Как найти проекцию наклонной через угол

Ответы Mail.ru


Домашние задания


Русский язык
Литература
Математика
Алгебра
Геометрия
Иностранные языки
Химия
Физика
Биология
История
Обществознание
География
Информатика
Экономика

Другие предметы

Вопросы – лидеры.

frenky

Срочно! Не могу разобраться с ответом


1 ставка

frenky

(СРОЧНО!!!) В таблице представлена часть данных о возможных вариантах ведения

бизнеса на предприятии «Бетон»


1 ставка

Лидеры категории

Лена-пена


Лена-пена

Искусственный Интеллект

М.И.


М.И.

Искусственный Интеллект

Y.Nine


Y.Nine

Искусственный Интеллект

king71alex
Куклин Андрей
Gentleman
Dmitriy
•••

Как найти проекцию, если известны наклонная и угол между наклонной и проекцией???

Mugabil Djabbarov



Профи

(782),
на голосовании



10 лет назад

Дополнен 10 лет назад

Спасибо)

Голосование за лучший ответ

Наталия Тузина

Просветленный

(49644)


10 лет назад

Ответ
Проекция = наклонная * соs угла наклона

Похожие вопросы

Перпендикуляр и наклонная к прямой

Если через какую-нибудь точку, взятую вне прямой, провести прямую, перпендикулярную к ней, то отрезок от данной точки до прямой для краткости называют одним словом перпендикуляр.

Отрезок СО — перпендикуляр к прямой АВ. Точка О называется основанием перпендикуляра СО (рис).

Если прямая, проведённая через данную точку, пересекает другую прямую, но не перпендикулярна к ней, то отрезок её от данной точки до точки пересечения с другой прямой называют наклонной к этой прямой.

Отрезок ВС — наклонная к прямой АО. Точка С называется основанием наклонной (рис.).

Если из концов какого-нибудь отрезка опустим перпендикуляры на произвольную прямую, то отрезок прямой, заключённый между основаниями перпендикуляров, называется проекцией отрезка на эту прямую.

Отрезок А&#146В&#146 — проекция отрезка АВ на ЕС. Отрезок ОМ&#146 — также называется проекцией отрезка ОМ на ЕС.

Проекцией отрезка КР, перпендикулярного к ЕС, будет точка К&#146 (рис.).

2. Свойства перпендикуляра и наклонных.

Теорема 1. Перпендикуляр, проведённый из какой-нибудь точки к прямой, меньше всякой наклонной, проведённой из той же точки к этой прямой.

Отрезок АС (рис.) является перпендикуляром к прямой ОВ, а АМ — одна из наклонных, проведённых из точки А к прямой ОВ. Требуется доказать, что АМ > АС.

В ΔМАС отрезок АМ является гипотенузой, а гипотенуза больше каждого из катетов этого треугольника. Следовательно, АМ > АС. Так как наклонная АМ взята нами произвольно, то можно утверждать, что всякая наклонная к прямой больше перпендикуляра к этой прямой (а перпендикуляр короче всякой наклонной), если они проведены к ней из одной и той же точки.

Верно и обратное утверждение, а именно: если отрезок АС (рис.) меньше всякого другого отрезка, соединяющего точку АС любой точкой прямой ОВ, то он является перпендикуляром к ОВ. В самом деле, отрезок АС не может быть наклонной к ОВ, так как тогда он не был бы самым коротким из отрезков, соединяющих точку А с точками прямой ОВ. Значит, он может быть только перпендикуляром к ОВ.

Длина перпендикуляра, опущенного из данной точки на прямую, принимается за расстояние от данной точки до этой прямой.

Теорема 2. Если две наклонные, проведённые к прямой из одной и той же точки, равны, то равны и их проекции .

Пусть ВА и ВС — наклонные, проведённые из точки В к прямой АС (рис.), причём АВ = ВС. Нужно доказать, что равны и их проекции.

Для доказательства опустим из точки В перпендикуляр ВО на АС. Тогда АО и ОС будут проекции наклонных АВ и ВС на прямую АС. Треугольник АВС равнобедренный по условию теоремы. ВО — высота этого треугольника. Но высота в равнобедренном треугольнике, проведённая к основанию, является в то же время и медианой этого треугольника.

Теорема 3 (обратная). Если две наклонные, проведённые к прямой из одной и той же точки, имеют равные проекции, то они равны между собой.

Пусть АС и СВ — наклонные к прямой АВ (рис.). СО ⊥ АВ и АО = ОВ.

Требуется доказать, что АС = ВС.

В прямоугольных треугольниках АОС и ВОС катеты АО и ОВ равны. СО — общий катет этих треугольников. Следовательно, ΔAOС = ΔВОС. Из равенcтва треугольников вытекает, что АС = ВС.

Теорема 4. Если из одной и той же точки проведены к прямой две наклонные, то та из них больше, которая имеет большую проекцию на эту прямую.

Пусть АВ и ВС — наклонные к прямой АО; ВО ⊥ АО и АО>СО. Требуется доказать, что АВ > ВС.

1) Наклонные расположены по одну сторону перпендикуляра.

Угол АСЕ внешний по отношению к прямоугольному треугольнику СОВ (рис.), а поэтому ∠АСВ > ∠СОВ, т. е. он тупой. Отсюда следует, что АВ > СВ.

2) Наклонные расположены по обе стороны перпендикуляра. Для доказательства отложим на АО от точки О отрезок ОК = ОС и соединим точку К с точкой В (рис.). Тогда по теореме 3 имеем: ВК = ВС, но АВ > ВК, следовательно, АВ > ВС, т. е. теорема справедлива и в этом случае.

Теорема 5 (обратная). Если из одной и той же точки проведены к прямой две наклонные, то большая наклонная имеет и большую проекцию на эту прямую.

Пусть КС и ВС — наклонные к прямой КВ (рис.), СО ⊥ КВ и КС > ВС. Требуется доказать, что КО > ОВ.

Между отрезками КО и ОВ может быть только одно из трёх соотношений:

КО не может быть меньше ОВ, так как тогда по теореме 4 наклонная КС была бы меньше наклонной ВС, а это противоречит условию теоремы.

Точно так же КО не может равняться ОВ, так как в этом случае по теореме 3 КС = ВС, что также противоречит условию теоремы.

Следовательно, остаётся верным только последнее соотношение, а именно, что КО > ОВ.

Как найти проекцию наклонной

Раздел ІІ. СТЕРЕОМЕТРИЯ

§8. ПЕРПЕНДИКУЛЯР И НАКЛОННАЯ. ПРОЕКЦИЯ НАКЛОННОЙ НА ПЛОСКОСТЬ.

2. Свойства перпендикуляра и наклонной.

Рассмотрим свойства перпендикуляра и наклонной.

1) Перпендикуляр, опущенный из данной точки к плоскости, меньше любой наклонной, проведенной из этой же точки к плоскости.

На рисунке 411: АН АК.

2) Если две наклонные, проведенные из данной точки к плоскости, равны, то равны их проекции.

На рисунке 412 из точки А к плоскости а проведены две наклонные АК и А K 1 и перпендикуляр АН и АК = АК 1 . Тогда по свойству: НК = НК1.

3) Если две наклонные, проведенные из данной точки к данной плоскости, имеют равные проекции, то они равны между собой.

На рисунке 412 из точки А к плоскости а проведены две наклонные АК и А K 1 и перпендикуляр АН, причем КН = К 1 Н. Тогда по свойству: АК = АК 1 .

4) Если из данной точки проведены к плоскости две наклонные, то большая наклонная имеет большую проекцию.

На рисунке 413 из точки А к плоскости а проведены две наклонные АК и А L и перпендикуляр АН, A К > AL . Тогда по свойству: H К > HL .

5) Если из данной точки проведены к плоскости две наклонные, то большей из них является та, которая имеет большую проекцию на данную плоскость.

На рисунке 413 из точки А к плоскости а проведены две наклонные АК и А L и перпендикуляр АН, НК > Н L . Тогда по свойству: АК > А L .

Пример 1. Из точки к плоскости проведены две наклонные, длины которых 41 см и 50 см. Найти проекции наклонных, если они относятся, как 3 : 10, и расстояние от точки до плоскости.

Решения. 1) А L = 41 см; АК = 50 см (рис. 413). По свойством имеем Н L НК. Обозначим Н L = 3 х см, НК = 10 х см, АН = h см. АН — расстояние от точки А до плоскости α .

4) Приравнивая, получаем 41 2 — 9х 2 = 50 2 — 100 х 2 ; х 2 = 9; х = 3 (учитывая х > 0). Итак, Н L = 3 ∙ 3 = 9 (см), НК = 10 ∙ 3 = 30 (см).

Пример 2. С данной точки к плоскости проведены две наклонные, каждая по см. Угол между наклонными равен 60°, а угол между их проекциями — прямой. Найти расстояние от точки до плоскости.

1) АС = ВС = см — наклонные, ВАС = 60°; ВНС = 90° (рис. 414). Необходимо найти АН.

2) В рівнобедреному треугольнике АВС: поэтому ∆ АВС — равносторонний; ВС = см.

3) Так как АВ = АС, то НВ = НС ; обозначим НВ = НС = х см. Тогда в ∆ ВНС :

Как найти проекцию наклонной

Задачи по динамике.

I и II закон Ньютона.

Ввод и направление осей.

Проецирование сил на оси.

Решение систем уравнений.

Самые типовые задачи по динамике

Начнем с I и II законов Ньютона.

Откроем учебник физики и прочтем. I закон Ньютона: существуют такие инерциальные системы отсчета в которых. Закроем такой учебник, я тоже не понимаю. Ладно шучу, понимаю, но объясню проще.

I закон Ньютона: если тело стоит на месте либо движется равномерно (без ускорения), сумма действующих на него сил равна нулю.

Вывод: Если тело движется с постоянной скоростью или стоит на месте векторная сумма сил будет ноль.

II закон Ньютона: если тело движется равноускоренно или равнозамедленно (с ускорением), сумма сил, действующих на него, равна произведению массы на ускорение.

Вывод: Если тело двигается с изменяющейся скоростью, то векторная сумма сил, которые как-то влияют на это тело ( сила тяги, сила трения, сила сопротивления воздуха), равна массе этого тело умножить на ускорение.

При этом одно и то же тело чаще всего движется по-разному (равномерно или с ускорением) в разных осях. Рассмотрим именно такой пример.

Задача 1. Определите коэффициент трения шин автомобиля массой 600 кг, если сила тяги двигателя 4500 Н вызывает ускорение 5 м/с².

Обязательно в таких задачах делать рисунок, и показывать силы, которые дествуют на машину:

На Ось Х: движение с ускорением

На Ось Y: нет движения (здесь координата, как была ноль так и останется, машина не поднимает в горы или спускается вниз)

Те силы, направление которых совпадает с направлением осей, будут с плюсом, в противоположном случае — с минусом.

По оси X: сила тяги направлена вправо, так же как и ось X, ускорение так же направлено вправо.

Fтр = μN, где N — сила реакции опоры. На оси Y: N = mg, тогда в данной задаче Fтр = μmg.

Коэффициент трения — безразмерная величина. Следовательно, единиц измерения нет.

Задача 2. Груз массой 5кг, привязанный к невесомой нерастяжимой нити, поднимают вверх с ускорением 3м/с². Определите силу натяжения нити.

Сделаем рисунок, покажем силы, которые дествуют на груз

T — сила натяжения нити

На ось X: нет сил

Разберемся с направлением сил на ось Y:

Выразим T (силу натяжения) и подставим числительные значения:

Самое главное не запутаться с направлением сил (по оси или против), все остальное сделает калькулятор или всеми любимый столбик.

Далеко не всегда все силы, действующие на тело, направлены вдоль осей.

Простой пример: мальчик тянет санки

Если мы так же построим оси X и Y, то сила натяжения (тяги) не будет лежать ни на одной из осей.

Чтобы спроецировать силу тяги на оси, вспомним прямоугольный треугольник.

Отношение противолежащего катета к гипотенузе — это синус.

Отношение прилежащего катета к гипотенузе — это косинус.

Сила тяги на ось Y — отрезок (вектор) BC.

Сила тяги на ось X — отрезок (вектор) AC.

Если это непонятно, посмотрите задачу №4.

Чем длинее будет верека и, соответсвенно, меньше угол α, тем проще будет тянуть санки. Идеальный вариант, когда веревка параллельна земле , ведь сила, которая действуют на ось X— это Fнcosα. При каком угле косинус максимален? Чем больше будет этот катет, тем сильнее горизонтальная сила.

Задача 3. Брусок подвешен на двух нитях. Сила натяжения первой составляет 34 Н, второй — 21Н, θ1 = 45°, θ2 = 60°. Найдите массу бруска.

Введем оси и спроецируем силы:

Получаем два прямоугольных треугольника. Гипотенузы AB и KL — силы натяжения. LM и BC — проекции на ось X, AC и KM — на ось Y.

Задача 4. Брусок массой 5 кг (масса в этой задаче не нужна, но, чтобы в уравнениях все было известно, возьмем конкретное значение) соскальзывает с плоскости, которая наклонена под углом 45°, с коэффициентом трения μ = 0,1. Найдите ускорение движения бруска?

Когда же есть наклонная плоскость, оси (X и Y) лучше всего направить по направлению движения тела. Некоторые силы в данном случае ( здесь это mg) не будут лежать ни на одной из осей. Эту силу нужно спроецировать, чтобы она имела такое же направление, как и взятые оси.
Всегда ΔABC подобен ΔKOM в таких задачах (по прямому углу и углу наклона плоскости).

Рассмотрим поподробнее ΔKOM:

Получим, что KO лежит на оси Y, и проекция mg на ось Y будет с косинусом. А вектор MK коллинеарен (параллелен) оси X, проекция mg на ось X будет с синусом, и вектор МК направлен против оси X (то есть будет с минусом).

Не забываем, что, если направления оси и силы не совпадают, ее нужно взять с минусом!

Из оси Y выражаем N и подставляем в уравнение оси X, находим ускорение:

Как видно, массу в числителе можно вынести за скобки и сократить со знаменаталем. Тогда знать ее не обязательно, получить ответ реально и без нее.
Да-да, в идеальных условиях (когда нет силы сопротивления воздуха и т.п.), что перо, что гиря скатятся (упадут) за одно и тоже время.

Задача 5. Автобус съезжает с горки под уклоном 60° с ускорением 8 м/с² и с силой тяги 8 кН. Коэффициент трения шин об асфальт равен 0,4. Найдите массу автобуса.

Сделаем рисунок с силами:

Введем оси X и Y. Спроецируем mg на оси:

Запишем второй закон Ньютона на X и Y:

Задача 6. Поезд движется по закруглению радиуса 800 м со скоростью 72 км/ч. Определить, на сколько внешний рельс должен быть выше внутреннего. Расстояние между рельсами 1,5 м.

Самое сложное — понять, какие силы куда действуют, и как угол влияет на них.

Вспомни, когда едешь по кругу на машине или в автобусе, куда тебя выталкивает? Для этого и нужен наклон, чтобы поезд не упал набок!

Угол α задает отношение разницы высоты рельсов к расстоянию между ними (если бы рельсы находились горизонтально)

Запишем какие силы действуют на оси:

Ускорение в данной задачи центростремительное!

Поделим одно уравнение на другое:

Тангенс — это отношение противолежащего катета к прилежащему:

Как мы выяснили, решение подобных задач сводится к расстановке направлений сил, проецированию их на оси и к решению систем уравнений, почти сущий пустяк.

В качестве закрепления материала решите несколько похожих задач с подсказками и ответами.

Ответы

Ответ:

20 см,  10√3 см

Пошаговое объяснение:

Имеем ΔАВС, прямоугольный, где АС⊥ВС,  ВС=10 см, ∠В=60°. Найти АВ и АС.

∠А=90-60=30°

АВ=2ВС=20 см по свойству катета, лежащего против угла 30 градусов.

По теореме Пифагора

АС=√(АВ²-ВС²)=√(400-100)=√300=10√3 см

Приложения:

Ответ:

h=10 ,  angle alpha =60^circ \\c=dfrac{h}{cos60^circ }=dfrac{10}{1/2}=dfrac{10}{1/2}=20\\\a=hcdot tg60^circ =10cdot sqrt3=10sqrt3

Приложения:

Интересные вопросы

1. Берёза, вся обсеянная зелёными клейкими листьями, не шевелилась . 2. Когда мама вернулась в Одессу, она увидела на огромных рекламах, развешенных по всему городу, белокурую девочку. 3. Вася стоял перед белым одноэтажным домиком, окруженным густо разросшимися кустами акации. 4. Даль колесил по России, менял профессии, встречал на своём пути тысячи людей, тысячи слов, и не отвлечённо названных, но слов, произнесённых к месту, употреблённых в деле,слов-образов.
Нужно вызначить ПРИЧАСТНЫЕ ОБОРОТЫ​

На этой странице вы узнаете

  • Как мы сталкиваемся с двугранными углами, когда читаем книгу?
  • Где в комнате можно найти перпендикулярные плоскости?
  • Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Стереометрия — это не просто раздел математики, который нужно долго и нудно учить. На самом деле стереометрия описывает всю нашу жизнь. Стало интересно? Давайте разбираться. 

Углы между плоскостями

Мы точно знаем, что угол между стеной и полом равен 90°. Также, как и угол между стеной и потолком, или полом и любым предметом мебели. 

Но чему равен угол между двумя открытыми страницами тетради? Или угол между стеной и полуоткрытой дверью? Угол между перилами и плоскостью пола? Все эти углы достаточно легко найти. И ответы на все эти вопросы нам дает именно стереометрия. 

Начнем разбирать в углах между плоскостями с того, что введем понятие двугранного угла. 

Двугранный угол — это часть пространства, заключенная между двумя полуплоскостями, имеющими общую границу. 

Если мы откроем книгу не полностью и посмотрим на пространство между двумя страницами, это пространство и будет двугранным углом.

На рисунке: 
АВ — общая прямая для плоскостей, ее называют ребром двугранного угла;
a, b  — плоскости, которые образуют двугранный угол, они называются гранями двугранного угла.  

Как мы сталкиваемся с двугранными углами, когда читаем книгу?

Если раскрыть книгу не полностью, то ее страницы будут образовывать двугранный угол, то есть часть пространства, заключенную между двумя страницами. 

Заметим, что при пересечении двух плоскостей обычно образуется четыре двугранных угла. Нас интересует меньший из них.

Настало время ввести понятие угла между двумя плоскостями. Но для этого нам нужно провести перпендикуляры к ребру двугранного угла в каждой плоскости. Важно, чтобы перпендикуляры пересекались в одной точке.

Проведенные перпендикуляры образовали четыре угла. Меньший из них и будет называться углом между плоскостями.

Угол между плоскостями — это угол между перпендикулярами, проведенными к линии пересечения плоскостей. Перпендикуляры должны лежать в данных плоскостях. 

Обозначим нужный нам угол на рисунке как угол COD. Он и будет являться углом между данными плоскостями. 

Угол COD также будет называться линейным углом двугранного угла. 

Линейный угол двугранного угла показывает градусную меру двугранного угла. Поскольку двугранный угол — это часть пространства, то в этом пространстве можно провести множество линейных углов, которые будут равны между собой. 

Как и обычные углы, углы между плоскостями бывают трех видов:

  • Острые, то есть меньше 900
  • Прямые, равные 900
  • Тупые, которые больше 90и меньше 1800

Как уже было сказано выше, за угол между плоскостями всегда принимается острый угол, образованный этими плоскостями.

А что будет, если между плоскостями получится прямой угол?

Такие плоскости называются перпендикулярными. 

Где в комнате можно найти перпендикулярные плоскости?

Достаточно посмотреть на стены и пол, или стены и потолок. А еще на углы потолка — в них будет три перпендикулярные плоскости. 

У перпендикулярных плоскостей есть одна очень интересная особенность: все углы, образованные ими, равны между собой и равняются 90° градусам. 

Чтобы найти угол между плоскостями, необходимо следовать следующему алгоритму. 

Алгоритм нахождения угла между плоскостями

1 шаг. Найти линию пересечения плоскостей.

2 шаг. Достроить к этой линии перпендикуляр в каждой плоскости. 

3 шаг. Найти острый угол между построенными перпендикулярами. 

Углы между прямой и плоскостью

Если нарисовать две прямые на листе бумаги, мы с легкостью можем измерить угол между ними с помощью транспортира. А если провести прямую к плоскости, как точно измерить угол между ними?

И в этом вопросе к нам снова на помощь приходит стереометрия. Но для начала рассмотрим, что такое угол между прямой и плоскостью.

Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость. 

Что такое проекция? Предположим, мы проткнем лист бумаги (плоскость) очень длинной иглой. 

А теперь сделаем этот рисунок ближе к чертежу. Пусть плоскость а пересекает прямая а в точке О. 

Начнем строить проекцию. Прежде чем разобраться, что такое проекция прямой на плоскость, найдем проекцию точки на плоскость. 

Возьмем на нашей прямой а точку А и опустим из нее перпендикуляр к плоскости а. Точка, в которой перпендикуляр пересечет плоскость, будет называться проекцией точки на плоскость. На рисунке обозначим ее как А1

Проекция точки на плоскость — это основание перпендикуляра, опущенного из этой точки на плоскость. 

Теперь, если мы будем брать каждую точку на прямой и проектировать ее на плоскость а, то получим проекцию этой прямой на плоскость. Но поскольку на прямой бесконечное множество точек, достаточно соединить точки А1 и О, получаем, что А1О — проекция прямой а на плоскость а

Заметим, что если мы проведем из любой точки прямой проекцию к плоскости, то попадем на прямую А1О. 

Проекция прямой а на плоскость — это прямая а1, образованная проекциями всех точек прямой а на плоскость. 

Таким образом можно построить проекции не только прямой, но и любой фигуры.

Мы построили угол из определения. Тогда углом между прямой а и плоскость а будет угол А1ОА. 

В этом случае мы также берем острый угол, образованный прямой и плоскостью. 

Алгоритм нахождения угла между прямой и плоскостью

Шаг 1. Построить проекцию прямой на плоскость.

Шаг 2. Найти угол между прямой и построенной проекцией. 

Если прямая параллельна плоскости угол будет равен 0

Проекция прямой на плоскость будет этой же прямой, просто лежащей в плоскости.  

Когда прямая перпендикулярна плоскости, проекцией прямой на плоскость будет точка пересечения прямой и плоскости. Угол между прямой и плоскостью будет равен 90°.

Чуть подробнее остановимся на случае, когда прямая перпендикулярна плоскости. 

Прямая, перпендикулярная плоскости — прямая, которая перпендикулярна к каждой прямой, лежащей в этой плоскости. 

А что делать, если прямая будет перпендикулярна только одной прямой из плоскости? По определению обязательно, чтобы она была перпендикулярна всем прямым из плоскости. Как тогда проверить перпендикулярность?

Для этого существует признак перпендикулярности прямой и плоскости:

  • Если прямая перпендикулярна к двум пересекающимся прямым в этой плоскости, то она будет перпендикулярна этой плоскости. 

Следовательно, если необходимо в задаче доказать перпендикулярность прямой и плоскости, достаточно доказать, что прямая будет перпендикулярна всего двум пересекающимся прямым в этой плоскости, а не всему множеству прямых, лежащий в данной плоскости.

Рассмотрим несколько интересных свойств, связанных с прямой, перпендикулярной к плоскости. 

Свойство 1. Через любую точку пространства можно провести единственную прямую, перпендикулярную плоскости. 

Попробуйте подставить уголок к стене из любой точки. Получится ли у вас сделать так, что из одной и той же точки уголок встанет перпендикулярно стене несколько раз? Нет. 

Свойство 2. Если две прямые перпендикулярны одной и той же плоскости, то такие прямые параллельны. 

Здесь тоже просто все доказать. Достаточно построить в плоскости прямую, которая пересечет две данные прямые и посмотреть на рисунок “сбоку”. Заметим, что соответственные углы равны, а значит, прямые параллельны. 

Подробнее про соответственные углы и параллельные прямые можно прочитать в статье “Основы планиметрии”. 

Свойство 3. Если к одной прямой перпендикулярны две плоскости, то такие плоскости параллельны. 

Тут такие же рассуждения, как и в предыдущем свойстве: достаточно построить прямые, принадлежащие плоскостям, и посмотреть на них “сбоку”. 

Свойство 4. Если через перпендикулярную к плоскости прямую проходит плоскость, то данные плоскости будут перпендикулярны. 

Это легко проверить, если найти любой двугранный угол между построенными плоскостями. 

Теорема о трех перпендикулярах

Разберем еще одну очень интересную теорему, связанную с проекциями прямой на плоскость. А именно мы рассмотрим теорему о трех перпендикулярах. 

Для начала попробуем понять ее на реальных предметах. 

Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Возьмем уголок и зафиксируем его строго вертикально на листе. Для удобства назовем уголок АВС, где С — прямой угол. 

Сразу заметим, что прямая АС будет перпендикулярна плоскости листа (поскольку уголок стоит строго вертикально, а лист лежит строго горизонтально). 
Дальше заметим, что прямые АС и ВС также перпендикулярны, поскольку в уголке угол С равен 90°. 
Посмотрим чуть-чуть внимательнее и обратим внимание, что прямая ВС при этом будет проекцией на плоскость листа прямой АВ.

Немного достроим наш рисунок и через точку В проведем прямую, перпендикулярную ВС. Назовем эту прямую КМ. 
Сразу отмечаем, что прямая КМ перпендикулярна ВС по построению, а также перпендикулярна прямой АС (поскольку АС — перпендикуляр к плоскости листа).

Можем ли мы что-то еще сказать про нашу ситуацию? Оказывается, прямая АВ также будет перпендикулярна прямой КМ. 

Возникнет вопрос, почему? 

1. Вспомним признак перпендикулярности прямой и плоскости: если прямая перпендикулярна к двум пересекающимся прямым в этой плоскости, то она будет перпендикулярна этой плоскости. 

Теперь узнаем, как этот признак выполняется в данной ситуации. 

2. Посмотрим на ситуацию немного под другим углом и в этот раз возьмем за плоскость не лист, а нашу линейку. 

3. Тогда две пересекающиеся прямые в плоскости линейки будут перпендикулярны прямой КМ: BCKM по построению, а ACKM как прямая, перпендикулярная к плоскости листа, а значит, и перпендикулярная всем прямым в этой плоскости. 

4. Получается, что прямая КМ перпендикулярна плоскости АВС, следовательно, перпендикулярна и всем прямым в этой плоскости, в том числе прямой АВ. 

Таким образом, длинная сторона линейки будет наклонной прямой, основание — ее проекцией, а начерченная линия — перпендикуляром к проекции. 

Мы рассмотрели теорему о трех перпендикулярах. Осталось ее только сформулировать математическим языком. 

Теорема о трех перпендикулярах 
Если наклонная прямая АВ к плоскости а перпендикулярна прямой КМ в этой плоскости, то и проекция прямой АВ на плоскость а перпендикулярна к прямой КМ. 

Для построения чертежа заменим линейку на несколько отрезков. Тогда АВ — наклонная, ВС — проекция, КМ — прямая в плоскости. 

Как с помощью линейки и листа воспроизвести в жизни теорему о трех перпендикулярах?

Для этого нужно взять лист бумаги и треугольную линейку. На листе бумаги построить произвольную прямую, а после поставить линейку строго вертикально так, чтобы основание линейки на листе было перпендикулярно начерченной прямой. 

Таким образом, длинная сторона линейки будет наклонной прямой, основание — ее проекцией, а начерченная линия — перпендикуляром к проекции. 

Вот и все, ничего сложного. А называется теорема так потому, что в построении действительно присутствуют три перпендикуляра, которые отлично видно на рисунке.

Теорему о трех перпендикулярах можно активно использовать для доказательства и решении задач. 

Фактчек

  • Двугранный угол — это часть пространства, заключенная между двумя полуплоскостями, имеющими общую границу. Градусной мерой двугранного угла будет линейный угол двугранного угла или, другими словами, угол между плоскостями. 
  • Угол между плоскостями — это угол между перпендикулярами, проведенными к линии пересечения плоскостей. Перпендикуляры должны лежать в данных плоскостях. За угол между плоскостями принимают острый угол, образованный этими плоскостями. Если угол между плоскостями равен 90°, то такие плоскости перпендикулярны. 
  • Угол между прямой и плоскостью — это угол между прямой и ее проекцией на эту плоскость. Чтобы найти угол между прямой и плоскостью, необходимо построить проекцию прямой на плоскость и найти угол между прямой и ее проекцией. Если прямая параллельна плоскости, то угол между ними будет равен 0°. Если прямая перпендикулярна плоскости, то угол между ними будет равен 90°. 
  • Прямая, перпендикулярная плоскости — прямая, которая перпендикулярна к каждой прямой, лежащей в этой плоскости. Чтобы доказать, что прямая перпендикулярна плоскости, достаточно доказать, что эта прямая перпендикулярна двум пересекающимся в плоскости прямым. 
  • Теорема о трех перпендикулярах гласит, что если наклонная прямая а к плоскости а перпендикулярна прямой b в этой плоскости, то и проекция прямой а на плоскость а перпендикулярна к прямой b. 

Проверь себя

Задание 1. 
Выберите верное утверждение. 

  1. Градусной мерой двугранного угла будет линейный угол двугранного угла. При этом все линейные углы двугранного угла равны между собой;
  2. Градусной мерой двугранного угла будет линейный угол двугранного угла. При этом линейные углы двугранного угла не равны между собой;
  3. Грань двугранного угла — это общая прямая плоскостей, которые его образуют;
  4. Ребра двугранного угла — это плоскости, которые его образуют. 

Задание 2. 
Угол между плоскостями — это…

  1. Тупой угол между перпендикулярами, проведенными к линии пересечения плоскостей;
  2. Острый или прямой угол между перпендикулярами, проведенными к линии пересечения плоскостей;
  3. Тупой угол между двумя произвольными линиями, проведенными к линии пересечения плоскостей;
  4. Острый или прямой угол между двумя произвольными линиями, проведенными к линии пересечения плоскостей.

Задание 3. 
Что такое проекция прямой на плоскость?

  1. Это любая прямая, проведенная из точки пересечения прямой и плоскости;
  2. Это перпендикуляр, опущенный из любой точки на плоскость;
  3. Это всегда точка пересечения прямой и плоскости;
  4. Это прямая, образованная проекциями всех точек прямой на плоскость. 

Задание 4. 
Какой будет проекция прямой, перпендикулярной к плоскости, на эту плоскость?

  1. Проекция будет равна этой прямой и параллельна ей;
  2. Проекция будет меньше прямой и образовывать с ней угол;
  3. Проекция будет точкой пересечения прямой и плоскости;
  4. Проекция будет больше прямой и образовывать с ней угол.  

Задание 5. 
Как доказать, что прямая перпендикулярна плоскости?

  1. Достаточно доказать, что прямая перпендикулярна одной любой прямой в плоскости;
  2. Достаточно доказать, что прямая перпендикулярна двум параллельным прямым в плоскости;
  3. Достаточно доказать, что угол между прямой и любой прямой в плоскости равен 90°;
  4. Достаточно доказать, что прямая перпендикулярна к двум пересекающимся прямым в этой плоскости.

Ответы: 1. — 1 2. — 2 3. — 4 4. — 3 5. — 4

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

Наклонная к прямой

Что такое наклонная к прямой? Сколько наклонных можно провести из одной точки к данной прямой? Как найти расстояние между основаниями наклонных?

Наклонной, проведенной из точки A к прямой a, называется отличный от перпендикуляра отрезок, соединяющий точку A с некоторой точкой на прямой a.

Рисунок наклонной, проведенной из данной точки к данной прямой, начинают с изображения перпендикуляра (даже если в условии задачи о перпендикуляре не упоминается).

Чтобы нарисовать наклонную, нужно соединить точку, из которой проводится наклонная, с любой точкой на данной прямой.

На рисунке 1 AB — перпендикуляр, проведенный из точки A к прямой a, AC — наклонная.

Точка B — основание перпендикуляра, точка C — основание наклонной AC.

Отрезок BC, соединяющий основание перпендикуляра с основанием наклонной, — проекция наклонной AC на прямую a.

Из точки к прямой можно провести бесконечно много наклонных.

Две наклонные проведенные из данной точки к данной прямой, могут быть расположены как по одну сторону от перпендикуляра, так и по разные стороны от него.

На рисунке 2 наклонные AC и AD расположены по одну сторону от перпендикуляра AB.

BC — проекция наклонной AC на прямую a,

BD — проекция наклонной AD на прямую a.

CD — расстояние между основаниями наклонных

Если наклонные расположены по одну сторону от перпендикуляра, чтобы найти расстояние между основаниями наклонных, надо найти разность между длинами их проекций.

На рисунке 3 наклонные AC и AD расположены по разные стороны от перпендикуляра AB.

BC — проекция наклонной AC на прямую a,

BD — проекция наклонной AD на прямую a.

CD — расстояние между основаниями наклонных

Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.

В следующий раз рассмотрим свойства наклонных.

2 Comments

Если наклонные расположены по разные стороны от перпендикуляра, расстояние между основаниями наклонных равно сумме длин проекций этих наклонных.

Косые треугольники: характеристика, примеры, упражнения

Содержание:

В косые треугольники Это те, у которых нет прямого угла, поэтому ни один из их внутренних углов не равен 90º. Итак, косой треугольник может быть острый угол или тупой.

В первом случае внутренние углы треугольника острые или что то же самое: меньше 90º, а во втором всегда есть угол больше 90º, то есть угол тупой. Давайте посмотрим на пример каждого из них на следующем рисунке:

Чтобы найти длины сторон и меры внутренних углов этого класса треугольников, при отсутствии прямых углов невозможно применить теорему Пифагора.

Однако есть альтернативы решению треугольника: теоремы косинусов и синусов и тот факт, что сумма внутренних углов равна 180 °.

Примеры наклонных треугольников

Руководствуясь рисунком 1, мы легко можем распознать наклонные треугольники по двум критериям, которые мы приведем ниже.

Острый треугольник

Пусть треугольник сторон a, b и c будет углом перед стороной a.

Если квадрат стороны a, противоположной острому углу α, равен Меньше чем сумма квадратов остальных сторон, треугольник равен острый угол. Алгебраически:

к 2 2 + c 2 ; α 2 > б 2 + c 2 ; α > 90º

Например, треугольник с внутренними углами 105º, 60º и 15º является тупым наклонным треугольником. Обратите внимание, что 105º + 60º + 15º = 180º.

Теоремы о синусе и косинусе

Чтобы решить наклонные треугольники, то есть найти меры всех их сторон и всех углов, требуются теоремы о синусе и косинусе.

Пусть a, b и c – стороны треугольника, а α, β и γ – его внутренние углы. Так:

Теорема синуса

Теорема синусов утверждает следующее:

Где α – угол, противоположный стороне a, β – угол, противоположный стороне b, а γ – угол, обращенный к стороне c.

Мы решили применить теорему синуса, когда собираемся решить треугольник, для которого известно больше углов, чем сторон.

Теорема косинусов

Согласно теореме косинусов:

c 2 = а 2 + b 2 – 2⋅a⋅b⋅cos γ

Угол γ снова находится перед стороной c. Мы также можем написать эквивалентные выражения для сторон a и b следующим образом:

к 2 = b 2 + c 2 – 2⋅b⋅c⋅cos α

б 2 = а 2 + c 2 – 2⋅a⋅c⋅cos β

Теорема косинуса предпочтительно применяется, когда известны значения двух сторон и угол между ними. Точно так же, как только три стороны треугольника известны, теорема позволяет нам вычислить косинус угла между двумя из них.

Решенные упражнения

– Упражнение 1

Убедитесь, что треугольник, стороны которого составляют 20, 10 и 12 условных единиц, тупой.

Решение

Мы не знаем ни одного из внутренних углов, но, принимая во внимание критерий, используемый для распознавания тупых треугольников, мы можем сформулировать неравенства с квадратами сторон, чтобы проверить, истинно ли это.

Сначала находим квадраты с каждой стороны:

И мы видим, что в действительности это: 400> 100 + 144, поскольку 400> 244. Следовательно, треугольник содержит угол больше 90º, расположенный напротив стороны, которая измеряет 20. Следовательно, этот треугольник, помимо того, что он наклонен, это тоже тупо.

– Упражнение 2.

Учитывая наклонный треугольник, показанный на рисунке 2, размеры которого даны в произвольных единицах, определите:

а) Значение х. Треугольник острый или тупой?

б) Остальные внутренние углы треугольника

Решение для

Известны две смежные стороны треугольника, размеры которых равны 38,0 и 45,8, а угол между ними равен 30 °, поэтому теорема косинусов имеет непосредственное применение:

Икс 2 = 38.0 2 + 45.8 2 – 2 x 38,0 x 45,8 x cos 30º = 527,18

х = (527,18) 1/2 = 22.96

Рисунок предполагает, что α> 90º и треугольник тупой и наклонный. Чтобы это проверить, находим квадраты сторон, как это было сделано в предыдущем упражнении:

Угол α больше 90 °, если квадрат на противоположной стороне: 45,8 2 больше суммы квадратов других сторон, которая равна 22,96 2 + 38.0 2 .

Посмотрим, будет ли это так:

527.18 + 1444.00 = 1971.2

Следовательно, угол α больше 90º.

Решение б

Теперь мы можем применить теорему синусов, чтобы найти один из недостающих углов. Поднимем его на угол β:

грех 30º / 22,96 = грех β / 38

sin β = 38 x (sin 30º / 22,96) = 0,8275

β = арксен (0,8275) = 55,84º

Недостающий угол можно найти, зная, что сумма внутренних углов любого треугольника равна 180 °. Таким образом:

55.84º + 30º + α = 180º

Если хотите, вы также можете использовать теорему косинусов, чтобы найти косинус угла между любыми двумя соседними сторонами. После получения функция арккосинуса используется для определения угла.

Результаты могут немного отличаться до десятичных знаков, в зависимости от выполняемого округления.

Решение c

Периметр P – это контур фигуры, эквивалентный сумме измерений трех сторон:

P = 22,96 + 38,00 + 45,80 = 106,76 условных единиц.

Решение d

Формула для вычисления площади любого треугольника:

A = (1/2) x основание x высота

Нам нужно выбрать одну из сторон в качестве основы и определить высоту. Например, выбрав сторону размером 45,8, мы строим высоту час до вершины A, которая является красной линией на рисунке 2b.

Делая это, мы делим исходный треугольник на два прямоугольных треугольника, оба с час как общая нога. Любой из них работает, так как мы знаем сторону и острый угол.

Мы собираемся взять отрезок с гипотенузой, равной 38, отрезок, который измеряет час, что является искомой высотой и острым углом, равным 30º.

С помощью тригонометрических соотношений острого угла 30º определяем величину час:

sin 30º = катет напротив 30º / гипотенуза = h / 38

h = 38 x sin 30º = 19

A = (1/2) x 45,8 x 19 = 435,1 условных единиц площади.

В качестве основы мы могли бы выбрать другую из сторон, например сторону 38, в данном случае высоту час отличается, поскольку образуется еще один прямоугольный треугольник, но результат по площади такой же. Читателю остается проверить это в качестве упражнения.

– Упражнение 3.

Для треугольника ABC, такого что A = 45º, B = 60º и a = 12 см, вычислите другие данные треугольника.

Решение

Учитывая, что сумма внутренних углов треугольника равна 180º, мы имеем:

C = 180º-45º-60º = 75º.

Три угла уже известны. Затем по закону синусов вычисляются две недостающие стороны.

Возникают следующие уравнения: 12 / sin (45º) = b / sin (60º) = c / sin (75º).

Из первого равенства мы можем решить для «b» и получить, что:

b = 12 * sin (60º) / sin (45º) = 6√6 ≈ 14,696 см.

Вы также можете решить для «c» и получить:

c = 12 * sin (75º) / sin (45º) = 6 (1 + √3) ≈ 16,392 см.

– Упражнение 4.

Учитывая треугольник ABC, такой что A = 60º, C = 75º и b = 10 см, вычислите другие данные треугольника.

Решение

Как и в предыдущем упражнении, B = 180º-60º-75º = 45º. Кроме того, используя закон синусов, мы получаем, что a / sin (60º) = 10 / sin (45º) = c / sin (75º), из чего получается, что a = 10 * sin (60º) / sin (45º ) = 5√6 ≈ 12,247 см и c = 10 * sin (75º) / sin (45º) = 5 (1 + √3) ≈ 13,660 см.

– Упражнение 5.

Дан треугольник ABC такой, что a = 10 см, b = 15 см и C = 80º, вычислите другие данные треугольника.

Решение

В этом упражнении известен только один угол, поэтому его нельзя начинать, как в предыдущих двух упражнениях. Кроме того, нельзя применить закон синусов, потому что никакое уравнение не может быть решено.

Поэтому переходим к применению закона косинусов. Вот тогда:

c² = 10² + 15² – 2 (10) (15) cos (80º) = 325 – 300 * 0,173 ≈ 272,905 см,

Итак, c ≈ 16,51 см. Теперь, зная 3 стороны, используется закон синусов и получается, что:

10 / sin (A) = 15 / sin (B) = 16,51 см / sin (80º).

Следовательно, решение для B приводит к sin (B) = 15 * sin (80º) / 16,51 ≈ 0,894, что означает, что B ≈ 63,38º.

Теперь мы можем получить, что A = 180º – 80º – 63,38º ≈ 36,62º.

– Упражнение 6

Стороны наклонного треугольника равны a = 5 см, b = 3 см и c = 7 см. Найдите углы треугольника.

Решение

Опять же, закон синусов не может быть применен напрямую, поскольку никакое уравнение не может служить для получения значения углов.

Используя закон косинуса, мы имеем c² = a² + b² – 2ab cos (C), из которого при вычислении получаем cos (C) = (a² + b² – c²) / 2ab = (5² + 3²-7²) / 2 * 5 * 3 = -15/30 = -1/2 и, следовательно, C = 120º.

Теперь мы можем применить закон синусов и, таким образом, получить 5 / sin (A) = 3 / sin (B) = 7 / sin (120º), из которого мы можем решить относительно B и получить, что sin (B) = 3 * sin (120º) / 7 = 0,371, так что B = 21,79º.

Наконец, последний угол рассчитывается с использованием того, что A = 180º-120º-21,79º = 38,21º.

Ссылки

  1. Клеменс, С. Геометрия с приложениями. Эддисон Уэсли.
  2. Ибаньес, П. 2010. Математика III. Cengage Learning.
  3. Хименес, Р. Математика II: геометрия и тригонометрия. 2-й. Издание. Пирсон.
  4. Математика для вас. Тупой треугольник. Получено с: matematicasparaticharito.wordpress.com.
  5. Стюарт, Дж. 2007. Precalculus. 5-е. Издание. Cengage Learning.

Что такое слезы и слезы?

Что такое самоисполняющееся пророчество? (Психология)

[spoiler title=”источники:”]

http://ru1.warbletoncouncil.org/triangulos-oblicuangulos-ejercicios-resueltos-8172

[/spoiler]

Добавить комментарий