Как найти проекцию начальной скорости на ось

Проекции скорости и ускорения

Для выполнения
расчетов скоростей и ускорений необходимо
переходить от записи уравнений в
векторной форме к записи уравнений в
алгебраической форме.

Векторы начальной
скорости
и ускорениямогут иметь различные направления,
поэтому переход от векторной записи
уравнений к алгебраической может
оказаться весьма трудоемким.

Известно, что
проекция суммы двух векторов на какую-либо
координатную ось равна сумме проекций
слагаемых векторов на ту же ось.

Поэтому для
нахождения проекции
вектора скоростина произвольную ось OX нужно найти
алгебраическую сумму проекций векторовина ту же ось.

Проекцию
вектора на ось считают положительной,
если от проекции начала к проекции
конца вектора нужно идти по направлению
оси, и отрицательной в противоположном
случае.

График скорости

Из уравнения
следует, что графиком зависимости
проекции скорости равноускоренного
движения от времени является прямая.
Если проекция начальной скорости на
ось OX равна нулю, то прямая проходит
через начало координат.

Основные
виды движения

  1. аn
    = 0, a
    = 0

    прямолинейное равномерное движение;

  2. аn
    = 0, a
    =
    const
    – прямолинейное равнопеременное
    движение;

  3. аn
    = 0, a

    0 –
    прямолинейное
    с переменным ускорением;

  4. аn
    = const,
    a
    = 0 –
    равномерное
    по окружности

  5. аn
    = const,
    a
    =
    const
    – равнопеременное по окружности

  6. аn

    const,
    a

    const
    – криволинейное с переменным ускорением.

Вращательное движение твердого тела.

Вращательное
движение твердого тела относительно
неподвижной оси

– движение, при котором все точки
твердого тела описывают окружности,
центры которых лежат на одной прямой,
называемой осью
вращения.

Равномерное движение по окружности

Рассмотрим наиболее
простой вид вращательного движения, и
уделим особое внимание центростремительному
ускорению.

При равномерном
движении по окружности значение скорости
остается постоянным, а направление
вектора скорости
изменяется в процессе движения.

За
интервал времени t
тело проходит путь
.
Этот путь равен длине дугиAB.
Векторы скоростей
ив точкахA
и B направлены
по касательным к окружности в этих
точках, а угол
между векторами
иравен углу между радиусамиOA
и OB.
Найдем разность векторов
и определим отношение изменения
скорости кt:

Из подобия
треугольников OAB и BCD следует

Если интервал
времени ∆t
мал, то мал и угол .
При малых значениях угла 
длина хорды AB примерно равна длине дуги
AB, т.е.
.
Т.к.,,
то получаем

.

Поскольку
,
то получаем

Период и частота

Промежуток времени,
за который тело совершает полный оборот
при движении по окружности, называется
периодам
обращения

(Т).
Т.к. длина окружности равна 2R,
период обращения при равномерном
движении тела со скоростью v
по окружности радиусом R
равняется:

Величина, обратная
периоду обращения, называется частотой.
Частота показывает, сколько оборотов
по окружности совершает тело в единицу
времени:

-1)

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #

    01.06.2015304.13 Кб31KP.doc

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением: veca=const.

3.1.2. Ускорение (veca левая квадратная скобка м/с в квадрате правая квадратная скобка ) — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

veca= дробь: числитель: vecnu минус overrightarrownu_0, знаменатель: t конец дроби ,

где overrightarrownu_0 — начальная скорость тела, vecnu — скорость тела в момент времени t.

В проекции на ось Ox:

a_x= дробь: числитель: nu_x минус nu_0x, знаменатель: t конец дроби ,

где nu_0x — проекция начальной скорости на ось Ox, nu_x — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

a= дробь: числитель: nu минус nu_0, знаменатель: t конец дроби .

 минус a= дробь: числитель: nu минус nu_0, знаменатель: t конец дроби .

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения  левая круглая скобка |а_1| больше |а_2| правая круглая скобка .

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

vecnu=overrightarrownu_0 плюс vecat.

В проекции на ось Ox:

nu_x=nu_0x плюс a_x t.

Для равноускоренного движения:

nu=nu_0 плюс at.

Для равнозамедленного движения:

nu=nu_0 минус at.

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; a= дробь: числитель: Deltanu, знаменатель: Delta t конец дроби , где Deltanu — изменение скорости за время Delta t.

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях  левая круглая скобка nu_x,t правая круглая скобка .

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t. (3.9)

3.1.7. Формулы для расчета пути

Равноускоренное движение

nu=nu_0 плюс at

Равнозамедленное движение

nu=nu_0 минус at

S=nu_0 t плюс дробь: числитель: at в квадрате , знаменатель: 2 конец дроби (3.10) S=nu_0 t минус дробь: числитель: at в квадрате , знаменатель: 2 конец дроби (3.12)
S= дробь: числитель: nu в квадрате минус nu_0 в квадрате , знаменатель: 2a конец дроби (3.11) S= дробь: числитель: nu_0 в квадрате минус nu в квадрате , знаменатель: 2a конец дроби (3.13)
S= дробь: числитель: 1, знаменатель: 2 конец дроби левая круглая скобка nu_0 плюс nu правая круглая скобка t (3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

t_1= дробь: числитель: nu_0, знаменатель: a конец дроби , S_1=nu_0 t_1 минус дробь: числитель: at_1 в квадрате , знаменатель: 2 конец дроби .

После пересечения (разгон, движение в обратную сторону)

t_2=t минус t_1, S_2= дробь: числитель: at_2 в квадрате , знаменатель: 2 конец дроби , |overrightarrowDelta r|=|S_1 минус S_2 |, L=S_1 плюс S_2.

В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), S_1 — путь, который прошло тело от начала движения до пересечения с осью времени, t_2 — время, прошедшее с момента пересечения оси времени до данного момента t, S_2 — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, |overrightarrowDelta r| — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время t= левая круглая скобка n минус 1 правая круглая скобка t_0 тело пройдет путь:

S_n минус 1=nu_0 левая круглая скобка n минус 1 правая круглая скобка t_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка n минус 1 правая круглая скобка в квадрате t_0 в квадрате .

За время t=nt_0 тело пройдет путь:

S_n=nu_0 nt_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби n в квадрате t_0 в квадрате .

Тогда за -ый промежуток  t_0 тело пройдет путь:

S_N=S_n минус S_n минус 1=nu_0 t_0 плюс левая круглая скобка at_0 в квадрате правая круглая скобка /2 левая круглая скобка 2n минус 1 правая круглая скобка .

За промежуток t_0 можно принимать любой отрезок времени. Чаще всего t_0=1 с.

Если nu_0=0, то

S_N= дробь: числитель: at_0 в квадрате , знаменатель: 2 конец дроби левая круглая скобка 2n минус 1 правая круглая скобка .

Тогда за 1-ую секунду тело проходит путь:

S_1= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 1 минус 1 правая круглая скобка = дробь: числитель: a, знаменатель: 2 конец дроби ;

За 2-ую секунду:

S_2= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 2 минус 1 правая круглая скобка =3 умножить на дробь: числитель: a, знаменатель: 2 конец дроби ;

За 3-ю секунду:

S_3= дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка 2 умножить на 3 минус 1 правая круглая скобка =5 умножить на дробь: числитель: a, знаменатель: 2 конец дроби ;

и т. д.

Если внимательно посмотрим, то увидим, что S_2=2S_1;S_3=5S_1 и т. д.

Таким образом, приходим к формуле:

S_1:S_2:S_3:…:S_N=1:3:5:…: левая круглая скобка 2N минус 1 правая круглая скобка .

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при nu_0=0.

3.1.9. Уравнение координаты тела при равнопеременном движении

Уравнение координаты

x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби .

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.

Для решения задач к уравнению S_n минус 1=nu_0 левая круглая скобка n минус 1 правая круглая скобка t_0 плюс дробь: числитель: a, знаменатель: 2 конец дроби левая круглая скобка n минус 1 правая круглая скобка в квадрате t_0 в квадрате необходимо добавлять уравнение изменения проекции скорости на ось:

nu_x=nu_0x плюс a_x t.

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно g=9,8м/с в квадрате (в задачах часто принимаем g=10м/с в квадрате для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.

Уравнение координаты тела:

y=y_0 плюс nu_0y t плюс дробь: числитель: a_y t в квадрате , знаменатель: 2 конец дроби .

Уравнение проекции скорости:

nu_y=nu_0y плюс a_y t.

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения t_2=t минус t_1 и S_2= дробь: числитель: at_2 в квадрате , знаменатель: 2 конец дроби перепишутся в следующем виде:

y=y_0 плюс nu_0y t минус дробь: числитель: gt в квадрате , знаменатель: 2 конец дроби , nu_y=nu_0y минус gt.

3.4. Движение в плоскости Oxy.

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

 система выражений x=x_0 плюс nu_0x t плюс дробь: числитель: a_x t в квадрате , знаменатель: 2 конец дроби ,y=y_0 плюс nu_0y t плюс дробь: числитель: a_y t в квадрате , знаменатель: 2 конец дроби . конец системы .

Или в векторном виде:

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrowr_0 плюс overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби .

И изменение проекции скорости на обе оси:

 система выражений nu_x=nu_0x плюс a_x t,nu_y=nu_0y плюс a_y t. конец системы .

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

Производная:

 левая круглая скобка C правая круглая скобка '=0,		 левая круглая скобка x в степени n правая круглая скобка '=nx в степени левая круглая скобка n минус 1 правая круглая скобка ,			 левая круглая скобка Ax в степени n плюс Bx в степени m правая круглая скобка '=Anx в степени левая круглая скобка n минус 1 правая круглая скобка плюс Bmx в степени левая круглая скобка m минус 1 правая круглая скобка .

где A, B и C=Const, то есть постоянные величины.

Интеграл:

 принадлежит tAdx=Ax плюс C,		 интеграл x в степени n dx= дробь: числитель: x в степени левая круглая скобка n плюс 1 правая круглая скобка , знаменатель: n плюс 1 конец дроби плюс C,  интеграл левая круглая скобка Ax в степени n плюс Bx в степени m правая круглая скобка dx= дробь: числитель: A, знаменатель: n плюс 1 конец дроби x в степени левая круглая скобка n плюс 1 правая круглая скобка плюс дробь: числитель: B, знаменатель: m плюс 1 конец дроби x в степени левая круглая скобка m плюс 1 правая круглая скобка плюс C,

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.

Скорость:

vecnu=dotoverrightarrowr левая круглая скобка t правая круглая скобка ,

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

 система выражений nu_x=dot x левая круглая скобка t правая круглая скобка ,nu_y=dot y левая круглая скобка t правая круглая скобка . конец системы .

Ускорение:

vec a=dotoverrightarrownu левая круглая скобка t правая круглая скобка ,

то есть ускорение является производной от скорости.

Для проекции ускорения:

 система выражений a_x=dotoverrightarrownu_x левая круглая скобка t правая круглая скобка ,a_y=dotoverrightarrownu_y левая круглая скобка t правая круглая скобка . конец системы .

Таким образом, если известен закон движения vecr=overrightarrowr левая круглая скобка t правая круглая скобка , то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

Скорость:

 принадлежит toverrightarrowa левая круглая скобка t правая круглая скобка dt=overrightarrownu левая круглая скобка t правая круглая скобка плюс C,

то есть, скорость можно найти как интеграл по времени от ускорения.

 система выражений nu_x левая круглая скобка t правая круглая скобка = интеграл a_x левая круглая скобка t правая круглая скобка dt плюс C_1,nu_y левая круглая скобка t правая круглая скобка = интеграл a_y левая круглая скобка t правая круглая скобка dt плюс C_2. конец системы .

Радиус-вектор:

 интеграл overrightarrownu левая круглая скобка t правая круглая скобка dt=overrightarrowr левая круглая скобка t правая круглая скобка плюс C,

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

 система выражений x левая круглая скобка t правая круглая скобка = принадлежит tnu_x левая круглая скобка t правая круглая скобка dt плюс C_1,y левая круглая скобка t правая круглая скобка = принадлежит tnu_y левая круглая скобка t правая круглая скобка dt плюс C_2. конец системы .

Таким образом, если известна функция vec a=overrightarrowa левая круглая скобка t правая круглая скобка , то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий — значения x_0, y_0 и nu_0x, nu_0y в момент времени t_0.

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

vecnu=overrightarrownu_0 плюс vec at.

Эта формула означает, что вектор vecnu равен векторной сумме векторов overrightarrownu_0 и vec at. Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrowr_0 плюс overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби .

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что overrightarrowr_0=0, то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

overrightarrowr левая круглая скобка t правая круглая скобка =overrightarrownu_0t плюс дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби ,

то есть вектор overrightarrowr левая круглая скобка t правая круглая скобка равен векторной сумме векторов overrightarrownu_0t и  дробь: числитель: vec at в квадрате , знаменатель: 2 конец дроби . Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

07.06.2019

5 июня Что порешать по физике

30 мая Решения вчерашних ЕГЭ по математике

3.1. Равнопеременное движение по прямой.

3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:

3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.

В векторном виде:

где — начальная скорость тела, — скорость тела в момент времени t.

В проекции на ось Ox:

где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.

Знаки проекций зависят от направления векторов и оси Ox.

3.1.3. График проекции ускорения от времени.

При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):

Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения

3.1.4. Скорость при равнопеременном движении.

В векторном виде:

В проекции на ось Ox:

Для равноускоренного движения:

Для равнозамедленного движения:

3.1.5. График проекции скорости в зависимости от времени.

График проекции скорости от времени — прямая линия.

Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.

Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время

Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).

3.1.6. Геометрический смысл площади под графиком в осях

Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.

На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:

(3.9)

3.1.7. Формулы для расчета пути

(3.10)

(3.12)

(3.11)

(3.13)

(3.14)

Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.

Если же пересечение произошло, то движение проще разбить на два этапа:

до пересечения (торможение):

После пересечения (разгон, движение в обратную сторону)

В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени, — время, прошедшее с момента пересечения оси времени до данного момента t, — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.

3.1.8. Перемещение за -ую секунду.

За время тело пройдет путь:

За время тело пройдет путь:

Тогда за -ый промежуток тело пройдет путь:

За промежуток можно принимать любой отрезок времени. Чаще всего с.

Если то

Тогда за 1-ую секунду тело проходит путь:

Если внимательно посмотрим, то увидим, что и т. д.

Таким образом, приходим к формуле:

Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при

3.1.9. Уравнение координаты тела при равнопеременном движении

Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.

Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:

3.2. Графики кинематических величин при прямолинейном движении

3.3. Свободное падение тела

Под свободным падением подразумевается следующая физическая модель:

1) Падение происходит под действием силы тяжести:

2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);

3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);

4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);

3.3.1. Уравнения движения в проекции на ось Oy

В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.

Уравнение координаты тела:

Уравнение проекции скорости:

Как правило, в задачах удобно выбрать ось Oy следующим образом:

Ось Oy направлена вертикально вверх;

Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.

При таком выборе уравнения и перепишутся в следующем виде:

3.4. Движение в плоскости Oxy.

Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:

Или в векторном виде:

И изменение проекции скорости на обе оси:

3.5. Применение понятия производной и интеграла

Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.

где A, B и то есть постоянные величины.

Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.

то есть скорость является производной от радиус-вектора.

Для проекции скорости:

то есть ускорение является производной от скорости.

Для проекции ускорения:

Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.

Теперь воспользуемся понятием интеграла.

то есть, скорость можно найти как интеграл по времени от ускорения.

то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.

Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.

Константы в формулах определяются из начальных условий — значения и в момент времени

3.6. Треугольник скоростей и треугольник перемещений

3.6.1. Треугольник скоростей

В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):

Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).

В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

3.6.2. Треугольник перемещений

В векторном виде закон движения при постоянном ускорении имеет вид:

При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда

то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).

Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.

10 класс

Материалы к зачету по теме “Основные законы механики

1. Механическое движение.
Явление механического движения тел (материальных точек)состоит в том, что положение тела относительно других тел, т. е. его координаты, с течением времени изменяется.Чтобы найти координаты тела в любой момент времени, нужно знать начальные координаты и вектор перемещения тела. Изменение координаты тела равно проекции вектора перемещения на соответствующую ось координат.

Прямолинейное равномерное движение — это самый простой вид движения.При таком движении нужно определять лишь одну координату потому, что координатную ось можно направить вдоль направления движения тела. Координату х тела (материальной точки) в любой момент времени t можно вычислить по формуле:

,

где — начальная координата тела, а — проекция вектора его скорости на ось х. При вычислениях по этой формуле знаки входящих в нее величин определяются условием задачи.

Механическое движение относительно. Это значит, что перемещение и скорость тела относительно различных систем координат, движущихся друг относительно друга, различны.

Покой также относителен. Если относительно какой-то системы координат тело покоится, то существуют и такие системы отсчета, относительно которых оно движется.

2. Основная задача механики
состоит в нахождении положения тела в любой момент времени. Решение этой задачи идет по своеобразной «цепочке»:
чтобы найти координату точки, нужно знать ее перемещение, а чтобы вычислить перемещение, нужно знать скорость движения.
По такой цепочке: скорость → перемещение → координата решают задачи механики для прямолинейного равномерного движения.

Если движение ускоренное, то нужно знать ускорение, так что при таком движении задачи решают по «цепочке» ускорение → скорость → перемещение → координата. И для равномерного, и для ускоренного движения должны быть известны начальные условия — начальные координаты и начальная скорость.
При прямолинейном ускоренном движении мгновенная скорость тела (материальной точки) непрерывно изменяется от одного момента времени к другому. Поэтому для вычисления скорости в любой момент времени и в любой точке нужно знать быстроту ее изменения, т.е. ускорение:

.

Проекцию скорости тела на выбранную координатную ось в любой момент времени t вычисляют по формуле:

.

Координату тела находят по формуле:

.

Проекцию перемещения находят по формуле:

.

Из приведенных формул получаются формулы для скорости, координат и перемещений при равномерном прямолинейном движении, если принять, что а x = 0.

Значение проекции перемещения при равноускоренном движении можно определить также по формуле:

.

При вычислениях по приведенным формулам знаки проекций векторов , а также знак начальной координаты х, определяются условием задачи и направлением оси координат.

3. При криволинейном движении непрерывно изменяется направление вектора скорости, и в каждой точке траектории он направлен по касательной к траектории в данной точке. Поэтому даже равномерное движение по криволинейной траектории, при котором значение модуля скорости постоянно, есть ускоренное движение. Движение тела (материальной точки) по окружности описывают не только с помощью линейных величин — перемещения и скорости, но и с помощью угловых величинугла поворота радиуса &#966, проведенного из центра окружности к телу, и угловой скорости ω.

Связь между линейной и угловой скоростью выражается формулой:

,

где r — радиус окружности.
При равномерном движении по окружности вектор ускорения в любой точке окружности перпендикулярен вектору скорости и направлен к центру окружности. Модуль вектора центростремительного ускорения выражается равенством:

.

Относительно вращающегося стержня (оси) не закрепленное на нем тело (точка) движется вдоль стержня по направлению от оси вращения.

Пример решения задачи:

1. Ширина реки 200 м. Лодка, держа курс перпендикулярно течению реки, достигла противоположного берега за 140 с. Скорость течения воды в реке 0,8 м/с. Определите скорость и перемещение лодки относительно берега.


Вычисления:

Ответ: Скорость лодки относительно берега 1,6 м/с, перемещение 112 м.

Решите задачи самостоятельно:

1. Через реку переправляется лодка, выдерживая курс перпендикулярно течению. Скорость лодки
4 м/с, скорость течения реки 3 м/с. Какова ширина реки, если лодку снесло на 60 м?

2. 9 км/ч = . м/с; 10 м/с = . км/ч; 8 км/с = . км/ч, 54 км/ч = . м/с.

3. Автомобиль движется: а) с постоянной скоростью; б) с постоянным ускорением;
в) с положительным ускорением; г) с отрицательным ускорением.
Назовите вид каждого движения и изобразите соответствующие графики скорости.

В векторной форме уравнения записываются легко и кратко. Но для практических вычислений нужно знать проекции вектора на оси координат выбранной системы отсчета. Положение точки А (рис. 2.8) задается радиус-вектором г . Спроецируем вектор г на оси х,у, z.

Рис. 2.8. Вектор перемещения точки А и её скорость 1)

Понятно, что х, у9 z зависят от времени t, т. е. *(/), y(t), z(t). Зная зависимость этих координат от времени (закон движения точки), можно найти в каждый момент времени скорость точки.

Проекции вектора скорости и на оси x,y9z в обозначениях Лейбница:

Эти три равенства эквивалентны векторному равенству и = —.

Согласно общей формуле (2.2.2) модуль вектора скорости

Так как скорость — величина векторная, то её можно представить с помощью единичных векторов i, j, k :

В произвольном случае движения скорость нс остается постоянной. Быстрота изменения скорости по времени и направлению характеризуется ускорением

Ускорение — величина векторная. При криволинейном движении и изменяется также и по направлению. В какую сторону? С какой скоростью? Выражение (2.3.8) на эти вопросы не отвечает.

Введем единичный вектор т (рис. 2.9), связанный с точкой А и направленный по касательной к траектории движения точки А (векторы т и и в точке А совпадают). Тогда можно записать:

где о = |о| — модуль вектора скорости.

Рис. 2.9. К выводу тангенциальной составляющей ускорение: единичный вектор х направлен по касательной к траектории

Найдем ускорение:

Получаем два слагаемых ускорения: aхтангенциальное ускоре-

пие, совпадающее с направлением о в данной точке, апнормальное ускорение, или центростремительное, т. к. направлено оно к центру кривизны, перпендикулярно вектору т .

где do/dt — скорость изменения модуля вектора скорости о.

Итак, az показывает изменение вектора скорости по величине:

  • • если do/d/ > 0, то аг направлено в ту же сторону, что и вектор о, т. е. ускоренное движение;
  • • если do/d/ 0), центры кривизны О и О’ сливаются и угол поворота Д d dx d r dx i) 2 r

Tогда — = —, следовательно — = — n ; наконец, и — = — n , т. с.

Нормальное ускорение показывает быстроту изменения направления вектора скорости. Модуль нормального ускорения

Центростремительным называют ускорение, когда движение происходит по окружности. А когда движение происходит по произвольной кривой, говорят, нормальное ускорение, перпендикулярное к касательной в любой точке траектории.

Итак, возвращаясь к выражению (2.3.9), можно записать, что суммарный вектор ускорения при движении точки вдоль плоской кривой равен:

На рис. 2.11 изображено взаимное расположение векторов ускорения:

Рис. 2.11. Суммарное ускорение, нормальная и тангенциальная составляющие ускорения

Как видно из этого рисунка, модуль общего ускорения равен:

Рассмотрим несколько предельных (частных) случаев:

  • аТ = 0; ап = 0 — равномерное прямолинейное движение;
  • ах = const п = 0 — равноускоренное прямолинейное движение;
  • ах 0; ап = const — равномерное движение по окружности.

Прямая задача кинематики сводится к определению кинематических характеристик по известному закону движения.

При движении с постоянным ускорением (а = const)

Если и = о ± at (а = const), то

Обратная задача кинематики заключается в нахождении закона движения по известной скорости (ускорению) и начальному кинематическому состоянию.

Пусть нам известно ускорение точки в каждый момент времени.

Содержание:

Координатный способ определения движения точки:

При координатном способе определения движения точки должны быть даны уравнения движения, т. е. заданы координаты точки как функции времени:
Координатный способ определения движения точки в теоретической механике

Задание движения точки в прямоугольных координатах

Как известно из курса аналитической геометрии, положение точки M в пространстве может быть определено положением ее проекций P, Q и R на три взаимно перпендикулярные оси (рис. 84), называемые осями координат.

Координатный способ определения движения точки в теоретической механике
Рис. 84

Положение точки P на оси Ox вполне определяют абсциссой х. Совершенно так же положение точек Q и R определяют ординатой у и аппликатой z.

Если точка M движется относительно осей xOyz, то проекции Р, Q и R перемещаются по осям и координаты точки M изменяются.

Для определения движения точки M нужно знать ее координаты для каждого мгновения, выразить их в функциях времени.

x = x(t),    (58′)
y = y(t),    (58″)
z = z(t), (58″‘)

Эти функции непрерывны, так как точка не может из одного положения перейти в другое, минуя промежуточные. Они должны быть однозначны, так как точка занимает в пространстве в каждое мгновение только одно положение.

Соотношения (58) называют кинематическими уравнениями движения точки в прямоугольных координатах, а способ определения движения точки посредством соотношений (58) называют координатным способом определения движения точки. Это название неточно, потому что, кроме прямолинейных прямоугольных координат, существует множество других координатных систем.

Если траектория точки лежит в одной плоскости, то движение точки определяют двумя уравнениями в системе координат xОy: x=x(t), y=y(t).

Следовательно, при координатном способе задания движения точки в пространстве нужно задать ее три координаты, а на плоскости—две координаты как функции времени. Если точка движется прямолинейно, то, приняв прямую, по которой она движется, за ось абсцисс, мы определим движение точки одним уравнением

x = x(t).

Если движение точки задано в координатной форме, то для определения ее траектории надо из уравнений движения исключить время

Уравнение траектории

Можно определить траекторию точки, если в уравнениях движения (58) давать аргументу t различные значения и, вычислив соответствующие значения функций, отмечать положения точки по ее координатам. Следовательно. кинематические уравнения движения точки (58) можно
рассматривать как уравнения ее траектории в параметрической форме, а время — как независимый переменный параметр.

Однако более удобно получить уравнение траектории, исключив время из уравнений (58). В самом деле, траекторией называют геометрическое место всех положений движущейся точки, но в геометрии нет понятия времени, а поэтому для получения уравнения траектории нужно из кинематических уравнений движения (58) исключить время t. Если точка движется в плоскости, то, исключив время из уравнений (58′) и (58″), мы получим соотношение, связывающее х и у:

f(x, у) = 0.    (59)

Это уравнение плоской кривой—траектории точки. Если же движение задано тремя уравнениями (58), то, исключив время, получим два уравнения между тремя координатами:
Координатный способ определения движения точки в теоретической механике    (59/)

выражающие, как известно из аналитической геометрии, кривую (траекторию) в пространстве. Точнее говоря, уравнения (59) или (59′) выражают кривую, которая полностью или в некоторой своей части является геометрическим местом всех положений движущейся точки.

Иногда бывает нужно выразить в естественной форме движение точки, заданное в прямоугольных координатах уравнениями (58), и, кроме уравнения траектории, дать также уравнение (51) движения точки по траектории. Чтобы его получить, надо продифференцировать уравнения (58) и полученные дифференциалы координат точки подставить в известную из курса высшей математики формулу, выражающую абсолютную величину элемента дуги:

Координатный способ определения движения точки в теоретической механике    (60)

Проинтегрировав (60), мы получим уравнение (51), выражающее длину дуги s как функцию времени, или, что то же, закон движения точки по траектории.

Задача №1

По заданным уравнениям движения точки в координатной форме найти уравнение траектории и уравнение движения по траектории:

1)    х = 5 cos 2t,       y = 3+5sin 2t;
2)    x=21,2 sin2 t,    у = 21,2 cos 2t.

В обоих примерах за единицу длины принят сантиметр, за единицу времени — секунда.

Решение. Чтобы определить уравнение траектории по уравнениям движения, перенесем во втором из заданных уравнений 3 влево, возведем оба уравнения в квадрат и, сложив, получим

x2 + (y-3)2 = 25.

Это уравнение окружности с центром в точке: x = 0, y = +3.

Чтобы получить закон движения, продифференцируем заданные уравнения: dx=—10 sin 2t dt, dy = 10 cos 2t dt.

Возводя в квадрат, складывая, извлекая квадратный корень и интегрируя, находим закон движения по траектории:
s=10t + C, где C = s0.

2) Исключим время из уравнений движения во втором примере:

x+y = 21,2.

Это уравнение первого порядка относительно х и у, следовательно, траектория-прямая линия. Прямая отсекает на положительных направлениях осей координат отрезки по 21,2 см. Однако не вся прямая служит траекторией точки: из заданных уравнений видно, что х и у должны быть всегда положительны и не могут быть больше 21,2 см каждый, поэтому траекторией точки является лишь отрезок прямой x+y = 21,2, лежащей в первом квадранте (рис. 85).

Координатный способ определения движения точки в теоретической механике
Рис. 85

На этом примере мы видим, что траекторией точки иногда является лишь часть линии, выражаемой уравнением траектории.

Продифференцируем уравнения движения:

dx = 21,2 ∙ 2 sin t cos t dt,
dy = 21,2 ∙ 2 sin t cos t dt.

Теперь no формуле (60) нетрудно найти элемент дуги траектории:

Координатный способ определения движения точки в теоретической механике

ля получения уравнения (51) движения точки по траектории остается лишь проинтегрировать найденное выражение. Интегрируем и подставляем начальные условия (при t= 0, s0 = 0):

Координатный способ определения движения точки в теоретической механике

Ответ. Уравнения траекторий x2+(y-3)2= 25 и x+y=21,2; уравнения движения по траектории s=10t+s0 и s = 30 sin 2t.

Задача №2

Движение точки задано уравнениями:
х = x’ cos φ (t)—y’ sin φ (t),
y = x’ sin φ (t) + y’ cos φ (t),

где х’ и у’ — некоторые постоянные величины, a φ(t)— любая функция времени. Определить траекторию точки.

Решение. Возведем каждое из уравнений в квадрат, а затем сложим их:

x2 + y2 = χ‘2 + y‘2.

По условию, х’ и у’ — постоянные. Обозначая сумму их квадратов через r2, получим

x2 + y2 = r2.

Ответ. Окружность с центром в начале координат радиуса Координатный способ определения движения точки в теоретической механике.

Задача №3

Поезд длиной l м сначала идет по горизонтальному пути (рис. 86, а), а потом поднимается в гору под углом 2α к горизонту. Считая поезд однородной лентой, найти траекторию его центра тяжести.

Координатный способ определения движения точки в теоретической механике
Рис. 86

Решение. Для решения задачи нужно определить координаты центра тяжести поезда, найти уравнения движения центра тяжести и исключить из них время.

Направим оси координат по внутренней и внешней равиоделяшнм угла 2α (рис. 86, б). Траектория центра тяжести поезда не зависит от скорости поезда. Для простоты подсчетов предположим, что он идет равномерно со скоростью υ м/сек и в начальное мгновение t=0 подошел к горе.

Тогда за время t сек на гору поднимется υt м состава поезда и останется на горизонтальном пути l — υt м. Будем считать, что единица длины поезда весит γ. 

Применяя формулы (48), найдем координаты центра тяжести поезда:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Координаты центра тяжести представлены здесь как функции времени, следовательно, полученные соотношения являются уравнениями движения центра тяжести поезда. Определяя t (или υt) из первого уравнения и подставляя во второе, найдем уравнение траектории:

Координатный способ определения движения точки в теоретической механике

Ответ. Парабола.

Задача №4

Мостовой кран движется вдоль цеха согласно уравнению х = t; по крану катится в поперечном направлении тележка согласно уравнению у = 1,5t (х и у—в м, t — в сек). Цепь укорачивается со скоростью t>=0,5. Определить траекторию центра тяжести груза (в начальном положении центр тяжести груза находился в горизонтальной плоскости хОу, ось Oz направлена вертикально вверх).

Решение. В условии задачи даны лишь два уравнения движения и вертикальная скорость груза:

Координатный способ определения движения точки в теоретической механике

откуда dz = 0,5dt, и легко получаем третье уравнение:

z = 0,5t

Определив t из первого уравнения, подставим во второе и в третье:

y= 1,5x, z = 0,5x

Координаты груза должны удовлетворять одновременно обоим уравнениям, т. е. траектория лежит одновременно в обеих плоскостях и является линией их пересечения.
Ответ. Прямая.

Алгебраическая величина скорости проекции точки на координатную ось равна первой производной от текущей координаты по времени:
Координатный способ определения движения точки в теоретической механике

Алгебраическая величина скорости проекции точки на ось

Пусть движение точки M определяется тремя уравнениями:
x =x(t),    (58′)
y = y(t),   (58″)
z = z(t).    (58″‘)

По мере движения точки M в пространстве ее проекции P, Q и R движутся по своим прямолинейным траекториям, т. е. по осям координат, и их движения вполне соответствуют движению точки М.

Так, координата (абсцисса) точки P всегда равна абсциссе точки М, а координаты точек QnR всегда равны ординате и аппликате точки М. Следовательно, при движении точки M в пространстве согласно уравнениям (58) точка P движется по оси Ox согласно уравнению (58′), а точки Q и R— соответственно по осям Oy и Oz согласно уравнениям (58″) и (58″‘).

Таким образом, движение точки M в пространстве можно разложить на три прямолинейных движения ее проекций P, Q и R.

Определим скорость υp точки P при движении этой точки по ее прямолинейной траектории Ох, иными словами, определим скорость проекции точки M на ось Ох.

Алгебраическая величина скорости выражается по формуле (53), причем дифференциалом расстояния точки P является дифференциал абсциссы х, а поэтому

Координатный способ определения движения точки в теоретической механике    (61)

Следовательно, алгебраическая величина скорости проекции P точки M на координатную ось равна первой производной от текущей координаты х по времени t. Она положительна, если точка P движется в положительном направлении оси Ох, и отрицательна, если точка P движется в отрицательном направлении.
Аналогично получаем алгебраические скорости проекций Q и R на ось Oy и на ось Oz:

Координатный способ определения движения точки в теоретической механике    (61″)

Координатный способ определения движения точки в теоретической механике     (61″‘)   

Чтобы получить векторы скоростей проекций, надо умножить величины (61) на единичные векторы:
Координатный способ определения движения точки в теоретической механике     (61)   

Алгебраическая величина скорости проекции точки на ось равна проекции скорости той же точки на туже ось:

Координатный способ определения движения точки в теоретической механике

Скорость проекции и проекция скорости

Пусть точка М за бесконечно малый отрезок времени dt передвинулась по своей траектории на элемент дуги ds, абсолютную величину которого выразим формулой (60):
Координатный способ определения движения точки в теоретической механике

где dx, dy и dz — проекции элемента дуги на оси координат, или, Что то же, элементарные приращения координат точки М.

На рис. 87 эти элементы условно изображены конечными отрезками. Как видно из чертежа, косинусы углов, составляемых элементарным перемещением (а следовательно, и скоростью точки), с осями х, у и z соответственно равны

Координатный способ определения движения точки в теоретической механике     (62)   

Величина скорости точки M может быть определена по (53):

Координатный способ определения движения точки в теоретической механике

Чтобы определить проекцию скорости Координатный способ определения движения точки в теоретической механике на какую-либо ось, надо умножить абсолютную величину скорости на косинус угла между  направлением скорости и направлением этой оси. Таким образом, для проекций скорости точки M на оси координат имеем:

Координатный способ определения движения точки в теоретической механике   (63′)

Координатный способ определения движения точки в теоретической механике   (63″)

Координатный способ определения движения точки в теоретической механике    (63″‘)

Координатный способ определения движения точки в теоретической механике
Рис. 87

Равенства (63) словами нужно читать так: проекция скорости точки на ось равна алгебраической скорости проекции точки на ту же ось.

Задача №5

Доказать, что проекция Координатный способ определения движения точки в теоретической механике скорости Координатный способ определения движения точки в теоретической механике точки M (х, у, z) иа плоскость хОу равняется скорости Координатный способ определения движения точки в теоретической механике, с которой движется по плоскости проекция M1 (х, у, О) точки M на ту же плоскость.

Решение. Скорость Координатный способ определения движения точки в теоретической механикеточки M составляет с осью Oz угол γυ, следовательно, угол, составляемый ею с плоскостью хОу, равен 90° — yυ п косинус этого угла равен sinγυ. Поэтому модуль проекции скорости точки M на плоскость хОу

Координатный способ определения движения точки в теоретической механике

Подводя Координатный способ определения движения точки в теоретической механикепод радикал и выражая cosγυ, по формуле (62), мы убедимся, что проекция скорости на плоскость равна по величине скорости проекции:

Координатный способ определения движения точки в теоретической механике

Направления векторов Координатный способ определения движения точки в теоретической механике и Координатный способ определения движения точки в теоретической механикетоже совпадают, так как направляющие косинусы их одинаковы. Теорема доказана.

Модуль скорости точки равен квадратному корню из суммы квадратов проекций скорости на оси координат:
Координатный способ определения движения точки в теоретической механике

Модуль скорости. Возведем в квадрат каждое из равенств:
Координатный способ определения движения точки в теоретической механике   (63)

и сложим их:

Координатный способ определения движения точки в теоретической механике

Сумма квадратов направляющих косинусов равна единице и

Координатный способ определения движения точки в теоретической механике

или

Координатный способ определения движения точки в теоретической механике   (64)

Перед радикалом взят положительный знак, так как величина скорости (ее модуль) всегда положительна. В этом ее существенное отличие от алгебраической величины скорости (53), характеризующей скорость точки при движении по заданной траектории и имеющей знак « + » или «—» в зависимости от направления движения. Величину (64) иногда называют полной скоростью.

Направление скорости можно определить по направляющим косинусам скорости:
Координатный способ определения движения точки в теоретической механике Координатный способ определения движения точки в теоретической механике

Направляющие косинусы скорости

Равенство (64) позволяет определить модуль скорости точки, движение которой задано уравнениями (58). Направление скорости определяется по косинусам углов, составляемых положительными направлениями осей координат с направлением скорости. Значения этих косинусов, называемых направляющими косинусами скорости, мы получим из уравнений (63):

Координатный способ определения движения точки в теоретической механике   (62′)

где Координатный способ определения движения точки в теоретической механике, Координатный способ определения движения точки в теоретической механике и Координатный способ определения движения точки в теоретической механике — производные от х, у и z по t.

Если точка движется в плоскости хОу, то γυ = 90o, cosγυ = 0 и cos αυ = sin βυ.

Задача №6

Уравнения движения суть

 Координатный способ определения движения точки в теоретической механике

Определить траекторию и скорость.

Решение. Из уравнений движения следует, что х и у всегда больше нуля.
Для определения уравнения траектории возведем каждое из уравнений движения в квадрат и составим разность

x2 – у2 = a2

Для определения скорости найдем сначала ее проекции:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

а затем уже и полную скорость.

Ответ. Траектория — ветвь гиперболы x2 – у2 = a2 — расположена в области положительных значений х; скорость Координатный способ определения движения точки в теоретической механике.

Задача №7

Движение точки задано уравнениями

Координатный способ определения движения точки в теоретической механике

причем ось Ox горизонтальна, ось Oy направлена по вертикали вверх, υ0, g и Координатный способ определения движения точки в теоретической механике—величины постоянные. Найти траекторию точки, координаты наивысшего ее положения, проекции скорости на координатные оси в тот момент, когда точка находится на оси Ох.

Решение. Уравнения описывают движение тела, брошенного со скоростью υ0 под углом α0 к горизонту (к оси Ох).
Чтобы найти уравнение траектории, определим время из первого уравнения и подставим найденное значение во второе; получим

Координатный способ определения движения точки в теоретической механике

уравнение параболы, проходящей через начало координат (рис. 88).

Координатный способ определения движения точки в теоретической механике
Рис. 88

Чтобы определить координаты наивысшего положения, мы можем применить известные из дифференциального исчисления правила нахождения максимума функции, т. е. взять производную Координатный способ определения движения точки в теоретической механике, приравняв ее нулю, определить значение х и, подставив его в уравнение траектории, определить соответствующее значение у, убедившись при этом, что вторая производная Координатный способ определения движения точки в теоретической механике. Однако мы найдем координаты наивысшего положения точки другим методом, для чего, продифференцировав по времени уравнения движения точки, найдем проекции ее скорости:

Координатный способ определения движения точки в теоретической механике

Первое из этих уравнений показывает, что проекция скорости на горизонтальную ось постоянна и равна проекции начальной скорости.

Исследование второго уравнения убеждает, что проекция скорости на вертикальную ось в начальное мгновение положительна и равна υsin α0; затем, по мере увеличения t, проекция υy уменьшается, оставаясь положительной до мгновения Координатный способ определения движения точки в теоретической механике, когда υy обращается в нуль, после чего υy становится отрицательной, возрастая по абсолютной величине с течением времени t.

Таким образом, точка движется вправо, сначала поднимаясь, затем опускаясь. Мгновение Координатный способ определения движения точки в теоретической механике, при котором точка кончила подниматься, но еще не начала опускаться, соответствует максимальному подъему точки. В это мгновение скорость горизонтальна и Координатный способ определения движения точки в теоретической механике. Подставляя найденное значение t в уравнения движения, найдем координаты наивысшей точки траектории:

Координатный способ определения движения точки в теоретической механике

Определим проекции скорости в мгновение, когда точка находится на оси Ох. В это мгновение ордината точки равна нулю. Приравняем пулю второе из уравнений движения:
Координатный способ определения движения точки в теоретической механике

Точка находится на оси Ox два раза: при t=0 при Координатный способ определения движения точки в теоретической механике

Первое значение t соответствует началу движения, второе —падению точки на ось Ох. Второе значение равно времени всего полета, и оно вдвое больше полученного нами ранее времени наивысшего подъема: время падения равно времени подъема.

Подставляя значение t=0 в уравнения, определяющие проекции скорости, найдем проекции скорости в начальное мгновение:

υx = + υ0 cos α0, υy = + υ0 sin α0.

Подставляя второе из найденных значений t, найдем скорости в момент падения:

υx = + υ0 cos α0, υy = – υ0 sin α0.

Ответ: 1) Парабола Координатный способ определения движения точки в теоретической механике

2) Координатный способ определения движения точки в теоретической механике

3) υx = υ0 cos α0, υy = Координатный способ определения движения точки в теоретической механикеυ0 sin α0.

причем верхний знак соответствует началу движения, а нижний—концу.

Задача №8

По осям координат (рис. 89) скользят две муфты A и B, соединенные стержнем AB длиной l. Скорость В равна υB.

При каком положении муфт скорость муфты А вдвое больше υB?

Координатный способ определения движения точки в теоретической механике

Рис. 89

Решение. Координата точки А связана с координатой точки В соотношением

Координатный способ определения движения точки в теоретической механике

Считая х и у функциями времени и продифференцировав это равенство по времени, найдем зависимость между скоростями обеих точек:
Координатный способ определения движения точки в теоретической механике

Но Координатный способ определения движения точки в теоретической механике и по условию надо, чтобы величина Координатный способ определения движения точки в теоретической механике была равна 2υB, т. е.

Координатный способ определения движения точки в теоретической механике

откуда после алгебраических преобразований получаем ответ.

Ответ: Координатный способ определения движения точки в теоретической механике (см. задачи № 57 и 89, где даны другие решения).

Проекция ускорения точки на координатную ось равна первой производной по времени от проекции скорости на ту же ось или второй производной от текущей координаты по времени:
Координатный способ определения движения точки в теоретической механике

Ускорение проекции и проекция ускорения

Ускорение характеризует изменение скорости точки в данное мгновение. Оно выражается пределом отношения изменения вектора скорости к соответствующему промежутку времени при стремлении этого промежутка времени к нулю.

Для того чтобы определить ускорение точки M при ее движении в пространстве, рассмотрим сначала движение по оси Ox точки Р, являющейся проекцией точки M на эту ось.

Пусть в некоторое мгновение t алгебраическая величина скорости точки P была υх, а в мгновение tl = t + Δt стала υx+∆υx. Тогда ускорение точки P по величине и по знаку выразится пределом

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Если знаки υx и ap одинаковы, то движение точки P ускоренное, а если различны, то замедленное.

Аналогично выразятся ускорения проекций Q и R точки M на другие координатные оси:

Координатный способ определения движения точки в теоретической механике

Проекции υx, υy и υz сами являются производными по времени от координат точки, поэтому ускорения проекций можно выразить вторыми производными по времени от координат точки. Эти равенства характеризуют не только величины, но и знаки ускорений проекций. Иными словами, они выражают изменение алгебраических скоростей проекций P, Q и R в мгновение t.

Только что доказанная теорема о равенстве алгебраической скорости проекции точки на ось и проекции скорости той же точки на ту же ось справедлива для любого момента времени. Следовательно, эта теорема относится не только к скорости, но и к ее изменению в любое мгновение, т. е. к ускорению. Это значит, что написанные выше равенства выражают также проекции ax, ау и аz ускорения а точки M на оси координат Ox, Oy и Oz:

Координатный способ определения движения точки в теоретической механике   (65)

где cosαa, cosβa и cosγa—направляющие косинусы ускорения.

Можно рассматривать эти величины (65) как векторы, направленные по осям координат:

Координатный способ определения движения точки в теоретической механике   (65′)

Модуль ускорения точки равен квадратному корню из суммы квадратов проекций ускорения на оси координат:
Координатный способ определения движения точки в теоретической механике

Величина ускорения при координатном способе задания движения точки

Возведем в квадрат каждое из равенств:

Координатный способ определения движения точки в теоретической механике

и затем сложим их:

Координатный способ определения движения точки в теоретической механике

откуда 

Координатный способ определения движения точки в теоретической механике   (66)

Перед радикалом взят знак плюс, так как модуль вектора—величина положительная. Ускорение точки в отличие от проекций ускорения на оси координат или на другие направления обычно называют полным ускорением. Поэтому равенство (66) можно прочитать так: величина полного ускорения точки равна квадратному корню из суммы квадратов его проекций на оси координат.

Направление ускорения можно определить по направляющим косинусам ускорения:
Координатный способ определения движения точки в теоретической механикеКоординатный способ определения движения точки в теоретической механике

Направляющие косинусы ускорения

Направление ускорения определяют по косинусам углов, составляемых положительными направлениями осей координат с вектором ускорения. Формулы направляющих косинусов получаем из уравнений (65):
Координатный способ определения движения точки в теоретической механике   (67′)

Координатный способ определения движения точки в теоретической механике   (67”)

Координатный способ определения движения точки в теоретической механике   (67”’)

Для определения направления ускорения в каждом конкретном случае надо сначала найти ускорение проекций по (65), для чего необходимо дважды продифференцировать уравнения движения (58), затем найти величину ускорения по (66), а потом определить направляющие косинусы ускорения по (67).

Направление ускорения обычно не совпадает с направлением скорости, и направляющие косинусы (67) ускорения только при прямолинейном ускоренном движении точки постоянно равны направляющим косинусам (62) скорости.

Если точка движется в плоскости хОу, то γa = 90o, cosγa = 0, cosα0 = sin βa.

Задача №9

Точка M движется в системе координат хОу согласно уравнениям х= r cos πt, y=r sinπt, где х и у—в см, a t — в сек. Найти уравнение траектории точки М, ее скорость, направляющие косинусы скорости, ускорение, направляющие косинусы ускорения. Для значений времени t=0; 0,25; 0,5; 0,75, …. 2 сек дать чертежи положений точки M, вектора скорости и вектора ускорения.

Решение. Из уравнения движения видно, что координаты точки M являются проекциями на соответствующие оси радиуса-вектора r, составляющего с осью абсцисс угол πt:

Координатный способ определения движения точки в теоретической механике

Для определения траектории точки исключаем время из уравнений движения. Получаем уравнение окружности

x2 + y2 = r2

Найдем теперь проекции скорости на оси координат, для чего продифференцируем по времени уравнения движения:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

откуда по (64) получаем модуль скорости

Координатный способ определения движения точки в теоретической механике

Величина скорости точки M постоянна.

Направляющие косинусы скорости определим по формуле (62′):

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Эти соотношения показывают, что направление скорости непрерывно меняется и что скорость перпендикулярна радиусу-вектору, проведенному из центра О в точку М.

Ускорение точки M найдем по его проекциям, для чего продифференцируем выражения, полученные для проекций скорости:
Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

откуда по (66) получаем величину ускорения

Координатный способ определения движения точки в теоретической механике

Ускорение характеризует быстроту изменения вектора скорости не только по величине, но и по направлению, поэтому, несмотря на постоянство модуля скорости точки М, ускорение этой точки не равно нулю. Как видно из полученного

Координатный способ определения движения точки в теоретической механике
Рис. 90

равенства, величина полного ускорения постоянна. Направление ускорения определим по направляющим косинусам согласно (67):
Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Направление ускорения точки M противоположно направлению радиуса-вектора.
Положения точки M в различные мгновения показаны на рис. 90, а, векторы скорости — на рис. 90,6 и векторы ускорения — на рис. 90, в.

Ответ. Точка M движется по окружности радиуса r против часовой стрелки с постоянной по величине скоростью υ = rπ и с постоянным по величине ускорением a = rπ2.

Задача №10

Снаряд выбрасывается из орудия с начальной скоростью υ=1600 м/сек под утлом α0 = 55o к горизонту. Определить теоретическую дальность и высоту обстрела, учитывая, что ускорение свободно падающих тел g = 9,81 м/сек2.

Решение. Сначала составим уравнения движения снаряда в координатной форме, направив оси, как показано на чертеже (см. рис. 88), для этого определим проекции ускорения:
Координатный способ определения движения точки в теоретической механике

Разделив переменные, интегрируем:
υх= С1, υy = – gt + С2

Подставляя вместо переменных величин их начальные значения, увидим, что C1 и C2 равны проекциям начальной скорости:

1600 cos 55o = C1, 1600 sin 55o = – gt + C2.

Подставим их в уравнения, полученные для проекций скорости:

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

Разделяя переменные и интегрируя, найдем

Координатный способ определения движения точки в теоретической механике

Координатный способ определения движения точки в теоретической механике

При t = 0 координаты снаряда были: х =0, у = 0. Подставляя эти данные, найдем, что C3 = O и C4 = O. Значения cos 55° и sin 55° найдем в тригонометрических таблицах. Уравнения движения снаряда примут вид:

Координатный способ определения движения точки в теоретической механике

Далее поступим, как при решении задачи № 42: приравняв вертикальную скорость нулю, найдем время подъема снаряда (t= 133,7 сек); подставляя это значение t в уравнение движения по оси Оу, найдем теоретическую высоту обстрела (h = 87 636 м); удваивая время /, найдем время полета снаряда (t = 267,4 сек); подставляя это значение- в уравнение движения по оси Ох, найдем теоретическую дальность обстрела (l = 245 393 м).
Ответ. l = 245 км; h = 87,5κм.

  • Касательное и нормальное ускорения точки
  • Основные законы динамики
  • Колебания материальной точки
  • Количество движения
  • Пара сил в теоретической механике
  • Приведение системы сил к данной точке
  • Система сил на плоскости
  • Естественный и векторный способы определения движения точки

Движение тела, брошенного под углом к горизонту.  Полный разбор движения. Вывод формул

Это движение представляет собой совокупность двух видов движения:

  • равномерного движения по оси X (горизонтально): скорость v=const, т.к. ускорение a=0
  • равнопеременного по оси Y (вертикально): скорость v=v0+at, т.к. ускорение а=-g

Как же найти скорость?

Сначала найдем скорости по X и по Y отдельно.

  • Чтобы найти скорость по оси X, которая будет постоянная на всем пути, определим проекцию V0 на ось X:

Проекция V0 на ось Х – это прилежащий к углу α катит:

V0x=V0cosα

Т.к. Vx – постоянна, поэтому:

Vx= V0x=V0cosα

  • Чтобы найти скорость по оси Y, которая будет меняться, определим проекцию V0 на ось Y, это будет начальная скорость по вертикальной оси:

Проекция V0 на ось Y – это противолежащий к углу α катит:

V=V0sinα

Так как Vy, как мы уже говорили, равнопеременная скорость, то:

Vу= V+at

Учитывая, что ускорение направлено против вертикальной оси (а=-g), и подставляя V0y получим:

Vу= V0sinα -gt

Итого:

Зная проекции скорости, можем ли мы восстановить саму скорость? (зная катеты треугольника можем ли мы найти гипотенузу?)

Конечно! Теорема Пифагора.

V2=Vx2+ Vy2

Скорость – дело понятное, как же быть с пройденным путем? Очень просто.

Так как мы сказали, что имеем дело с двумя видами движения в одном, а значит и пути у каждого из видов движения будут разные:

  • Горизонтального движение по оси Х равномерное, путь при равномерном движении:

S=V t

Обозначим путь по Х за Х и подставим нашу скорость вместо V, получим:

Х= Vxt= V0cosα t

  • Вертикальное движение по оси Y равнопеременное, путь при равнопеременном движении:

Аналогично, обозначим путь по Y за Y, подставим нашу скорость вместо V0 и ускорение а=-g получим:

В итоге:

ВАЖНО! Часто в задачах встречается ситуация, когда нужно найти высоту подъема или дальность полета.

Высота подъема находится очень просто. Все что нужно для решения большинства задач находится в получившихся уравнениях:

  • для скорости

  • для координат

Верхняя точка отличается тем, что в ней происходит изгиб. Происходит этот изгиб из-за ускорения свободного падения. Полная скорость, т.к. она направлена по касательной, становится направленной горизонтально, а значит проекция полной скорости по Y равна нулю:

Vу= V0sinα –gt=0

Запишем концовку предыдущего уравнения и выразим время — время в этой формуле соответствует той же самой верхней точке, назовем его – время подъема (tп).

V0sinα –g tп =0

Получаем:

Высота подъема – это координата Y, поэтому вставляем tп в уравнение для Y и получаем искомую высоту собственной персоной:

Преобразуем и получим высоту подъема:

Дальность полета – это координата Х в точке падения, поэтому время уже накопится в два раза больше:

Аналогично подставим время в формулу для координаты Х:

 

Применим формулу из триганометрии: 2sin cos = sin, применим и получим:

Добавить комментарий