади параллелограмма
Формула периметра параллелограмма
Все формулы по геометрии
- Подробности
-
Опубликовано: 03 ноября 2011
-
Обновлено: 13 августа 2021
Плоскость а проведена через сторону AD параллелограмма ABCD.Найдите проекции сторон параллелограмма на эту плоскость, если BC=19 и проекции диагоналей параллелограмма на плоскость а равны 20 и 22.
АС1 находить нет нужды, она по условию равна 22.
Рассмотрим данный к задаче рисунок. и проекции АВ1 и В1С1 сторон АВ и ВС параллелограмма ABCD на плоскость α.
Так как
ВС
параллельна прямой АD, лежащей на плоскости α, она
параллельна
и самой
плоскости α
.
Поэтому проекция В1С1 стороны ВС на плоскость равна 19.
Проекции диагоналей на плокость равны диагоналям параллелограмма АВ1С1D со сторонами АД=В1С1=19.
Нарисуем этот параллелограмм AB1C1D.
По формуле Герона найдем площадь треугольника АОD
Полупериметр треугольника АОД=(11+10+19):2=20
S=√1800=30√2
Из площади треугольника АОД найдем его высоту ОК к основанию АД по формуле площади треугольника:
S=аh:2
2S= 60√2
ОК=60√2:19=4,4659…..≈ 4,466
Продлим АД
до пересечения с высотой С1Н, опущенной из С1,
и получим
прямоугольный треугольник АС1Н.
С1Н=2ОК= ≈ 8,93
Найдем в нем сторону АН по т. Пифагора.
АН=√(АС1²-НС1²)≈ √(22²-8,93²)=√(484-79,7449)=≈20,1
Отсюда ДН=20,1-19=1,1
Из треугольника ДНС1 найдем длину ДС1, она равна также и АВ1.
ДС1=√(НС1²+НД²)=√(79,7449+1,21)=√80,9549=8,9974≈9
Примеры решения задач
Задача 1.
Определить длины диагоналей параллелограмма,
построенного на векторах
и
,
где
таковы, что
.
Решение.
Диагонали параллелограмма есть векторы
и
.
Вычислим длину вектора
:
.
Аналогично
вычисляется длина вектора
.
Задача 2.
Найдите вектор
,
коллинеарный вектору
и удовлетворяющий условию
.
Решение.
Обозначим вектор
,
тогда из условий задачи
или
,
тогда
.
Итак:
.
Задача 3.
Найти проекцию вектора
на направление вектора
.
Решение.
.
По формуле проекции вектора на ось будет
иметь место равенство
.
Задача 4.
Даны векторы:
.
П
роверить,
есть ли среди них коллинеарные. Найти
.
Решение.
Условие коллинеарности имеет вид
.
Этому условию удовлетворяют векторы
.
Следовательно, они коллинеарны. Найдем
длины
векторов
:
.
Угол между векторами
определяется по формуле
.
Т
огда
,
.
Используя формулу
,
получим
.
Задача 5.
На материальную точку действуют силы
.
Найти работу равнодействующей этих сил
при перемещении точки из положения
в положение
.
Решение.
Найдем силу
и вектор перемещения
.
,
тогда искомая работа
.
Задачи
1. Векторы
взаимно перпендикулярны, а вектор
образует с ними углы
.
Зная, что
,
найти: 1)
;
2)
.
2. Вычислить длину
диагоналей параллелограмма, построенного
на векторах
,
если известно, что
.
3. Доказать, что
вектор
перпендикулярен к вектору
.
4. Зная, что
,
определить, при каком значении коэффициента
векторы
окажутся перпендикулярными.
5. Даны вершины
четырехугольника:
.
Доказать, что его диагонали взаимно
перпендикулярны.
6. Найти острый
угол между диагоналями параллелограмма,
построенного на векторах
.
7. Даны силы
.
Найти работу их равнодействующей при
перемещении точки из начала координат
в точку
.
8. Даны вершины
треугольника:
.
Найти проекцию вектора
на вектор
.
9. Найти вектор
,
перпендикулярный векторам
,
если известно, что его проекция на вектор
равна единице.
10. Сила, определяемая
вектором
,
разложена по трем направлениям, одно
из которых задано вектором
.
Найти составляющую силы
в направлении вектора
.
11. Даны вершины
треугольника:
.
Найти его внутренний угол при вершине
А и внешний угол при вершине В.
12. Даны три
последовательные вершины параллелограмма:
.
Найти его четвертую вершину D
и угол между векторами
.
13. На оси
найти точку, равноудаленную от точек
.
14. Доказать, что
треугольник с вершинами
прямоугольный.
Домашнее задание
1. Вычислить
скалярное произведение двух векторов
,
зная их разложение по трем единичным
взаимно перпендикулярным векторам
;
.
2. Найти длину
вектора
,
зная, что
– взаимно перпендику-
лярные орты.
3. Векторы
попарно образуют друг с другом углы,
каждый из которых равен
.
Зная, что
,
определить модуль вектора
.
4. Доказать, что
вектор
перпендикулярен к вектору
.
5. Даны векторы
,
совпадающие со сторонами треугольника
АВС. Найти разложение вектора, приложенного
к вершине В этого треугольника и
совпадающего с его высотой BD
по базису
.
6. Вычислить угол
между векторами
,
где
–
единичные взаимно перпендикулярные
векторы.
7. Даны силы
,
приложенные к одной точке. Вычислить,
какую работу производит равнодействующая
этих сил, когда ее точка приложения,
двигаясь прямолинейно, перемещается
из положения
в положение
.
8. Даны вершины
треугольника
.
Определить его внутренний угол при
вершине В.
9. Вычислив
внутренние углы треугольника с вершинами
,
,
убедиться, что этот треугольник
равнобедренный.
10. Найти вектор
,
зная, что он перпендикулярен векторам
и
.
11. Найти вектор
,
коллинеарный вектору
и удовлетворяющий условию
,
где
.
12. Вычислить
проекцию вектора
на ось вектора
.
13. Даны векторы
.
Вычислить
.
14. Даны точки
.
Вычислить проекцию вектора
на ось вектора
.
Ответы к задачам
1) -7, 13. 2) 15,
.
4)
.
6)
.
7) 2. 8) -1/3.
9)
.
10)
.
11)
.
12)
.
13)
.
Ответы к домашнему
заданию
1) 9. 2) 5. 3) 10. 5)
.
6)
.
7) 13. 8)
.
10)
.
12) 6. 13) 5. 14) 3.
Занятие 3
Векторое
произведения векторов. Смешанное
произведение векторов
Определение1.
Тройка
некомпланарных векторов
называется правой (левой) если, находясь
внутри телесного угла, образованного
приведенными к общему началу векторами
и от него к
,
човершающимся против часовой стрелки
(по часовой стрелке)
Тройка правая
Тройка левая
Определение
2. Векторным
произведением вектора
на вектор
называется вектор
,
длина и направление которого определяются
условиями:
1.
,
где
– угол между
.
2.
.
3.
– правая тройка векторов.
Свойства
векторного произведения
1.
(свойство антиперестановочности
сомножителей);
2.
(распределительное относительно суммы
векторов);
3.
(сочетательное относиельно числового
множителя);
4.
(равенство нулю векторного произведения
означает коллинеарность векторов);
5.
,
т. е. момент сил равен векторному
произведению силы на плечо.
Если вектор
,
то
.
Определение
3. Смешанным
произведением
трех векторов называется число,
определяемое следующим образом:
.
Если векторы заданы своими координатами:
,
то
~
.
Свойства
смешанного произведения
1. Необходимым и
достаточным условием компланарности
векторов
является равенство
= 0.
2. Объем
параллелепипеда, построенного на
векторах
:
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Как найти диагональ параллелограмма, если даны стороны
Параллелограмм – это четырехугольник, противоположные стороны которого параллельны. Прямые, соединяющие его противоположные углы, называются диагоналями. Их длина зависит не только от длин сторон фигуры, но и от величин углов в вершинах этого многоугольника, поэтому без знания хотя бы одного из углов вычислить длины диагоналей можно только в исключительных случаях. Таковыми являются частные случаи параллелограмма – квадрат и прямоугольник.
Инструкция
Если длины всех сторон параллелограмма одинаковы (a), то эту фигуру можно назвать еще и квадратом. Величины всех его углов равны 90°, а длины диагоналей (L) одинаковы и могут быть рассчитаны по теореме Пифагора для прямоугольного треугольника. Умножьте длину стороны квадрата на корень из двойки – результат и будет длиной каждой из его диагоналей: L=a*√2.
Если о параллелограмме известно, что он является прямоугольником с указанными в условиях длиной (a) и шириной (b), то и в этом случае длины диагоналей (L) будут равны. И здесь тоже задействуйте теорему Пифагора для треугольника, в котором гипотенузой является диагональ, а катетами – две смежные стороны четырехугольника. Искомую величину рассчитайте извлечением корня из суммы возведенных в квадрат ширины и высоты прямоугольника: L=√(a²+b²).
Для всех остальных случаев знания одних только длин сторон хватит лишь для определения величины, включающей в себя длины сразу обеих диагоналей – сумма их квадратов по определению равна удвоенной сумме квадратов длин сторон. Если же в дополнение к длинам двух смежных сторон параллелограмма (a и b) известен еще и угол между ними (γ), то это позволит рассчитать длины каждого отрезка, соединяющего противоположные углы фигуры. Длину диагонали (L₁), лежащей напротив известного угла, найдите по теореме косинусов – сложите квадраты длин смежных сторон, от результата отнимите произведение этих же длин на косинус угла между ними, а из полученной величины извлеките квадратный корень: L₁ = √(a²+b²-2*a*b*cos(γ)). Для нахождения длины другой диагонали (L₂) можно воспользоваться свойством параллелограмма, приведенным в начале этого шага – удвойте сумму квадратов длин двух сторон, от результата отнимите квадрат уже рассчитанной диагонали, а из полученного значения извлеките корень. В общем виде эту формулу можно записать так: L₂ = √(a²+b²- L₁²) = √(a²+b²-(a²+b²-2*a*b*cos(γ))) = √(a²+b²-a²-b²+2*a*b*cos(γ)) = √(2*a*b*cos(γ)).
Источники:
- как найти длину диагонали параллелограмма
Войти на сайт
или
Забыли пароль?
Еще не зарегистрированы?
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.