Как найти проекцию хорды на диаметр

Через точку окружности проведены хорда и диаметр. Найдите диаметр окружности, если хорда равна 30 см, а проекции хорды на диаметр относится к диаметру как 9 : 25.

Ваш ответ

решение вопроса

Похожие вопросы

  • Все категории
  • экономические 43,277
  • гуманитарные 33,618
  • юридические 17,900
  • школьный раздел 606,868
  • разное 16,824

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах.

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте.

Как быстро и эффективно исправить почерк? Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью.

Отрезки и прямые, связанные с окружностью. Теорема о бабочке

Отрезки и прямые, связанные с окружностью

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Конечная часть плоскости, ограниченная окружностью

Отрезок, соединяющий центр окружности с любой точкой окружности

Отрезок, соединяющий две любые точки окружности

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Прямая, пересекающая окружность в двух точках

Фигура Рисунок Определение и свойства
Окружность
Круг
Радиус
Хорда
Диаметр
Касательная
Секущая
Окружность

Множество точек плоскости, находящихся на одном и том же расстоянии от одной точки – центра окружности

Круг

Конечная часть плоскости, ограниченная окружностью

Радиус

Отрезок, соединяющий центр окружности с любой точкой окружности

Хорда

Отрезок, соединяющий две любые точки окружности

Диаметр

Хорда, проходящая через центр окружности.

Диаметр является самой длинной хордой окружности

Касательная

Прямая, имеющая с окружностью только одну общую точку.

Касательная перпендикулярна к радиусу окружности, проведённому в точку касания

Секущая

Прямая, пересекающая окружность в двух точках

Свойства хорд и дуг окружности

Фигура Рисунок Свойство
Диаметр, перпендикулярный к хорде Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.
Диаметр, проходящий через середину хорды Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.
Равные хорды Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.
Хорды, равноудалённые от центра окружности Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.
Две хорды разной длины Большая из двух хорд расположена ближе к центру окружности.
Равные дуги У равных дуг равны и хорды.
Параллельные хорды Дуги, заключённые между параллельными хордами, равны.
Диаметр, перпендикулярный к хорде

Диаметр, перпендикулярный к хорде, делит эту хорду и стягиваемые ею две дуги пополам.

Диаметр, проходящий через середину хорды

Диаметр, проходящий через середину хорды, перпендикулярен к этой хорде и делит стягиваемые ею две дуги пополам.

Равные хорды

Если хорды равны, то они находятся на одном и том же расстоянии от центра окружности.

Хорды, равноудалённые от центра окружности

Если хорды равноудалены (находятся на одном и том же расстоянии) от центра окружности, то они равны.

Две хорды разной длины

Большая из двух хорд расположена ближе к центру окружности.

Равные дуги

У равных дуг равны и хорды.

Параллельные хорды

Дуги, заключённые между параллельными хордами, равны.

Теоремы о длинах хорд, касательных и секущих

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Фигура Рисунок Теорема
Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Пересекающиеся хорды
Касательные, проведённые к окружности из одной точки
Касательная и секущая, проведённые к окружности из одной точки
Секущие, проведённые из одной точки вне круга
Пересекающиеся хорды

Произведения длин отрезков, на которые разбита каждая из хорд, равны:

Касательные, проведённые к окружности из одной точки

Если к окружности из одной точки проведены две касательных, то длины отрезков касательных от этой точки до точек касания с окружностью равны.

Касательная и секущая, проведённые к окружности из одной точки

Секущие, проведённые из одной точки вне круга

Доказательства теорем о длинах хорд, касательных и секущих

Теорема 1 . Предположим, что хорды окружности AB и CD пересекаются в точке E (рис.1).

Тогда справедливо равенство

Доказательство . Заметим, что углы BCD и BAD равны как вписанные углы, опирающиеся на одну и ту же дугу. Углы BEC и AED равны как вертикальные. Поэтому треугольники BEC и AED подобны. Следовательно, справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 2 . Предположим, что из точки A , лежащей вне круга, к окружности проведены касательная AB и секущая AD (рис.2).

Точка B – точка касания с окружностью, точка C – вторая точка пересечения прямой AD с окружностью. Тогда справедливо равенство

Доказательство . Заметим, что угол ABC образован касательной AB и хордой BC , проходящей через точку касания B . Поэтому величина угла ABC равна половине угловой величины дуги BC . Поскольку угол BDC является вписанным углом, то величина угла BDC также равна половине угловой величины дуги BC . Следовательно, треугольники ABC и ABD подобны (угол A является общим, углы ABC и BDA равны). Поэтому справедливо равенство

откуда и вытекает требуемое утверждение.

Теорема 3 . Предположим, что из точки A , лежащей вне круга, к окружности проведены секущие AD и AF (рис.3).

Точки C и E – вторые точки пересечения секущих с окружностью. Тогда справедливо равенство

Доказательство . Проведём из точки A касательную AB к окружности (рис. 4).

Точка B – точка касания. В силу теоремы 2 справедливы равенства

откуда и вытекает требуемое утверждение.

Теорема о бабочке

Теорема о бабочке . Через середину G хорды EF некоторой окружности проведены две произвольные хорды AB и CD этой окружности. Точки K и L – точки пересечения хорд AC и BD с хордой EF соответственно (рис.5). Тогда отрезки GK и GL равны.

Доказательство . Существует много доказательств этой теоремы. Изложим доказательство, основанное на теореме синусов, которое, на наш взгляд, является наиболее наглядным. Для этого заметим сначала, что вписанные углы A и D равны, поскольку опираются на одну и ту же дугу. По той же причине равны и вписанные углы C и B . Теперь введём следующие обозначения:

Воспользовавшись теоремой синусов, применённой к треугольнику CKG , получим

Воспользовавшись теоремой синусов, применённой к треугольнику AKG , получим

Воспользовавшись теоремой 1, получим

Воспользовавшись равенствами (1) и (2), получим

Проводя совершенно аналогичные рассуждения для треугольников BGL и DGL , получим равенство

откуда вытекает равенство

что и завершает доказательство теоремы о бабочке.

6. Отрезок AD — проекция хорды АС на диаметр окружности?

Геометрия | 10 – 11 классы

6. Отрезок AD — проекция хорды АС на диаметр окружности.

Точка D делит диаметр в отношении 1 : 2.

Найдите хорду АС, если диаметр окружности равен 12 см.

Соединим С с D и В.

Получился прямоугольный треугольник АВС.

Треугольник ACD подобен ABC.

Поэтому AD / AC = AC / AB ; AC ^ 2 = AD * AB = D ^ 2 / 3 ;

AC = D * корень(3) / 3.

Хорда длиной 30 см, перпендикулярная диаметру, делит его в отношении 1 : 9?

Хорда длиной 30 см, перпендикулярная диаметру, делит его в отношении 1 : 9.

Найдите диаметр окружности.

Хорда длинной 30 см, перпендикулярная диаметру?

Хорда длинной 30 см, перпендикулярная диаметру.

Она делит его в отношении 1 : 9.

Надо найти диаметр окружности.

В окружности перпендикулярно диаметру проведена хорда?

В окружности перпендикулярно диаметру проведена хорда.

Точка их пересечения делит диаметр на отрезки 18 и 32.

Найдите длину хорды.

Из точки окружности проведены диаметр и хорда?

Из точки окружности проведены диаметр и хорда.

Длина хорды 30 см а ее проекция на диаметр меньше радиуса окружности на 7 см.

Найдите радиус окружности.

Докажите, что если диаметр окружности перпендикулярен хорде, то он делит эту хорду пополам?

Докажите, что если диаметр окружности перпендикулярен хорде, то он делит эту хорду пополам.

В окружности перпендикулярно диаметру проведена хорда?

В окружности перпендикулярно диаметру проведена хорда.

Точка их пересечения делит диаметр на отрезки 18 и 32.

Найдите длину хорды.

Отрезок АВ является диаметром окружности, а хорды ВС и АD параллельны?

Отрезок АВ является диаметром окружности, а хорды ВС и АD параллельны.

Окажите, что хорда СD является диаметром.

В окружности диаметр и хорда взаимно перпендикулярны , причем диаметр делит хорду точкой их пересечения на два равных отрезка по 4см?

В окружности диаметр и хорда взаимно перпендикулярны , причем диаметр делит хорду точкой их пересечения на два равных отрезка по 4см.

А расстояние от точки пересечения диаметра и хорды до центра окружности 3 метра.

Найдите длину окружности.

Из точки окружности проведены диаметр и хорда ?

Из точки окружности проведены диаметр и хорда .

Длина хорды равно 30 см, а ее проекция на диаметр меньше радиуса окружности на 7 см.

Найдите радиус окружности.

Отрезок СВ – хорда окружности с центром в точке О, СД – диаметр этой окружности, СВ равен радиусу?

Отрезок СВ – хорда окружности с центром в точке О, СД – диаметр этой окружности, СВ равен радиусу.

Найдите угол СВД.

На этой странице сайта вы найдете ответы на вопрос 6. Отрезок AD — проекция хорды АС на диаметр окружности?, относящийся к категории Геометрия. Сложность вопроса соответствует базовым знаниям учеников 10 – 11 классов. Для получения дополнительной информации найдите другие вопросы, относящимися к данной тематике, с помощью поисковой системы. Или сформулируйте новый вопрос: нажмите кнопку вверху страницы, и задайте нужный запрос с помощью ключевых слов, отвечающих вашим критериям. Общайтесь с посетителями страницы, обсуждайте тему. Возможно, их ответы помогут найти нужную информацию.

[spoiler title=”источники:”]

http://www.resolventa.ru/demo/training.htm

http://geometria.my-dict.ru/q/3508003_6-otrezok-ad-proekcia-hordy-as/

[/spoiler]

Обучайтесь и развивайтесь всесторонне вместе с нами, делитесь знаниями и накопленным опытом, расширяйте границы знаний и ваших умений.

поделиться знаниями или
запомнить страничку

  • Все категории
  • экономические
    43,658
  • гуманитарные
    33,653
  • юридические
    17,917
  • школьный раздел
    611,962
  • разное
    16,905

Популярное на сайте:

Как быстро выучить стихотворение наизусть? Запоминание стихов является стандартным заданием во многих школах. 

Как научится читать по диагонали? Скорость чтения зависит от скорости восприятия каждого отдельного слова в тексте. 

Как быстро и эффективно исправить почерк?  Люди часто предполагают, что каллиграфия и почерк являются синонимами, но это не так.

Как научится говорить грамотно и правильно? Общение на хорошем, уверенном и естественном русском языке является достижимой целью. 

Проекция хорды на диаметр

тутти джонс



Профи

(663),
закрыт



9 лет назад

Через конец хорды длиной 45 см проведен диаметр. Проекция хорды на диаметр относится к диаметру как 9: 25.
Найди диаметр круга

Лучший ответ

Наталия Тузина

Просветленный

(49644)


11 лет назад

АВ – хорда
АС – диаметр
ВК – высота, опущенная из точки В на хорду АС.
Соедини точки В и С, а потом расмотри 2 треугольника:
АВК и ВКС. Найди высоту ВК, узнаеш АК, а оттуда АС.

Остальные ответы

Похожие вопросы

Правильный ответ на вопрос 👍 «Из точки окружности проведены диаметр и хорда. Длина хорды равно 30 см, а ее проекция на диаметр меньше радиуса окружности на 7 см. Найдите …» по предмету 📗 Геометрия. Развернутая система поиска нашего сайта обязательно приведёт вас к нужной информации. Как вариант – оцените ответы на похожие вопросы. Но если вдруг и это не помогло – задавайте свой вопрос знающим оппонентам, которые быстро дадут на него ответ!

Искать готовые ответы

Главная » Геометрия » Из точки окружности проведены диаметр и хорда. Длина хорды равно 30 см, а ее проекция на диаметр меньше радиуса окружности на 7 см. Найдите радиус окружности

Как найти хорду окружности

Как найти хорду окружности

Хорда – это отрезок, который соединяет две произвольные точки одной окружности. Нахождение длины данного элемента окружности – это задача, относящаяся к геометрическому разделу математики. Для ее вычисления необходимо сделать упор на величины, данные в задаче, а также свойства других элементов.

Существует несколько типов задач на нахождение хорды. В каждом из них даны различные значения, которые могут быть использованы для проведения необходимых вычислений.

1

Как найти хорду окружности – случай 1

Задается окружность, в которой есть радиус R. Если дуга φ стягивается хордой L, при этом φ задана в градусах, то значение длины хорды будет вычисляться следующим образом: L = 2*R*sin(φ/2). Для решения задачи необходимо будет просто подставить числовые значения и вычислить.

2

Как найти хорду окружности – случай 2

  • Задается окружность, центр которой лежит в т. О и хордами АВ и АС, которые пересекают окружность в общей т. А. В этом случае угол, который образуют хорды (ВАС), опирается на диаметр. В данном случае рекомендуется выполнить пояснительный чертеж, чтобы было видно образование равнобедренного треугольника АВС, в котором ВС – основание и диаметр, следовательно, ВО=ОС (как радиусы). Тогда АО является медианой в треугольнике и еще одним радиусом. АВ и АС – стороны треугольника, АВ=АС (т.к. треугольник является равнобедренным). Треугольники АОС и АОВ являются прямоугольными и равнобедренными. Зная радиус, по теореме Пифагора вычисляется хорда: АС2=АО2+ОС2.
  • В данном случае можно воспользоваться другой формулой, если известен диаметр и центральный угол, на который опирается хорда: L = 2R*Sin (α/2) = D*Sin (α/2).

3

Как найти хорду окружности – случай 3

Когда задается окружность с диаметром и хордой и дается угол между ними (α), то необходимо провести перпендикуляр к центру с другой точки пресечения хордой окружности. Получится прямоугольный треугольник. Теорема о проекциях позволяет вывести формулу, которую можно использовать для нахождения хорды: СЕ = 2* R *cos α.

4

Как найти хорду окружности – полезные свойства

  • Хорда, проходящая через центр заданной окружности, будет являться ее диаметром.
  • Если в окружности проведено две хорды, которые пересекаются между собой, то срабатывает такое свойство: угол между ними будет равен ½ суммы мер двух дуг: расположенной напротив хорды и той, что находится в углу.
  • В случае, когда к заданной окружности проводится касательная, которая образует с хордой угол, то он будет равен значению, полученному в результате деления величины дуги, которую стягивает данная хорда, на 2.


Добавить комментарий