Как найти проекцию перемещения тела по уравнению

Вычисление перемещения по графику проекции скорости

Из кодификатора по физике, 2020.
«1.1.3. Вычисление перемещения по графику зависимости υ(t).»

Теория

Пусть задан график зависимости проекции скорости { v }_{ x } от времени t (рис. 1).

Проекция перемещении тела { s }_{ x } за промежуток времени от { t }_{ 1 } до { t }_{ 2 } численно равна по величине площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 } (см. рис. 1, площадь выделена штриховкой).

Проекцию перемещения на ось 0Х будем считать:

положительной, если проекция скорости на данную ось будет положительной (тело движется по направлению оси) (см. рис. 1);

отрицательной, если проекция скорости на данную ось будет отрицательной (тело движется против оси) (рис. 2).

Путь s может быть только положительным:

Напоминаем формулы для расчета площадей фигур:

— прямоугольника – S=acdot b

— треугольника – S=frac { acdot h }{ 2 }

— трапеции – S=frac { a+b }{ 2 } cdot h

Задачи

Задача 1. По графику проекции скорости тела (рис. 3) определите проекцию его перемещения между 1 и 5 с.

Ответ: ____ м.

Решение. Проекция перемещения за промежуток времени Δt={ t }_{ 2 }{ t }_{ 1 }=5с–1с=4c численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=1 с и { t }_{ 2 }=5 с (рис. 4, площадь выделена штриховкой). Фигура ABCD — это трапеция, ее площадь равна

S=frac { a+b }{ 2 } cdot h=frac { AD+BC }{ 2 } cdot DC

где DC = Δt = 4 c, AD = 3 м/c, BC = 5 м/c. Тогда S = 16 м.
Проекция перемещения { s }_{ x }>0, т.к. проекция скорости { v }_{ x }>0.
{ s }_{ x }=S=16 м.

Ответ: 16.

Задача 2. Автомобиль движется по прямой улице вдоль оси X. На рисунке 5 представлен график зависимости проекции скорости автомобиля от времени. Определите путь, пройденный автомобилем в течение указанных интервалов времени.

Интервал времени Путь
от 0 до 10 с Ответ: м.
от 30 до 40 с Ответ: м.

В бланк ответов перенесите только числа, не разделяя их пробелом или другим знаком.

Решение. Путь за промежуток времени Δt = { t }_{ 2 }{ t }_{ 1 } численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 } и { t }_{ 2 }.

На интервале [0 с, 10 с] ищем площадь треугольника (рис. 6).

{ S }_{ 1 }=frac { acdot h }{ 2 },

где a = 20 м/c, h=triangle { t }_{ 1 }=10c-0c=10c. Тогда { S }_{ 1 }=100 м.

Путь равен значению площади (путь всегда положительный, т.е. s > 0).

{ s }_{ 1 }={ S }_{ 1 }=100 м.

На интервале [30 с, 40 с] ищем площадь трапеции (см. рис. 6).

{ S }_{ 2 }=frac { a+b }{ 2 } cdot h,

где a = 10 м/c, b = 15 м/c, h = Δt = 40 c – 30 с = 10 с. Тогда { s }_{ 2 }={ S }_{ 2 }=125 м.

Ответ: 100125.

Задача 3. Определите за первые 4 с (рис. 7):

а) проекцию перемещения тела;

б) пройденный путь.

Ответ: а) ____ м; б) ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=4c-0=4c (пер-вые 4 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 с и { t }_{ 2 }=4 с (рис. 8, площадь выделена штриховкой).

Так как при { t }_{ 0 }=3 с проекция скорости поменяла знак, то получили две фигуры, два треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,

где

{ a }_{ 1 }=30quad м/с, quad { h }_{ 1 }=triangle { t }_{ 1 }=3c-0c=3c

{ a }_{ 2 }=|-10 м/c|=10 м/c, quad { h }_{ 2 }=triangle { t }_{ 2 }=4c-3c=1c.

Тогда { S }_{ 1 }=45м, quad { S }_{ 2 }=5м.

а) Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0; проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. В итоге получаем: { s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }={ S }_{ 1 }-{ S }_{ 2 },quad { s }_{ 1x }=45м – 5м = 40 м. б) Путь равен значению площади (путь всегда положительный, т.е. s>0).

s={ S }_{ 1 }+{ S }_{ 2 }, s = 45 м + 5 м = 50 м.

Ответ: а) 40; б) 50.

Задача 4. График зависимости проекции скорости материальной точки, движущейся вдоль оси 0Х, от времени изображен на рисунке 9. Определите перемещение точки, которое она совершила за первые 6 с.

Ответ: ____ м.

Решение. Проекция перемещения за время triangle t={ t }_{ 2 }-{ t }_{ 1 }=6c-0=6c (пер-вые 6 с) численно равна площади фигуры, ограниченной графиком { v }_{ x }(t), осью времени 0t и перпендикулярами к { t }_{ 1 }=0 c и { t }_{ 2 }=6 c (рис. 10, площадь выделена штриховкой).

Так как при { t }_{ 01 }=2c и { t }_{ 02 }=4c проекция скорости меняет знак, то получили три фигуры, три треугольника, площади которых равны:

{ S }_{ 1 }=frac { { a }_{ 1 }cdot { h }_{ 1 } }{ 2 } ,quad { S }_{ 2 }=frac { { a }_{ 2 }cdot { h }_{ 2 } }{ 2 } ,quad { S }_{ 3 }=frac { { a }_{ 3 }cdot { h }_{ 3 } }{ 2 } ,

где

{ a }_{ 1 }=3 м/с, h_{ 1 }=triangle { t }_{ 1 }=2c-0c=2c

{ a }_{ 2 }=|-2 м/c| = 2 м/с, h_{ 2 }=triangle { t }_{ 2 }=4c-2c=2c

{ a }_{ 2 }=3м/c, h_{ 3 }=triangle { t }_{ 3 }=6c-4c=2c.

Тогда { S }_{ 1 }=3 м, { S }_{ 2 }=2 м, { S }_{ 3 }=3 м.

Проекция перемещения { s }_{ 1x }>0, т.к. проекция скорости { v }_{ 1x }>0.

Проекция перемещения { s }_{ 2x }<0, т.к. проекция скорости { v }_{ 2x }<0. Проекция перемещения { s }_{ 3x }>0, т.к. проекция скорости { v }_{ 3x }>0. В итоге получаем:

{ s }_{ x }={ s }_{ 1x }+{ s }_{ 2x }+{ s }_{ 3x }={ S }_{ 1 }-{ S }_{ 2 }+{ S }_{ 3 },quad { s }_{ x }= 3 м – 2 м + 3 м = 4 м.

Ответ: 4.

Задача 5. На рисунке приведен график зависимости v_x скорости тела от времени t.

Определите путь, пройденный телом в интервале времени от 0 до 5 с.

Ответ: ____ м.

Решение. Решение любых графических задач основывается на умении «читать» графики. В данной задаче рассматривается зависимость проекции скорости тела от времени. На интервале от 0 до 3с проекция скорости уменьшается от значения 15 м/с до 0. На интервале от 3 до 5с модуль проекции начинает возрастать от нулевого значения до 10 м/с. Причем важно «увидеть», что тело в этом временном интервале начинает движение в направлении, противоположном оси ОХ.

Пройденный путь будет определяться площадью геометрической фигуры, образованной под графиком проекции скорости.

Рис.1

Дальнейшее решение задачи сводится к нахождению площадей двух треугольников, заштрихованных на рис.1

S_1=frac{15cdot 3}{2}=22,5 (м).

S_2=frac{10cdot 2}{2}=10 (м).

Тогда, общий путь в интервале времени от 0 до 5с будет определяться суммой отдельных путей S_1 и S_2.

S_o = S_1+S_2
S_o = 22,5+10=32,5 (м).
Ответ: 32,5 м

По условию этой задачи можно поставить второй вопрос: найти проекцию перемещения в интервале времени от 0 до 5с.

В этом случае надо учесть, что проекция перемещения в интервале времени от 0 до 3 с положительная и её значение равно пройденному пути на этом интервале.

S_{1x}=S_1=22,5 (м).

В интервале времени от 3 с до 5 с проекция перемещения отрицательная, так как тело движется в направлении противоположном оси ОХ.

S_{2x}=-10 (м).

Проекция перемещения за весь интервал времени будет равна S_{o.x}=S_{1x}+S_{2x}
S_{o.x}=22,5+(-10)=12,5 (м).

Ответ: 12,5 м

Задача 6. На рисунке представлен график зависимости модуля скорости v прямолинейно движущегося тела от времени t. Определите по графику путь, пройденный телом в интервале времени от 1 до 5 с.


Ответ: ____ м.

Решение. Для нахождения пройденного пути в интервале времени от 1с до 5с необходимо рассчитать площадь геометрической фигуры под графиком модуля скорости.

Рис.1

Дальнейшее решение сводится к расчету площади трапеции, заштрихованной на графике (см. рис.1).

S=frac{4+2}{2}cdot 10=30 (м).

Особенностью подобной задачи является то, что при решении, необходимо внимательно отследить временной интервал, на котором требуется рассчитать пройденный путь.
Ответ: 30 м.

Задача 7. Из двух городов навстречу друг другу с постоянной скоростью двиижутся два автомобиля. На графике показана зависимость расстояния между автомобилями от времени. Скорость первого автомобиля равна 15 м/с. Какова скорость второго автомобиля?


Ответ: ____ м.

Решение. При движении навстречу друг к другу расстояние между двумя автомобилями уменьшается от значения 144 км до 0. На графике видно, что встреча автомобилей произошла в момент времени 60 минут, так как расстояние между автомобилями стало равным 0. Расчеты в этой задаче требуют обязательного применения системы «СИ».

144 км = 144000 м; 60 мин = 3600 с.
Используя эти данные, можно рассчитать скорость сближения автомобилей.

v=frac{144000}{3600}=40 м/с

Так как автомобили движутся навстречу друг другу, то v=v_1+v_2, отсюда скорость второго автомобиля можно выразить как v_2=v-v_1

v_2=40-15=25 (м/с)

Ответ: 25 м/с.

Задача 8. На рисунке представлен график зависимости модуля скорости тела от времени. Найдите путь, пройденный телом за время от момента времени 0 с до момента времени 5 с. (Ответ дайте в метрах.)


Ответ: ____ м.

Решение. Для нахождения пройденного пути необходимо рассчитать площадь геометрической фигуры (трапеции) под графиком модуля скорости (см.рис.1). Это относится к интервалу времени от 0 до 3 с. От 3 с до 5 с скорость тела равна 0, следовательно, тело находилось в состоянии покоя и пройденный путь в этом интервале равен 0.

Рис.1

S_1=frac{3+1}{2}cdot 10=20 (м).
S_2=0
S_o=20+0=20 (м).

Сакович А.Л., 2020

Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Вычисление перемещения по графику проекции скорости» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или техникум нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими статьями из разделов нашего сайта.

Публикация обновлена:
08.05.2023

Кинематика

Механика — это раздел физики, изучающий механическое движение тел.

Кинематика — это раздел механики, в котором изучается механическое движение тел без учета причин, вызывающих это движение.

Материальная точка — тело, обладающее массой, размерами которого в данной задаче можно пренебречь, если

  • расстояние, которое проходит тело, много больше его размера;
  • расстояние от данного тела до другого тела много больше его размера;
  • тело движется поступательно.

Система отсчета — это тело отсчета, связанная с ним система координат и прибор для измерения времени.
Траектория — это линия, которую описывает тело при своем движении.
Путь — это скалярная величина, равная длине траектории.
Перемещение — это вектор, соединяющий начальное положение тела с его конечным положением за данный промежуток времени.

Важно!
В процессе движения путь может только увеличиваться, а перемещение как увеличиваться, так и уменьшаться, например, когда тело поворачивает обратно.
При прямолинейном движении в одном направлении путь равен модулю перемещения, а при криволинейном — путь больше перемещения.
Перемещение на замкнутой траектории равно нулю.

Основная задача механики — определить положение тела в пространстве в любой момент времени.

Механическое движение и его виды

Механическое движение — это изменение положения тела в пространстве относительно других тел с течением времени.

Механическое движение может быть:
1. по характеру движения

  • поступательным — это движение, при котором все точки тела движутся одинаково и любая прямая, мысленно проведенная в теле, остается параллельна сама себе;
  • вращательным — это движение, при котором все точки твердого тела движутся по окружностям, расположенным в параллельных плоскостях;
  • колебательным — это движение, которое повторяется в двух взаимно противоположных направлениях;

2. по виду траектории

  • прямолинейным — это движение, траектория которого прямая линия;
  • криволинейным — это движение, траектория которого кривая линия;
  • равномерным — движение, при котором скорость тела с течением времени не изменяется;
  • неравномерным — это движение, при котором скорость тела с течением времени изменяется;
  • равноускоренным — это движение, при котором скорость тела увеличивается с течением времени на одну и ту же величину;
  • равнозамедленным — это движение, при котором скорость тела уменьшается с течением времени на одну и ту же величину.

Относительность механического движения

Относительность движения — это зависимость характеристик механического движения от выбора системы отсчета.

Правило сложения перемещений

Перемещение тела относительно неподвижной системы отсчета равно векторной сумме перемещения тела относительно подвижной системы отсчета и перемещения подвижной системы отсчета относительно неподвижной системы отсчета:

где ​ ( S ) ​ — перемещение тела относительно неподвижной системы отсчета;
​ ( S_1 ) ​ — перемещение тела относительно подвижной системы отсчета;
​ ( S_2 ) ​ — перемещение подвижной системы отсчета относительно неподвижной системы отсчета.

Правило сложения скоростей

Скорость тела относительно неподвижной системы отсчета равна векторной сумме скорости тела относительно подвижной системы отсчета и скорости подвижной системы отсчета относительно неподвижной системы отсчета:

где ​ ( v ) ​ — скорость тела относительно неподвижной системы отсчета;
​ ( v_1 ) ​ — скорость тела относительно подвижной системы отсчета;
​ ( v_2 ) ​ — скорость подвижной системы отсчета относительно неподвижной системы отсчета.

Относительная скорость

Важно! Чтобы определить скорость одного тела относительно другого, надо мысленно остановить то тело, которое мы принимаем за тело отсчета, а к скорости оставшегося тела прибавить скорость остановленного, изменив направление его скорости на противоположное.

Пусть ( v_1 ) — скорость первого тела, а ( v_2 ) — скорость второго тела.
Определим скорость первого тела относительно второго ( v_ <12>) :

Определим скорость второго тела относительно первого ( v_ <21>) :

Следует помнить, что траектория движения тела и пройденный путь тоже относительны.

Если скорости направлены перпендикулярно друг к другу, то относительная скорость рассчитывается по теореме Пифагора:

Если скорости направлены под углом ​ ( alpha ) ​ друг к другу, то относительная скорость рассчитывается по теореме косинусов:

Скорость

Скорость — это векторная величина, характеризующая изменение перемещения данного тела относительно тела отсчета с течением времени.

Обозначение — ​ ( v ) ​, единицы измерения — ​м/с (км/ч)​.

Средняя скорость — это векторная величина, равная отношению всего перемещения к промежутку времени, за которое это перемещение произошло:

Средняя путевая скорость — это скалярная величина, равная отношению всего пути, пройденного телом, к промежутку времени, за которое этот путь пройден:

Важно! Чтобы определить среднюю скорость на всем участке пути, надо время разделить на отдельные промежутки и все время представить в виде суммы этих промежутков.
Чтобы определить среднюю скорость за все время движения, надо путь разделить на отдельные участки и весь путь представить как сумму этих участков.

Мгновенная скорость — это скорость тела в данный момент времени или в данной точке траектории.
Мгновенная скорость направлена по касательной к траектории движения.

Ускорение

Ускорение – это векторная физическая величина, характеризующая быстроту изменения скорости.

Обозначение — ​ ( a ) ​, единица измерения — м/с 2 .
В векторном виде:

где ​ ( v ) ​ – конечная скорость; ​ ( v_0 ) ​ – начальная скорость;
​ ( t ) ​ – промежуток времени, за который произошло изменение скорости.

В проекциях на ось ОХ:

где ​ ( a_n ) ​ – нормальное ускорение, ​ ( a_ <tau>) ​ – тангенциальное ускорение.

Тангенциальное ускорение сонаправлено с вектором линейной скорости, а значит, направлено вдоль касательной к кривой:

Нормальное ускорение перпендикулярно направлению вектора линейной скорости, а значит, и касательной к кривой:

Ускорение характеризует быстроту изменения скорости, а скорость – векторная величина, которая имеет модуль (числовое значение) и направление.

Важно!
Тангенциальное ускорение характеризует быстроту изменения модуля скорости. Нормальное ускорение характеризует быстроту изменения направления скорости.
Если ( a_ <tau>) ≠ 0, ( a_n ) = 0, то тело движется по прямой;
если ( a_ <tau>) = 0, ( a_n ) = 0, ​ ( v ) ​ ≠ 0, то тело движется равномерно по прямой;
если ( a_ <tau>) = 0, ( a_n ) ≠ 0, тело движется равномерно по кривой;
если ( a_ <tau>) = 0, ( a_n ) = const, то тело движется равномерно по окружности;
если ( a_ <tau>) ≠ 0, ( a_n ) ≠ 0, то тело движется неравномерно по окружности.

Равномерное движение

Равномерное движение – это движение, при котором тело за любые равные промежутки времени совершает равные перемещения.

Скорость при равномерном движении – величина, равная отношению перемещения к промежутку времени, за которое это перемещение произошло:

Проекция вектора скорости на ось ОХ:

Проекция вектора скорости на координатную ось равна быстроте изменения данной координаты:

График скорости (проекции скорости)

График скорости (проекции скорости) представляет собой зависимость скорости от времени:

График скорости при равномерном движении – прямая, параллельная оси времени.
График 1 лежит над осью ​ ( t ) ​, тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ​ ( t ) ​, тело движется против оси ОХ.

Перемещение при равномерном движении – это величина, равная произведению скорости на время:

Проекция вектора перемещения на ось ОХ:

График перемещения (проекции перемещения)

График перемещения (проекции перемещения) представляет собой зависимость перемещения от времени:

График перемещения при равномерном движении – прямая, выходящая из начала координат.
График 1 лежит над осью ( t ) , тело движется по направлению оси ОХ.
Графики 2 и 3 лежат под осью ( t ) , тело движется против оси ОХ.

По графику зависимости скорости от времени можно определить перемещение, пройденное телом за время ( t ) . Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Координата тела при равномерном движении рассчитывается по формуле:

График координаты представляет собой зависимость координаты от времени: ​ ( x=x(t) ) ​.

График координаты при равномерном движении – прямая.
График 1 направлен вверх, тело движется по направлению оси ОХ:

График 2 параллелен оси ОХ, тело покоится.
График 3 направлен вниз, тело движется против оси ОХ:

Прямолинейное равноускоренное движение

Прямолинейное равноускоренное движение – это движение по прямой, при котором тело движется с постоянным ускорением:

При движении с ускорением скорость может как увеличиваться, так и уменьшаться.

Скорость тела при равноускоренном движении рассчитывается по формуле:

При разгоне (в проекциях на ось ОХ):

При торможении (в проекциях на ось ОХ):

График ускорения (проекции ускорения) при равноускоренном движении представляет собой зависимость ускорения от времени:

График ускорения при равноускоренном движении – прямая, параллельная оси времени.
График 1 лежит над осью t, тело разгоняется, ​ ( a_x ) ​ > 0.
График 2 лежит под осью t, тело тормозит, ( a_x ) ( v_ <0x>) ​ > 0, ​ ( a_x ) ​ > 0.

График 2 направлен вниз, тело движется равнозамедленно в положительном направлении оси ОХ, ( v_ <0x>) > 0, ( a_x ) ( v_ <0x>) ( a_x ) ( t_2-t_1 ) ​. Для этого необходимо определить площадь фигуры под графиком (заштрихованной фигуры).

Перемещение при равноускоренном движении рассчитывается по формулам:

Перемещение в ​ ( n ) ​-ую секунду при равноускоренном движении рассчитывается по формуле:

Координата тела при равноускоренном движении рассчитывается по формуле:

Свободное падение (ускорение свободного падения)

Свободное падение – это движение тела в безвоздушном пространстве под действием только силы тяжести.

Все тела при свободном падении независимо от массы падают с одинаковым ускорением, называемым ускорением свободного падения.
Ускорение свободного падения всегда направлено к центру Земли (вертикально вниз).

Обозначение – ​ ( g ) ​, единицы измерения – м/с 2 .

Важно! ( g ) = 9,8 м/с 2 , но при решении задач считается, что ( g ) = 10 м/с 2 .

Движение тела по вертикали

Тело падает вниз, вектор скорости направлен в одну сторону с вектором ускорения свободного падения:

Если тело падает вниз без начальной скорости, то ​ ( v_0 ) ​ = 0.
Время падения рассчитывается по формуле:

Тело брошено вверх:

Если брошенное вверх тело достигло максимальной высоты, то ​ ( v ) ​ = 0.
Время подъема рассчитывается по формуле:

Движение тела, брошенного горизонтально

Движение тела, брошенного горизонтально, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали со скоростью ​ ( v_0=v_ <0x>) ​;
  2. равноускоренного движения по вертикали с ускорением свободного падения ​ ( g ) ​ и без начальной скорости ​ ( v_<0y>=0 ) ​.

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Движение тела, брошенного под углом к горизонту (баллистическое движение)

Движение тела, брошенного под углом к горизонту, можно представить как суперпозицию двух движений:

  1. равномерного движения по горизонтали;
  2. равноускоренного движения по вертикали с ускорением свободного падения.

Скорость тела в любой момент времени:

Угол между вектором скорости и осью ОХ:

Время подъема на максимальную высоту:

Максимальная высота подъема:

Максимальная дальность полета:

Важно!
При движении вверх вертикальная составляющая скорости будет уменьшаться, т. е. тело вдоль вертикальной оси движется равнозамедленно.
При движении вниз вертикальная составляющая скорости будет увеличиваться, т. е. тело вдоль вертикальной оси движется равноускоренно.
Скорость ​ ( v_0 ) ​, с которой тело брошено с Земли, будет равна скорости, с которой оно упадет на Землю. Угол ​ ( alpha ) ​, под которым тело брошено, будет равен углу, под которым оно упадет.

При решении задач на движение тела, брошенного под углом к горизонту, важно помнить, что в точке максимального подъема проекция скорости на ось ОУ равна нулю:

Это облегчает решение задач:

Движение по окружности с постоянной по модулю скоростью

Движение по окружности с постоянной по модулю скоростью – простейший вид криволинейного движения.

Траектория движения – окружность. Вектор скорости направлен по касательной к окружности.
Модуль скорости тела с течением времени не изменяется, а ее направление при движении по окружности в каждой точке изменяется, поэтому движение по окружности – это движение с ускорением.
Ускорение, которое изменяет направление скорости, называется центростремительным.
Центростремительное ускорение направлено по радиусу окружности к ее центру.

Центростремительное ускорение – это ускорение, характеризующее быстроту изменения направления вектора линейной скорости.
Обозначение – ​ ( a_ <цс>) ​, единицы измерения – ​м/с 2​ .

Движение тела по окружности с постоянной по модулю скоростью является периодическим движением, т. е. его координата повторяется через равные промежутки времени.
Период – это время, за которое тело совершает один полный оборот.
Обозначение – ​ ( T ) ​, единицы измерения – с.

где ​ ( N ) ​ – количество оборотов, ​ ( t ) ​ – время, за которое эти обороты совершены.
Частота вращения – это число оборотов за единицу времени.
Обозначение – ​ ( nu ) ​, единицы измерения – с –1 (Гц).

Период и частота – взаимно обратные величины:

Линейная скорость – это скорость, с которой тело движется по окружности.
Обозначение – ​ ( v ) ​, единицы измерения – м/с.
Линейная скорость направлена по касательной к окружности:

Угловая скорость – это физическая величина, равная отношению угла поворота к времени, за которое поворот произошел.
Обозначение – ​ ( omega ) ​, единицы измерения – рад/с .

Направление угловой скорости можно определить по правилу правого винта (буравчика).
Если вращательное движение винта совпадает с направлением движения тела по окружности, то поступательное движение винта совпадает с направлением угловой скорости.
Связь различных величин, характеризующих движение по окружности с постоянной по модулю скоростью:

Важно!
При равномерном движении тела по окружности точки, лежащие на радиусе, движутся с одинаковой угловой скоростью, т. к. радиус за одинаковое время поворачивается на одинаковый угол. А вот линейная скорость разных точек радиуса различна в зависимости от того, насколько близко или далеко от центра они располагаются:

Если рассматривать равномерное движение двух сцепленных тел, то в этом случае одинаковыми будут линейные скорости, а угловые скорости тел будут различны в зависимости от радиуса тела:

Когда колесо катится равномерно по дороге, двигаясь относительно нее с линейной скоростью ​ ( v_1 ) ​, и все точки обода колеса движутся относительно его центра с такой же линейной скоростью ( v_1 ) , то относительно дороги мгновенная скорость разных точек колеса различна.

Мгновенная скорость нижней точки ​ ( (m) ) ​ равна нулю, мгновенная скорость в верхней точке ​ ( (n) ) ​ равна удвоенной скорости ​ ( v_1 ) ​, мгновенная скорость точки ​ ( (p) ) ​, лежащей на горизонтальном радиусе, рассчитывается по теореме Пифагора, а мгновенная скорость в любой другой точке ​ ( (c) ) ​ – по теореме косинусов.

Равномерное прямолинейное движение в физике – формулы и определения с примерами

Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Из равенства (1) следует, что скорость векторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. ).

Отношение для всех участков движения на рисунке 43 одинаково: Значит, скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

и путь (равный модулю перемещения ):

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:


Согласно рисунку 44 за время автомобиль совершил перемещение Подставляя в равенство (4), получим:

Приняв запишем формулу для координаты автомобиля:

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением где

Определите: 1) проекцию скорости лодки 2) координату лодки в момент времени 3) проекцию перемещения лодки на ось Ох и путь, пройденный лодкой за время от момента до момента

Решение

Сделаем рисунок к задаче.

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив получим

Найдем

Из рисунка 49: проекция перемещения

Ответ:

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Тани Как представить графически характеристики их движения?

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при координата Леши Тани

Построим графики зависимости проекции скорости проекции перемещения пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Так как проекции постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения совершенного за время t, определяется формулой (см. § 6).

Зависимость проекции перемещения от времени для Леши или График — наклонная прямая I (рис. 53).

Для Тани или График — наклонная прямая II, изображенная на рисунке 53.

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Поэтому при график пути совпадает с графиком проекции перемещения (прямая I), а при график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле , используя данные из условия задачи и рисунок 51, находим зависимости координаты Леши и Тани от времени Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна а основание — времени t. Значит, площадь прямоугольника равна Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Через время после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Определите расстояние между участниками движения через время после их встречи, если Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Найдем координату велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Кинематический закон движения велосипедиста имеет вид:

Расстояние между мотоциклистом и велосипедистом через время после их встречи равно сумме путей, которые они проделают за это время. Значит,

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Объясните причину несовпадения.

Графиками пути s, проекции и модуля перемещения (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Прямая 2 является графиком пути и модуля перемещения велосипедиста. Прямая — графиком проекции его перемещения.

Графики координат представлены на рисунке 58. Они выражают зависимости (прямая 1) и (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ:

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено:

Так как отношение в формуле является положительной скалярной величиной, то направление вектора скорости совпадает с направлением вектора перемещения Единица измерения скорости в СИ – метр в секунду:

Если скорость известна, то можно определить перемещение s материальной точки за промежуток времени при прямолинейном равномерном движении:

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения:

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Можно получить формулу для вычисления координаты точки в произвольный момент времени (см.: тема 1.2):

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Из формулы (1.5) определяется выражение для проекции скорости:

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость – время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f):

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста скорость второго велосипедиста (g)?

Определите: а) координату и время встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

a) При решении задачи соблюдается следующая последовательность действий:

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

II действие. Уравнение движения записывается в общем виде:

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде:

IV действие. Координаты велосипедистов при встрече равны: Это равенство решается для

V действие. Для определения координат и встречи велосипедистов необходимо решить уравнения их движения для времени

Так как то

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

c) Время прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

или

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение и начальная скорость тела то можно определить его скорость в любой момент времени:

или ее проекцию на ось

Если начальная скорость равна нулю то:

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени – прямая линия, проходящая через начало координат (или через Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком и осью времени.

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

или в векторной форме:

Если в последнюю формулу вместо подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Таким образом, формула проекции перемещения (например, на ось при равнопеременном прямолинейном движении будет:

а формула координаты:

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя то:

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени и его график представляет собой параболу, проходящую через начало координат (d).

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем


Это выражение подставляется в формулу (1.21):

После простых преобразований получаем:

Для проекции конечной скорости получаем: Если движение начинается из состояния покоя то проекции перемещения и скорости будут равны:

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы и имеют одинаковые направления. В этом случае знаки у обеих проекций и или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы и имеют противоположные направления. В этом случае проекции и имеют противоположные знаки, если один из них отрицательный, то другой – положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Примечание: так как то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Это соотношение иногда называется “правило путей”.

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова подъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакууме
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова движение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова сила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorusотносящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор направленный из точки, заданной радиус-вектором где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором где МТ находится в рассматриваемый момент времени (рис. 4):

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором

Радиус-вектор всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением

При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости движения как отношение перемещения тела к промежутку времени за который это перемещение произошло (рис. 10):

Средней путевой скоростью называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени его прохождения:

Средняя путевая скорость в отличие от средней скорости является скалярной величиной.

Однако средняя скорость характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости — это скорость тела (МТ), равная производной перемещения по времени:

Вектор мгновенной скорости в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения равен пройденному пути s. Скорость равномерного движения равна отношению перемещения тела ко времени за которое это перемещение произошло:

При равномерном движении скорость постоянна и равна средней скорости определяемой выражением (2).

Зависимость перемещения от времени имеет вид Вследствие того, что — радиус-вектор, задающий положение МТ в начальный

момент времени получаем кинематическое уравнение движения в векторном виде

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Здесь — координата тела (МТ) в начальный момент времени Если начальный момент времени уравнение принимает вид

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси а 2 — в отрицательном Площади закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей за промежуток времени

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения| от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tg).


Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой мы движемся на лодке со скоростью относительно воды. В этом случае результирующее перемещение (рис. 14) лодки относительно берега будет складываться из собственного перемещения относительно воды и перемещения вместе с водой вследствие течения реки:

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей отдельных движений (рис. 15):

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

Рекомендую подробно изучить предметы:
  1. Физика
  2. Атомная физика
  3. Ядерная физика
  4. Квантовая физика
  5. Молекулярная физика
Ещё лекции с примерами решения и объяснением:
  • Прямолинейное неравномерное движение
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

При копировании любых материалов с сайта evkova.org обязательна активная ссылка на сайт www.evkova.org

Сайт создан коллективом преподавателей на некоммерческой основе для дополнительного образования молодежи

Сайт пишется, поддерживается и управляется коллективом преподавателей

Whatsapp и логотип whatsapp являются товарными знаками корпорации WhatsApp LLC.

Cайт носит информационный характер и ни при каких условиях не является публичной офертой, которая определяется положениями статьи 437 Гражданского кодекса РФ. Анна Евкова не оказывает никаких услуг.

Перемещение при равноускоренном движении. Уравнение координаты

Этот видеоурок доступен по абонементу

У вас уже есть абонемент? Войти

Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении».

[spoiler title=”источники:”]

http://www.evkova.org/ravnomernoe-pryamolinejnoe-dvizhenie-v-fizike

http://interneturok.ru/lesson/physics/10-klass/mehanikakinematika/peremeschenie-pri-ravnouskorennom-dvizhenii-uravnenie-koordinaty

[/spoiler]

Содержание:

Равномерное прямолинейное движение:

Вы изучали равномерное прямолинейное движение, познакомились с понятием «скорость». Скалярной или векторной величиной является скорость? Каковы закономерности равномерного прямолинейного движения?

Вы знаете, что движение, при котором за любые равные промежутки времени тело проходит одинаковые пути, называется равномерным. В каком случае одинаковыми будут не только пути, но и перемещения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Проделаем опыт. Проследим за падением металлического шарика в вертикальной трубке, заполненной вязкой жидкостью (например, густым сахарным сиропом) (рис. 43). Будем отмечать положение шарика через равные промежутки времени. Опыт показывает, что за равные промежутки времени, например за Равномерное прямолинейное движение в физике - формулы и определения с примерами

Сделаем вывод. При равномерном прямолинейном движении тело за любые равные промежутки времени совершает одинаковые перемещения и проходит одинаковые пути.

В 7-м классе вы находили скорость равномерного движения тела как отношение пути к промежутку времени, за который путь пройден: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это отношение показывает, как быстро движется тело, но ничего не говорит о направлении движения. Чтобы скорость характеризовала и быстроту движения, и его направление, ее определяют через перемещение.

Скорость равномерного прямолинейного движения — это величина, равная отношению перемещения к промежутку времени, за который оно совершено:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из равенства (1) следует, что скорость Равномерное прямолинейное движение в физике - формулы и определения с примерамивекторная физическая величина. Ее модуль численно равен модулю перемещения за единицу времени, а направление совпадает с направлением перемещения (т. к. Равномерное прямолинейное движение в физике - формулы и определения с примерами).

Отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами для всех участков движения на рисунке 43 одинаково: Равномерное прямолинейное движение в физике - формулы и определения с примерами  Значит, скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.

Из формулы (1) легко найти перемещение:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

и путь Равномерное прямолинейное движение в физике - формулы и определения с примерами (равный модулю перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

А как определить положение равномерно и прямолинейно движущегося тела в любой момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Рассмотрим пример. Автомобиль движется с постоянной скоростью по прямолинейному участку шоссе (рис. 44).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Автомобиль рассматриваем как материальную точку. Из формулы (2) находим проекцию перемещения автомобиля на ось Ох:

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Согласно рисунку 44 за время Равномерное прямолинейное движение в физике - формулы и определения с примерами автомобиль совершил перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами Подставляя Равномерное прямолинейное движение в физике - формулы и определения с примерами в равенство (4), получим:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Приняв Равномерное прямолинейное движение в физике - формулы и определения с примерами запишем формулу для координаты автомобиля:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Зависимость координаты движущегося тела от времени называется кинематическим законом движения. Формула (5) выражает кинематический закон равномерного прямолинейного движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для измерения скорости используются специальные приборы. В автомобилях имеется спидометр (рис. 45), на самолетах — указатель скорости. Эхолокаторы измеряют скорость тел, движущихся под водой, а радиолокаторы (радары) — в воздухе и по земле. Сотрудники службы дорожного движения с помощью портативного радара с видеокамерой (рис. 46) регистрируют скорость транспортных средств.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для любознательных:

Скорости движения могут сильно отличаться. За одну секунду черепаха может преодолеть несколько сантиметров, человек — до 10 м, гепард — до 30 м, гоночный автомобиль — около 100 м.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Около 8 км за секунду пролетает по орбите спутник Земли (рис. 47). Но даже скорости космических кораблей «черепашьи» по сравнению со скоростью микрочастиц в ускорителях. В современном ускорителе (рис. 48) электрон за одну секунду пролетает почти 300 000 км!

Главные выводы:

  1. При равномерном прямолинейном движении за любые равные промежутки времени тело совершает одинаковые перемещения.
  2. Скорость равномерного прямолинейного движения постоянна: с течением времени не изменяется ни ее модуль, ни ее направление.
  3. При равномерном прямолинейном движении тела модуль перемещения равен пути, пройденному за тот же промежуток времени.
  4. Координата равномерно и прямолинейно движущегося тела линейно зависит от времени.

Пример решения задачи:

Кинематический закон прямолинейного движения лодки но озеру вдоль оси Ох задан уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами где Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Определите: 1) проекцию скорости лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами 2) координату лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами в момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами 3) проекцию перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами лодки на ось Ох и путь, пройденный лодкой за время от момента Равномерное прямолинейное движение в физике - формулы и определения с примерами до момента Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Сделаем рисунок к задаче.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

По условию задачи координата лодки линейно зависит от времени. Значит, лодка движется равномерно. Сравнив Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами получимРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из рисунка 49: проекция перемещенияРавномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графическое представление равномерного прямолинейного движения

Зависимости между различными величинами можно наглядно изобразить с помощью графиков. Использование графиков облегчает решение научных, практических задач и даже бытовых проблем.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Например, по графику зависимости температуры пациента от времени (рис. 50) видно, что на 5-е сутки температура достигла своего максимума, затем резко упала, а еще через сутки стала приближаться к норме. График дал наглядное представление о течении болезни.

В физике роль графиков чрезвычайно велика. Умение строить и читать графики помогает быстрее и глубже понять физические явления.

Рассмотрим простой пример из кинематики. Леша и Таня идут навстречу друг другу (рис. 51). Они движутся равномерно и прямолинейно. Модуль скорости Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами Как представить графически характеристики их движения?

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выберем координатную ось Ох и зададим начальные положения участников движения (см. рис. 51). Пусть при Равномерное прямолинейное движение в физике - формулы и определения с примерами координата Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами

Построим графики зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами проекции перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами пути S и координаты X от времени t.

График проекции скорости

Согласно условию и рисунку 52 для проекций скорости движения Тани и Леши на ось Ох получим: Равномерное прямолинейное движение в физике - формулы и определения с примерами Так как проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами постоянны, то графики их зависимости от времени t — прямые, параллельные оси времени (прямые I и II на рисунке 52).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики показывают: проекция скорости при равномерном прямолинейном движении с течением времени не изменяется.

График проекции перемещения

Проекция перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами совершенного за время t, определяется формулой Равномерное прямолинейное движение в физике - формулы и определения с примерами (см. § 6).

Зависимость проекции перемещения от времени для Леши Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая I (рис. 53).

Для Тани Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами График Равномерное прямолинейное движение в физике - формулы и определения с примерами — наклонная прямая II, изображенная на рисунке 53.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из графиков и формул следует, что при равномерном прямолинейном движении проекция перемещения прямо пропорциональна времени.

График пути

Путь — величина положительная при любом движении тела. При равномерном прямолинейном движении путь равен модулю перемещения: Равномерное прямолинейное движение в физике - формулы и определения с примерами Поэтому при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути совпадает с графиком проекции перемещения (прямая I), а при Равномерное прямолинейное движение в физике - формулы и определения с примерами график пути (прямая III) является «зеркальным отражением» графика II (проекции перемещения) от оси времени.

Графики пути показывают: при равномерном прямолинейном движении пройденный путь прямо пропорционален времени.

График координаты

Его называют также графиком движения.

По формуле Равномерное прямолинейное движение в физике - формулы и определения с примерами, используя данные из условия задачи и рисунок 51, находим зависимости координаты Равномерное прямолинейное движение в физике - формулы и определения с примерами Леши и Равномерное прямолинейное движение в физике - формулы и определения с примерами Тани от времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами Графики этих зависимостей — прямые I и II на рисунке 54. Они параллельны соответствующим графикам проекций перемещения на рисунке 53.

Графики движения показывают: при равномерном прямолинейном движении координата тела линейно зависит от времени.

По точке пересечения графиков I и II (точке А) (рис. 54) легко найти момент и координату места встречи Леши и Тани. Определите их самостоятельно.

Что еще можно определить по графикам?

По графику проекции скорости можно найти проекцию перемещения и пройденный путь

Рассмотрим прямоугольник ABCD на рисунке 52. Его высота численно равна Равномерное прямолинейное движение в физике - формулы и определения с примерами а основание — времени t. Значит, площадь прямоугольника равна Равномерное прямолинейное движение в физике - формулы и определения с примерами Таким образом, проекция перемещения численно равна площади прямоугольника между графиком проекции скорости и осью времени. При Равномерное прямолинейное движение в физике - формулы и определения с примерами проекция перемещения отрицательна, и площадь надо брать со знаком «минус».

Докажите самостоятельно, что площадь между графиком проекции скорости и осью времени численно равна пройденному пути.

По углу наклона графика проекции перемещения можно оценить скорость движения

Рассмотрим треугольник АВС на рисунке 53. Чем больше угол наклона а графика проекции перемещения, тем больше скорость тела. Объясните это самостоятельно.

Главные выводы:

Для равномерного прямолинейного движения:

  1. График проекции скорости — прямая, параллельная оси времени.
  2. Графики проекции перемещения и координаты — прямые, наклон которых к оси времени определяется скоростью движения.
  3. Площадь фигуры между графиком проекции скорости и осью времени определяет проекцию перемещения.

Пример №1

Мотоциклист едет из города по прямолинейному участку шоссе с постоянной скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после проезда перекрестка он встречает едущего в город велосипедиста, движущегося равномерно со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами Определите расстояние между участниками движения через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи, если Равномерное прямолинейное движение в физике - формулы и определения с примерами Запишите кинематические законы движения мотоциклиста и велосипедиста, постройте графики проекции и модуля скорости, проекции перемещения, координаты и пути для обоих участников движения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение

Изобразим координатную ось Ох, вдоль которой идет движение (рис. 55). Начало системы координат О свяжем с перекрестком.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В начальный момент времени мотоциклист находился на перекрестке, а велосипедист в точке В. Значит, кинематический закон движения мотоциклиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Найдем координату Равномерное прямолинейное движение в физике - формулы и определения с примерами велосипедиста в начальный момент времени. Пусть точка С на оси Ох — место встречи участников движения (рис. 56).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Тогда

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематический закон движения велосипедиста имеет вид:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Расстояние между мотоциклистом и велосипедистом через время Равномерное прямолинейное движение в физике - формулы и определения с примерами после их встречи равно сумме путей, которые они проделают за это время. Значит,

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №2

Построим графики проекций и модулей скорости. Для мотоциклиста графики проекции скорости 1 и модуля скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадают (рис. 56). Для велосипедиста график проекции скорости — прямая 2, а модуля скорости — прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами Объясните причину несовпадения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графиками пути s, проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и модуля перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 57) будут прямые, выражающие прямую пропорциональную зависимость от времени t.

Для мотоциклиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики пути, модуля и проекции перемещения мотоциклиста совпадают (прямая 1).

Для велосипедиста:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямая 2 является графиком пути и модуля перемещения велосипедиста.  Прямая Равномерное прямолинейное движение в физике - формулы и определения с примерами — графиком проекции его перемещения.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Графики координат представлены на рисунке 58. Они выражают зависимости Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 1) и Равномерное прямолинейное движение в физике - формулы и определения с примерами (прямая 2). Точка А определяет время встречи и координату места встречи.

Ответ: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Прямолинейное равномерное движение и скорость

Из курса Физики VII класса вам известно, что равномерное прямолинейное движение является самым простым видом механического движения.

Прямолинейное равномерное движение — это движение по прямой линии, при котором материальная точка за равные промежутки времени совершает одинаковые перемещения.

При прямолинейном равномерном движении модуль и направление скорости с течением времени не изменяются:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при прямолинейном равномерном движении является постоянной физической величиной, равной отношению перемещения материальной точки ко времени, за которое это перемещение было совершено: Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как отношение Равномерное прямолинейное движение в физике - формулы и определения с примерами в формуле является положительной скалярной величиной, то направление вектора скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами совпадает с направлением вектора перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами Единица измерения скорости в СИ – метр в секунду:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами  известна, то можно определить перемещение s материальной точки за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами при прямолинейном равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При прямолинейном равномерном движении пройденный телом путь равен модулю перемещения: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как уравнение в векторном виде можно заменить алгебраическими уравнениями в проекциях векторов, то для вычисления перемещения используют не формулу, выраженную через векторы, а формулу, содержащую в себе проекции векторов на координатные оси. При прямолинейном движении положение материальной точки определяется одной координатой X, определяются проекции векторов скорости и перемещения материальной точки на эту ось и уравнение решается в этих проекциях. Поэтому выражение (1.2) можно записать в проекциях перемещения и скорости на ось ОХ:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Можно получить формулу для вычисления координаты точки Равномерное прямолинейное движение в физике - формулы и определения с примерами в произвольный момент времени (см.: тема 1.2):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Выражение (1.5) является уравнением прямолинейного равномерного движения тела. Если материальная точка движется по направлению выбранной координатной оси ОХ, то проекция скорости считается положительной (b), если же движется против направления координатной оси, то проекция скорости считается отрицательной (с).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.5) определяется выражение для проекции скорости: 

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из формулы (1.6) становится ясным физический смысл скорости: проекция скорости на ось равна изменению проекции соответствующей координаты за единицу времени.

Пройденный путь и координата материальной точки при прямолинейном равномерном движении являются линейной функцией от времени (d). Скорость же является постоянной величиной, поэтому график скорость – время будет представлять собой линию, параллельную оси времени — скорость такого движения не зависит от времени (е):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

График координата-время при равномерном движении образует определенный угол с осью времени. Тангенс этого угла равен проекции (модулю) скорости по оси ох (f): Равномерное прямолинейное движение в физике - формулы и определения с примерами

Пример №3

Два велосипедиста одновременно начали движение навстречу друг другу вдоль прямой линии из пунктов А и В, расстояние между которыми 90 км. Скорость первого велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами скорость второго велосипедиста Равномерное прямолинейное движение в физике - формулы и определения с примерами (g)?

Определите: а) координату и время Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов; b) пройденные велосипедистами пути и совершенные ими перемещения к моменту встречи; с) время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда расстояние между ними стало 10 км.

Дано:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Решение:

a) При решении задачи соблюдается следующая последовательность действий: 

I действие. Выбирается система координат ОХ с началом координат в точке А и рисуется схема (h).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

II действие. Уравнение движения записывается в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

III действие. На основании условия задачи уравнения движения велосипедистов записываются в общем виде: Равномерное прямолинейное движение в физике - формулы и определения с примерами

IV действие. Координаты велосипедистов при встрече равны: Равномерное прямолинейное движение в физике - формулы и определения с примерами Это равенство решается для Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

V действие. Для определения координат Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами встречи велосипедистов необходимо решить уравнения их движения для времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то Равномерное прямолинейное движение в физике - формулы и определения с примерами

b) Так как по условию задачи велосипедисты движутся прямолинейно и без изменения направления движения, то пройденный путь равен проекции (модулю) перемещения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

c) Время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее с начала движения до момента, когда между ними осталось 10 км, вычисляется по нижеприведенному равенству:

Равномерное прямолинейное движение в физике - формулы и определения с примерами или Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость при равнопеременном прямолинейном движении

Из формулы (1.14) видно, что если известны ускорение Равномерное прямолинейное движение в физике - формулы и определения с примерами и начальная скорость тела Равномерное прямолинейное движение в физике - формулы и определения с примерами то можно определить его скорость в любой момент времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или ее проекцию на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если начальная скорость равна нулю Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Из этих выражений видно, что скорость при равнопеременном движении является линейной функцией от времени. График зависимости скорости от времени – прямая линия, проходящая через начало координат (или через Равномерное прямолинейное движение в физике - формулы и определения с примерами Эта линия, в соответствии с увеличением или уменьшением скорости, направлена вверх или вниз (с).

Перемещение при равнопеременном прямолинейном движении

Формулу для определения перемещения при равнопеременном движении можно вывести на основе графика скорость-время. Проекция перемещения равна площади фигуры между графиком Равномерное прямолинейное движение в физике - формулы и определения с примерами и осью времени.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

На приведенных графиках — это заштрихованная фигура трапеции (см: с):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

или в векторной форме:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Если в последнюю формулу вместо Равномерное прямолинейное движение в физике - формулы и определения с примерами подставить выражение (1.18), то получим

обобщенную формулу перемещения для равнопеременного движения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Таким образом, формула проекции перемещения (например, на ось Равномерное прямолинейное движение в физике - формулы и определения с примерами при равнопеременном прямолинейном движении будет:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

а формула координаты:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

(1.23) является формулой перемещения при равнопеременном движении в векторной форме, а (1.24) и (1.25) обобщенными формулами координаты и проекции перемещения, соответственно. Если материальная точка начинает движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как видно из формулы, проекция перемещения при прямолинейном равнопеременном движении пропорциональна квадрату времени Равномерное прямолинейное движение в физике - формулы и определения с примерами и его график представляет собой параболу, проходящую через начало координат (d).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

В некоторых случаях возникает необходимость определить перемещение материальной точки, не зная время Равномерное прямолинейное движение в физике - формулы и определения с примерами прошедшее от начала движения. Такую задачу можно решить тогда, когда известны ускорение, начальное и конечное значения скорости. Для получения этой формулы из выражения (1.19) получаем Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Это выражение подставляется в формулу (1.21):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

После простых преобразований получаем:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для проекции конечной скорости получаем: Равномерное прямолинейное движение в физике - формулы и определения с примерами Если движение начинается из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то проекции перемещения и скорости будут равны:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равноускоренное и равнозамедленное движения

Равнопеременное движение по характеру может быть или равноускоренным, или же равнозамедленным.

При равноускоренном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют одинаковые направления. В этом случае знаки у обеих проекций Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами или положительные, или же отрицательные. Если материальная точка начнет движение из состояния покоя Равномерное прямолинейное движение в физике - формулы и определения с примерами то независимо от направления движения, оно во всех случаях будет равноускоренным.

При равнозамедленном движении векторы Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные направления. В этом случае проекции Равномерное прямолинейное движение в физике - формулы и определения с примерами и Равномерное прямолинейное движение в физике - формулы и определения с примерами имеют противоположные знаки, если один из них отрицательный, то другой – положительный.

В таблице 1.3 даны формулы и соответствующие графики равноускоренного и равнозамедленного прямолинейного движения.

Таблица 1.3.

Прямолинейное равноускоренное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами Равномерное прямолинейное движение в физике - формулы и определения с примерами

Примечание: так как Равномерное прямолинейное движение в физике - формулы и определения с примерами то отношение проекций перемещения равно отношению квадратов соответствующих промежутков времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Это соотношение иногда называется “правило путей”.

Прямолинейное равнозамедленное движение
Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Кинематика прямолинейного движения

Физические величины бывают скалярные и векторные. Скалярные физические величины характеризуются только численным значением, тогда как векторные определяются и числом (модулем), и направлением. Скалярными физическими величинами являются время, температура, масса, векторными — скорость, ускорение, сила.
Мир вокруг нас непрерывно изменяется, или движется, т. е. можно сказать, что движение (изменение) есть способ существования материи.

Простейшая форма движения материи — механическое движение — заключается в изменении взаимного расположения тел или их частей в пространстве с течением времени. Наука, изучающая механическое движение, называется механикой (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамиподъемная машина).

Даже самое простое движение тела оказывается достаточно сложным для изучения и исследования. Соответственно, для того чтобы в сложном явлении «увидеть» главное, в физике строится его адекватная упрощенная модель.

В механике широко используется простейшая модель реального тела, называемая материальной точкой (МТ). Под материальной точкой понимают тело, размерами и формой которого можно пренебречь при описании данного движения. Хотя МТ представляет собой абстрактное понятие, упрощающее изучение многих физических явлений, она, подобно реальному телу, «имеет» массу, энергию и т. д.

Кроме материальной точки, в механике используется модель абсолютно твердого тела. Под абсолютно твердым телом понимают модель реального тела, в которой расстояние между его любыми двумя точками остается постоянным. Это означает, что размеры и форма абсолютно твердого тела не изменяются в процессе его движения. В противном случае говорят о модели деформируемого тела.

В классической (ньютоновской) механике рассматривается движение тел со скоростями, намного меньшими скорости света в вакуумеРавномерное прямолинейное движение в физике - формулы и определения с примерами
Классическая механика состоит из трех основных разделов: кинематики, динамики и статики. В кинематике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамидвижение) изучается механическое движение тел без учета их масс и действующих на них сил. В динамике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерамисила) рассматривается влияние взаимодействия между телами на их движение. В статике (от греческого слова Равномерное прямолинейное движение в физике - формулы и определения с примерами — искусство взвешивать) исследуются законы сложения сил и условия равновесия твердых, жидких и газообразных тел.

Всякое движение тела можно представить в виде двух основных видов движения — поступательного и вращательного.

Поступательным называется движение тела, при котором прямая, соединяющая в этом теле любые две точки, при перемещении остается параллельной самой себе (рис. 1).

Вращательным называется движение абсолютно твердого тела вокруг неподвижной прямой, называемой осью вращения, при котором все точки тела движутся по окружностям, центры которых лежат на этой оси (рис. 2).

Основными задачами кинематики являются:

описание совершаемого телом движения с помощью математических формул, графиков или таблиц;

определение кинематических характеристик движения (перемещения, скорости, ускорения).

Движение тела можно описать только относительно какого-либо другого тела. Тело, относительно которого рассматривается исследуемое движение, называют телом отсчета (ТО). Для описания движения используются формулы, графики и таблицы, выражающие зависимость координат, скоростей и ускорений от времени.

Основным свойством механического движения является его относительность: характер движения тела зависит от выбора системы отсчета (СО).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Систему отсчета, выбираемую для описания того или иного движения, образуют: тело отсчета, связанные с ним система координат (СК) и прибор для измерения времени (часы) (рис. 3).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Система координат и часы необходимы для того, чтобы знать, как с течением времени изменяется положение тела относительно выбранного тела отсчета.

Для описания движения материальной точки в пространстве вводятся такие понятия, как траектория, перемещение, путь.

Линию, которую описывает материальная точка в процессе движения по отношению к выбранной СО, называют траекторией (от латинского слова trajectorus относящийся к перемещению). Если траектория является прямой линией, то движение называется прямолинейным, в противном случае — криволинейным.

Длина участка траектории, пройденного МТ в процессе движения, называется путем (s).

Термин «скаляр», происходящий от латинского слова scalarus — ступенчатый, введен У. Гамильтоном в 1843 г.

Термин «вектор» произошел от латинского слова vector — несущий и введен У. Гамильтоном в 1845 г.
Перемещением называют вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами направленный из точки, заданной радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находилась в начальный момент времени, в точку, заданную радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами где МТ находится в рассматриваемый момент времени (рис. 4):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для количественного описания механического движения тел (МТ) вводятся физические величины, характеризующие пространство и время: длина l, время t.

Длина l определяется как расстояние между двумя точками в пространстве. Основной единицей длины в Международной системе единиц (СИ) является метр (1м).

Время t между двумя событиями в данной точке пространства определяется как разность показаний прибора для измерения времени, например часов. В основе работы прибора для измерения времени лежит строго периодический физический процесс. В СИ за основную единицу времени принята секунда (1с).
В зависимости от вида движения могут выбираться следующие системы координат: одномерная (на прямой линии) (рис. 5), двухмерная (на плоскости) (рис. 6), трехмерная (в пространстве) (рис. 7).

Равномерное прямолинейное движение в физике - формулы и определения с примерамиРавномерное прямолинейное движение в физике - формулы и определения с примерами

Произвольное движение материальной точки может быть задано одним из трех способов: векторным, координатным, траекторным (естественным).

При векторном способе описания положение движущейся МТ по отношению к выбранной системе отсчета определяется ее радиус-вектором Равномерное прямолинейное движение в физике - формулы и определения с примерами

Радиус-вектор Равномерное прямолинейное движение в физике - формулы и определения с примерами всегда проводится из начала координат О в текущее положение материальной точки (рис. 8). При движении положение МТ изменяется. Закон движения в этом случае задается векторным уравнением Равномерное прямолинейное движение в физике - формулы и определения с примерами
Равномерное прямолинейное движение в физике - формулы и определения с примерами
При координатном способе описания положение точки относительно СО определяется координатами х, у, z, а закон движения — уравнениями х = х(t), у = y(t), z = z(t) (см. рис. 8). Исключив из этих уравнений время /, можно найти уравнение траектории движения точки.

Траекторный (естественный) способ описания движения применяется, когда известна траектория движения материальной точки по отношению к выбранной СО (рис. 9).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Текущее положение материальной точки в данном случае определяется расстоянием s, измеренным вдоль траектории от выбранного на ней начала отсчета (точка О на рисунке 9). Кинематический закон движения МТ при этом задается уравнением s = s(t).

Если положить в основу классификации движений характер изменения скорости, то получим равномерные и неравномерные движения, а если вид траектории, то — прямолинейные и криволинейные.

Для того чтобы описать быстроту изменения положения тела (МТ) и направление движения относительно данной СО, используют векторную физическую величину, называемую скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами

Чтобы охарактеризовать неравномерное движение тела (МТ), вводят понятие средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами движения как отношение перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами тела к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за который это перемещение произошло (рис. 10):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное прямолинейное движение в физике - формулы и определения с примерами
 

Средней путевой скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами называется отношение длины отрезка пути As (см. рис. 9) к промежутку времени Равномерное прямолинейное движение в физике - формулы и определения с примерами его прохождения:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Средняя путевая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами в отличие от средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами является скалярной величиной.

Однако средняя скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами характеризует движение тела (МТ) на определенном участке траектории, но не дает информации о его движении в определенной точке траектории или в определенный момент времени. Кроме того, средняя скорость дает лишь приближенное понятие о характере движения, так как движение в течение каждого малого промежутка времени заменяется равномерным движением. В рамках этой модели скорость тела (МТ) меняется скачком при переходе от одного промежутка времени к другому.

Для того чтобы отразить характер движения в данной точке траектории или в данный момент времени, вводится понятие мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами — это скорость тела (МТ), равная производной перемещения по времени:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Вектор мгновенной скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами в любой точке траектории направлен по касательной к ней (см. рис. 10).

В СИ основной единицей скорости является метр в секунду Равномерное прямолинейное движение в физике - формулы и определения с примерами

Простейший вид движения — равномерное. Равномерным называется движение МТ, при котором она за любые равные промежутки времени совершает одинаковые перемещения.

При прямолинейном движении в одном направлении модуль перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами равен пройденному пути s. Скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами равномерного движения равна отношению перемещения тела Равномерное прямолинейное движение в физике - формулы и определения с примерами ко времени Равномерное прямолинейное движение в физике - формулы и определения с примерами за которое это перемещение произошло:  

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При равномерном движении скорость постоянна Равномерное прямолинейное движение в физике - формулы и определения с примерами и равна средней скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами определяемой выражением (2).

Зависимость перемещения от времени имеет вид Равномерное прямолинейное движение в физике - формулы и определения с примерами Вследствие того, что Равномерное прямолинейное движение в физике - формулы и определения с примерами  — радиус-вектор, задающий положение МТ в начальный

момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами получаем кинематическое уравнение движения в векторном виде

Равномерное прямолинейное движение в физике - формулы и определения с примерами

При проецировании радиус-вектора, например, на ось Ох получаем кинематическое уравнение для координаты при равномерном движении:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Здесь Равномерное прямолинейное движение в физике - формулы и определения с примерами — координата тела (МТ) в начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами Если начальный момент времени Равномерное прямолинейное движение в физике - формулы и определения с примерами уравнение принимает вид

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Для наглядности описания механического движения удобно представлять зависимости между различными кинематическими величинами графически.

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Скорость МТ при равномерном движении постоянна, поэтому график зависимости проекции скорости Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени представляет собой отрезок прямой линии, параллельной оси времени Ot (рис. 11). Отрезок прямой l на рисунке 11 соответствует движению материальной точки в положительном направлении оси Равномерное прямолинейное движение в физике - формулы и определения с примерами а 2 — в отрицательном Равномерное прямолинейное движение в физике - формулы и определения с примерами Площади Равномерное прямолинейное движение в физике - формулы и определения с примерами закрашенных прямоугольников численно равны модулям перемещений МТ с проекциями скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами за промежуток времени Равномерное прямолинейное движение в физике - формулы и определения с примерами

График зависимости координаты материальной точки, движущейся равномерно прямолинейно, от времени x(t) — линейная функция (рис. 12).
На рисунке отрезок / прямой соответствует равномерному движению в положительном направлении оси Ох; отрезок 2 прямой — покою материальной точки; отрезок 3 прямой — равномерному движению в отрицательном направлении оси Ох.

Проекция скорости движения численно равна угловому коэффициенту этой прямой линии:  Равномерное прямолинейное движение в физике - формулы и определения с примерами

т. е. тангенсу угла наклона (tga) этой прямой к оси времени.

График зависимости пути (модуля перемещения|Равномерное прямолинейное движение в физике - формулы и определения с примерами от времени s(t) при равномерном движении представляет собой прямую линию, проходящую через начало координат (рис. 13).

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Угловой коэффициент (tga) этой прямой численно равен модулю скорости движения v. Поэтому на рисунке большей скорости у, соответствует больший угловой коэффициент (tgРавномерное прямолинейное движение в физике - формулы и определения с примерами).

Равномерное прямолинейное движение в физике - формулы и определения с примерами
Для тел (МТ), участвующих в нескольких движениях одновременно, справедлив принцип независимости движений:

если тело (МТ) участвует в нескольких движениях одновременно, то его результирующее перемещение равно векторной сумме перемещений за то же время в отдельных движениях:

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Как следует из принципа независимости движений, конечное перемещение тела не зависит от порядка (последовательности) суммирования перемещений при отдельных движениях.

Пусть, например, при переправе через реку, скорость течения которой Равномерное прямолинейное движение в физике - формулы и определения с примерами мы движемся на лодке со скоростью Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды. В этом случае результирующее перемещение Равномерное прямолинейное движение в физике - формулы и определения с примерами (рис. 14) лодки относительно берега будет складываться из собственного перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами относительно воды и перемещения Равномерное прямолинейное движение в физике - формулы и определения с примерами вместе с водой вследствие течения реки: Равномерное прямолинейное движение в физике - формулы и определения с примерами

  • Заказать решение задач по физике

На основе принципа независимости движений формулируется классический закон сложения скоростей:

результирующая скорость Равномерное прямолинейное движение в физике - формулы и определения с примерами тела (МТ), участвующего в нескольких движениях одновременно, равна векторной сумме скоростей Равномерное прямолинейное движение в физике - формулы и определения с примерами отдельных движений (рис. 15):

Равномерное прямолинейное движение в физике - формулы и определения с примерами

Этот закон справедлив только при условии, что скорость каждого отдельного движения мала по сравнению со скоростью света Равномерное прямолинейное движение в физике - формулы и определения с примерами

Так, для рассмотренного примера (см. рис. 14) результирующая скорость лодки Равномерное прямолинейное движение в физике - формулы и определения с примерами

Равномерное движение по прямой линии в повседневной жизни встречается сравнительно редко. Например, различные транспортные средства (автомобиль, автобус, троллейбус и т. д.) равномерно и прямолинейно движутся лишь на небольших участках своего пути, в то время как на остальных участках их скорость изменяется как по величине, так и по направлению.

Для измерения мгновенной скорости движения на транспортных средствах устанавливается прибор — спидометр.

  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Сложение скоростей
  • Ускорение в физике
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
  • Проекция вектора на ось
  • Путь и перемещение

Траектория (от позднелатинского trajectories – относящийся к перемещению) – это линия, по которой движется тело (материальная точка). Траектория движения может быть прямой (тело перемещается в одном направлении) и криволинейной, то есть механическое движение может быть прямолинейным и криволинейным.

Траектория прямолинейного движения в данной системе координат – это прямая линия. Например, можно считать, что траектория движения автомобиля по ровной дороге без поворотов является прямолинейной.

Криволинейное движение – это движение тел по окружности, эллипсу, параболе или гиперболе. Пример криволинейного движения – движение точки на колесе движущегося автомобиля или движение автомобиля в повороте.

Движение может быть сложным. Например, траектория движения тела в начале пути может быть прямолинейной, затем криволинейной. Например, автомобиль в начале пути движется по прямой дороге, а затем дорога начинает «петлять» и автомобиль начинает криволинейное движение.

Путь

Путь – это длина траектории. Путь является скалярной величиной и в международной системе единиц СИ измеряется в метрах (м). Расчёт пути выполняется во многих задачах по физике. Некоторые примеры будут рассмотрены далее в этом учебнике.

Вектор перемещения

Вектор перемещения (или просто перемещение) – это направленный отрезок прямой, соединяющий начальное положение тела с его последующим положением (рис. 1.1). Перемещение – величина векторная. Вектор перемещения направлен от начальной точки движения к конечной.

Модуль вектора перемещения (то есть длина отрезка, который соединяет начальную и конечную точки движения) может быть равен пройденному пути или быть меньше пройденного пути. Но никогда модуль вектора перемещения не может быть больше пройденного пути.

Модуль вектора перемещения равен пройденному пути, когда путь совпадает с траекторией (см. разделы Траектория и Путь), например, если из точки А в точку Б автомобиль перемещается по прямой дороге. Модуль вектора перемещения меньше пройденного пути, когда материальная точка движется по криволинейной траектории (рис. 1.1).

Рис. 1.1. Вектор перемещения и пройденный путь.

На рис. 1.1:

Ещё пример. Если автомобиль проедет по кругу один раз, то получится, что точка начала движения совпадёт с точкой конца движения и тогда вектор перемещения будет равен нулю, а пройденный путь будет равен длине окружности. Таким образом, путь и перемещение – это два разных понятия.

Правило сложения векторов

Векторы перемещений складываются геометрически по правилу сложения векторов (правило треугольника или правило параллелограмма, см. рис. 1.2).

Рис. 1.2. Сложение векторов перемещений.

На рис 1.2 показаны правила сложения векторов S1 и S2:

а) Сложение по правилу треугольника
б) Сложение по правилу параллелограмма

Проекции вектора перемещения

При решении задач по физике часто используют проекции вектора перемещения на координатные оси. Проекции вектора перемещения на координатные оси могут быть выражены через разности координат его конца и начала. Например, если материальная точка переместилась из точки А в точку В, то при этом вектор перемещения  (см.рис. 1.3).

Выберем ось ОХ так, чтобы вектор лежал с этой осью в одной плоскости. Опустим перпендикуляры из точек А и В (из начальной и конечной точек вектора перемещения) до пересечения с осью ОХ. Таким образом мы получим проекции точек А и В на ось Х. Обозначим проекции точек А и В соответственно Аx и Вx. Длина отрезка АxВx на оси ОХ – это и есть проекция вектора перемещения на ось ОХ, то есть

Sx = AxBx

ВАЖНО!
Напоминаю для тех, кто не очень хорошо знает математику: не путайте вектор с проекцией вектора на какую-либо ось (например, Sx). Вектор всегда обозначается буквой или несколькими буквами, над которыми находится стрелка. В некоторых электронных документах стрелку не ставят, так как это может вызвать затруднения при создании электронного документа. В таких случаях ориентируйтесь на содержание статьи, где рядом с буквой может быть написано слово «вектор» или каким-либо другим способом вам указывают на то, что это именно вектор, а не просто отрезок.

Рис. 1.3. Проекция вектора перемещения.

Проекция вектора перемещения на ось ОХ равна разности координат конца и начала вектора, то есть

Sx = x – x0

Аналогично определяются и записываются проекции вектора перемещения на оси OY и OZ:

Sy = y – y0
Sz = z – z0

Здесь x0, y0, z0 — начальные координаты, или координаты начального положения тела (материальной точки); x, y, z — конечные координаты, или координаты последующего положения тела (материальной точки).

Проекция вектора перемещения считается положительной, если направление вектора и направление координатной оси совпадают (как на рис 1.3). Если направление вектора и направление координатной оси не совпадают (противоположны), то проекция вектора отрицательна (рис. 1.4).

Если вектор перемещения параллелен оси, то модуль его проекции равен модулю самого Вектора. Если вектор перемещения перпендикулярен оси, то модуль его проекции равен нулю (рис. 1.4).

Рис. 1.4. Модули проекции вектора перемещения.

Разность между последующим и начальным значениями какой-нибудь величины называется изменением этой величины. То есть проекция вектора перемещения на координатную ось равна изменению соответствующей координаты. Например, для случая, когда тело перемещается перпендикулярно оси Х (рис. 1.4) получается, что относительно оси Х тело НЕ ПЕРЕМЕЩАЕТСЯ. То есть перемещение тела по оси Х равно нулю.

Рассмотрим пример движения тела на плоскости. Начальное положение тела – точка А с координатами х0 и у0, то есть А(х0, у0). Конечное положение тела – точка В с координатами х и у, то есть В(х, у). Найдём модуль перемещения тела.

Из точек А и В опустим перпендикуляры на оси координат ОХ и OY (рис. 1.5).

Рис. 1.5. Движение тела на плоскости.

Определим проекции вектора перемещения на осях ОХ и OY:

Sx = x – x0
Sy = y – y0

На рис. 1.5 видно, что треугольник АВС – прямоугольный. Из этого следует, что при решении задачи может использоваться теорема Пифагора, с помощью которой можно найти модуль вектора перемещения, так как

АС = sx
CB = sy

По теореме Пифагора

S2 = Sx2 + Sy2

Откуда можно найти модуль вектора перемещения, то есть длину пути тела из точки А в точку В:

Ну и напоследок предлагаю вам закрепить полученные знания и рассчитать несколько примеров на ваше усмотрение. Для этого введите какие-либо цифры в поля координат и нажмите кнопку РАССЧИТАТЬ. Ваш браузер должен поддерживать выполнение сценариев (скриптов) JavaScript и выполнение сценариев должно быть разрешено в настройках вашего браузера, иначе расчет не будет выполнен. В вещественных числах целая и дробная части должны разделяться точкой, например, 10.5.

  1. Прямолинейное равномерное движение на координатной прямой
  2. Уравнение прямолинейного равномерного движения
  3. Удобная система отсчета для решения задачи о прямолинейном движении
  4. График движения x=x(t)
  5. Как найти уравнение движения по графику движения?
  6. График скорости vx=vx(t)
  7. Как найти путь и перемещение по графику скорости?
  8. Задачи

п.1. Прямолинейное равномерное движение на координатной прямой

Система отсчета, с помощью которой можно описать прямолинейное движение состоит из:
1) тела отсчета; 2) координатной прямой; 3) часов для отсчета времени.
Пусть телом отсчета будет дом.
В начальный момент времени машина стоит в 20 м справа от дома.

Рассмотрим движение машины со скоростью 10 м/с вправо.
Направим координатную прямую параллельно вектору скорости, вправо.

Прямолинейное равномерное движение на координатной прямой

Составим таблицу перемещений за первые 4 секунды:

t, c 0 1 2 3 4
x, м 20 30 40 50 60

Стартуя с точки x0=20, машина каждую секунду удаляется от дома еще на 10 м.
Пройденный путь за 2 секунды – 10·2=20 м, за 3 секунды – 10·3=30 м, за t секунд s=vt метров. Значит, для произвольного времени t можем записать координату x в виде: begin{gather*} x=x_0+s=x_0+vt\ x=20+10t end{gather*}

Прямолинейное равномерное движение на координатной прямой

Если при тех же начальных условиях и направлении координатной прямой машина будет двигаться влево, получим таблицу:

t, c 0 1 2 3 4
x, м 20 10 0 -10 -20

В этом случае координата x в любой момент времени t имеет вид: begin{gather*} x=x_0-st=x_0-vt\ x=20-10t end{gather*} Если же машина никуда не едет, её скорость v=0, и координата x=x0 в любой момент времени t.

п.2. Уравнение прямолинейного равномерного движения

Основная задача механики – уметь определять положение тела в пространстве в любой момент времени.

Зависимость координаты тела от времени в механике называют уравнением движения.
Если уравнение движения известно, то мы можем решить основную задачу механики.

Назовем проекцией вектора скорости (overrightarrow{x}) на параллельную ему ось координат OX величину (v_x=pm|overrightarrow{v}|=pm v).
Знак проекции определяется следующим правилом:

  • если направление вектора (overrightarrow{v}) совпадает с направлением оси OX, то (v_x=vgt 0)
  • если направление вектора (overrightarrow{v}) противоположно направлению оси OX, то (v_x=-vlt 0)

В любой момент времени t координата тела x(t) при прямолинейном равномерном движении описывается уравнением: $$ x(t)=x_0+v_x t $$ где (x_0) – координата в начальный момент времени, (v_x) – проекция вектора скорости движения.

Проекция перемещения (overrightarrow{r}) на параллельную ему ось координат OX в любой момент времени t определяется формулой: $$ triangle x=x(t)-x_0 $$ Знак (triangle x) указывает на направление совершенного перемещения:

  • если (triangle xgt 0), перемещение (overrightarrow{r}) произошло в направлении оси OX;
  • если (triangle xlt 0), перемещение (overrightarrow{r}) произошло противоположно направлению оси OX.

п.3. Удобная система отсчета для решения задачи о прямолинейном движении

При решении задачи можно выбрать различные тела отсчета и связать с ними различные системы координат. Как правило, некоторая система отсчета является наиболее удобной для решения данной задачи в том смысле, что в ней уравнение движения выглядит и решается проще, чем в других системах.

При решении задач на прямолинейное движение телом отсчета может быть неподвижная поверхность (земля, пол, стол и т.п.), само движущееся тело или другое тело.
При этом системой координат является координатная прямая, параллельная направлению движения (вектору перемещения) тела, уравнение движения которого мы хотим получить.

Прямолинейное движение описывается с помощью координатной прямой, параллельной направлению движения тела.

Проекции скорости и перемещения на координатную прямую могут быть положительными, равными нулю или отрицательными. Величины скорости и перемещения будут равны длинам соответствующих проекций.

п.4. График движения x=x(t)

Сравним полученное уравнение движения (x(t)=x_0+v_x t) с уравнением прямой (y(x)=kx+b) (см. §38 справочника по алгебре для 7 класса).

В уравнении движения роль углового коэффициента (k) играет проекция скорости (v_x), а роль свободного члена (b) – начальная координата (x_0).

В осях (t) и (x) график (x(t)=x_0+v_x t) является прямой.
Эта прямая:

  • возрастает, если (v_xgt 0)
  • убывает, если (v_xlt 0)
  • постоянна (параллельна оси (t)), если (v_x= 0)
График движения x=x(t) Построим графики зависимости координаты от времени для нашего примера:

x=20+10t – машина движется вправо (в направлении оси OX)
x=20-10t – машина движется влево (в направлении, противоположном оси OX)
x=20 – машина стоит

п.5. Как найти уравнение движения по графику движения?

Как найти уравнение движения по графику движения

Шаг 1. Выбрать на прямой любые две точки (A(t_1,x_1)) и (B(t_2,x_2)).
Шаг 2. Найти проекцию скорости как отношение: $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{triangle x}{triangle t} $$ Шаг 3. Найти начальную координату по одной из формул: $$ x_0=x_1-v_x t_1 text{или} x_0=x_2-v_x t_2 $$ Шаг 4. Записать найденное уравнение движения: $$ x(t)=x_0+v_x t $$

п.6. График скорости vx=vx(t)

В осях (t) и (x) график (v_x(t)=v_x=const) является прямой, параллельной оси (t).
Эта прямая:

  • расположена над осью (t), если (v_xgt 0)
  • расположена под осью (t), если (v_xlt 0)
  • совпадает с осью (t), если (v_x=0)

Для рассмотренного примера:
График скорости v_x=v_x(t)

Внимание!
В отличие от алгебры, в физике масштабы на осях, как правило, разные.
Поэтому обязательно нужно:
1) указывать обозначения и единицы измерения физических величин, которым соответствуют оси графика;
2) подбирать масштабы так, чтобы с графиком было удобно работать.

п.7. Как найти путь и перемещение по графику скорости?

Пусть тело движется прямолинейно равномерно, зависимость его координаты от времени описывается уравнением: $$ x(t)=x_0+v_x t $$ Тогда в некоторый момент времени (t_1) координата равна (x_1=x_0+v_x t_1).
Несколько позже, в момент времени (t_2gt t_1) координата равна (x_2=x_0+v_x t_2).
Если (v_xgt 0), то пройденный за промежуток времени (triangle t=t_2-t_1) путь равен разности координат: $$ s=x_2-x_1=(x_0+v_x t_2)-(x_0+v_x t_1)=x_0-x_0+v_x (t_2-t_1)=v_x triangle t $$ В общем случае, т.к. (v_x) может быть и отрицательным, а путь всегда положительный, в формуле нужно поставить модуль: $$ s=|v_x|triangle t $$
Изобразим полученное соотношение на графике скорости: Как найти путь и перемещение по графику скорости

На графике скорости путь, пройденный за промежуток времени (triangle t=t_2-t_1) равен площади прямоугольника, длина которого равна (triangle t), а ширина (triangle |v_x|): $$ s=|v_x|triangle t $$

Проекция скорости (v_x) может быть не только положительной, но и отрицательной.
Если учитывать знак, то произведение: $$ triangle x=v_x triangle t $$ дает проекцию перемещения на ось OX. Знак этого произведения указывает на направление перемещения.

На графике скорости проекция перемещения на ось OX за промежуток времени (triangle t=t_2-t_1) равна площади (v_xtriangle t), с учетом знака: $$ triangle x=v_xtriangle t $$

Проекция перемещения может быть как положительной, так и отрицательной или равной 0.

п.8. Задачи

Задача 1. Спортсмен бежит по прямолинейному участку дистанции с постоянной скоростью 8 м/с. Примите (x_0=0) и запишите уравнение движения.
а) Постройте график движения (x=x(t)) и найдите с его помощью, сколько пробежит спортсмен за (t_1=5 с), за (t_2=10 с);
б) постройте график скорости (v=v(t)) и найдите с его помощью, какой путь преодолеет спортсмен за промежуток времени (triangle t=t_2-t_1)?

По условию (x_0=0, v_x=8).
Уравнение движения: (x=x_0+v_x t=0+8t=8t)
а) Строим график прямой (x=8t) по двум точкам:

Задача 1
По графику находим: begin{gather*} x_1=x(5)=8cdot 5=40 text{(м)}\ x_2=x(10)=8cdot 10=80 text{(м)} end{gather*}
б) Скорость (v_x=8) м/с – постоянная величина, её график:
Задача 1
$$ t_1=5 с, t_2=10 с $$ Пройденный путь за промежуток времени (triangle t=t_2-t_1) равен площади заштрихованного прямоугольника: $$ s=v_x triangle t=8cdot (10-5)=40 text{(м)} $$ Ответ: а) 40 м и 80 м; б) 40 м

Задача 2. Космический корабль движется прямолинейно с постоянной скоростью.
Известно, что через 1 час после старта корабль находился на расстоянии 38 тыс.км от астероида Веста, а через 2 часа после старта – на расстоянии 56 тыс.км.
а) постройте график движения корабля, найдите по графику уравнение движения.
б) на каком расстоянии от астероида находился корабль в начальный момент времени?
в) на каком расстоянии от астероида будет находиться корабль через 4 часа после старта?
г) чему равна скорость корабля в километрах в секунду?

а) Будем откладывать время в часах, а расстояние в тыс.км
Отмечаем точки A(1;38) и B(2;56), проводим через них прямую.
Полученная прямая и есть график движения (x=x(t)).
Задача 2
Найдем скорость корабля (v_x): $$ v_x=frac{x_2-x_1}{t_2-t_1}=frac{56-38}{2-1}=18 (text{тыс.км/ч}) $$ Найдем начальную координату (x_0): $$ x_0=x_1-v_x t_1=38-18cdot v_1=20 (text{тыс.км/ч}) $$ Получаем уравнение движения: $$ x(t)=x_0+v_x t, x(t)=20+18t $$ где (x) – в тыс.км, а (t) – в часах.

б) В начальный момент времени корабль находился на расстоянии (x_0=20) тыс.км от астероида.

в) Через 4 часа после старта корабль будет находиться на расстоянии $$ x(4)=20+18cdot 4=92 (text{тыс.км}) $$
г) Переведем скорость в км/с: $$ 18000frac{text{км}}{text{ч}}=frac{18000 text{км}}{1 text{ч}}=frac{18000 text{км}}{3600 text{c}}=5 text{км/c} $$ Ответ:
а) (x(t)=20+18t) ((x) в тыс.км, (t) в часах); б) 20 тыс.км; в) 92 тыс.км; г) 5 км/с

Добавить комментарий