Как найти проекцию разности векторов

Векторы — основные понятия и формулы

На прошлом занятии мы разобрались с основными определениями кинематики.

И ты наверняка обратил внимание, что некоторые величины имеют только значение (число) – например, путь ((L)).

А некоторые имеют и число, и направление — например, перемещение ((vec{S})).

И сейчас ты узнаешь, почему это настолько важно.

Векторы — коротко о главном

  • Существуют скалярные величины: они имеют значение, но не имеют направления;
  • Существуют векторные величины. Они имеют как значение, так и направление;
  • Значение вектора есть его длина;
  • Для большинства операций над векторами необходим пареллельный перенос;
  • Вектор можно умножать на скаляр;
  • Нулевой вектор – вектор, начало которого совпадает с концом;
  • Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых;
  • Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу;
  • Векторы можно складывать и вычитать разными методами;
  • Правило параллелограмма действует как для сложения, так и для вычитания векторов;
  • Векторы можно умножать друг на друга двумя различными способами: скалярным и векторным;
  • Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось;
  • Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна;
  • Вектор сам по себе не может быть отрицательным;
  • Длина вектора так же не может быть отрицательной;
  • Проекция вектора бывает отрицательной;
  • Над проекциями тоже можно совершать действия, и это удобнее, чем работать с векторами;
  • Проекция суммы векторов равна сумме проекций векторов;
  • Проекция разности векторов равна разности проекций векторов;
  • С проекцией вектора можно работать как с числом;

Решать задачи с векторами — легко!

Векторы и… Колумб

В 1492 году Колумб приказал кораблям изменить курс на запад-юго-запад, полагая, что он и его команда уже прошли мимо Японии, не заметив ее островов.

Вскоре его экспедиция наткнулась на множество архипелагов, которые ошибочно принимали за земли Восточной Азии. И теперь, спустя века, американцы в октябре отмечают высадку Колумба в Новом Свете.

Кто знает, как повернулась бы история, если бы его корабли не поменяли свое направление?

О направлении

Направление – одна из важнейших характеристик движения.

Подумай, какие из этих величин являются просто числами, а какие тоже являются числами, но имеют еще и направление.

  • сила;
  • время;
  • скорость;
  • длина;
  • перемещение;
  • масса;
  • температура;

Наверное, ты без труда заметил, что направление имеют сила, скорость, перемещение, а время, длина, масса и температура – это просто числа.

Так вот, «просто числа» — это скалярные величины (их также называют скалярами).

А «числа с направлением» — это векторные величины (их иногда называют векторы).

В физике существует множество скалярных и векторных величин.

Что такое скалярная величина?

Скалярная величина, в отличие от вектора, не имеет направления и определяется лишь значением (числом)

Это, например, время, длина, масса, температура (продолжи сам!)

Что такое векторная величина?

Векторная величина – это величина, которая определяется и значением, и направлением.

В случае с векторами нам важно, куда мы, например, тянем груз или в какую сторону движемся.

Например, как на этом рисунке изображен вектор силы (нам важно не только с какой силой, но и куда мы тянем груз):

Как обозначаются векторы?

Векторы принято обозначать специальным символом – стрелочкой над названием. Вот, например, вектор перемещения: (vec{S})

Значение вектора – это модуль вектора, то есть его длина.

Обозначить это можно двумя способами: (left| {vec{S}} right|) или (S)

Операции над векторами

Для решения задач необходимо уметь работать с векторами: складывать, вычитать, умножать их.

Давай научимся это делать. Мы пойдем от простого к сложному, но это вовсе не значит, что будет трудно!

Умножение вектора на число

Если вектор умножить на какое-либо число (скаляр), мы просто «растягиваем» вектор, сохраняя его направление. Получившийся вектор сонаправлен начальному, то есть они имеют одинаковое направление.

Это обозначается так: (vec{a}uparrow uparrow vec{b})

(Если направление противоположно, обозначаем так: (vec{a}uparrow downarrow vec{b}))

Рассмотрим на примере, используя клетку для точности построений:

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

(vec{c}=0cdot vec{a}Rightarrow vec{c}=vec{0})

Рассмотрим некоторые свойства нулевого вектора.

Если он нулевой, то его длина равна нулю! Логично, не правда ли?

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор – вектор, начало которого совпадает с концом.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

(vec{a}+(-vec{a})=vec{0})

А если к любому вектору прибавит нулевой, ничего не изменится:

(vec{a}+vec{0}=vec{a})

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Коллинеарные векторы – векторы, лежащие на одной прямой или на параллельных прямых.

Две прямые параллельны: (qparallel p)

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

(vec{a}uparrow downarrow vec{c})

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

(vec{a}uparrow uparrow vec{b})

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

(vec{b}uparrow downarrow vec{c})

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство –  параллельный перенос.

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Наша цель – найти такой вектор, который будет являться суммой двух данных:

(vec{c}=vec{a}+vec{b})

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

(vec{e}=vec{a}+vec{b}+vec{c}+vec{d})

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

(vec{c}=vec{a}-vec{b}=vec{a}+(-vec{b}))

Тогда нам лишь остается найти сумму с обратным вектором:

А сделать это очень легко по правилу треугольника:

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

(vec{c}=vec{a}-vec{b})

(vec{c}=vec{b}-vec{a})

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Вот так:

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

(vec{c}=vec{a}+vec{b})

(vec{d}=vec{a}-vec{b})

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

(vec{a}times vec{b}=left| {vec{a}} right|cdot left| {vec{b}} right|cdot sin varphi )

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора –  словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, –  большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

({{a}_{x}}=x-{{x}_{0}})

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

Проекция обозначается так:
({{a}_{x}}), где a – название вектора, х – название оси, на которую проецируется вектор.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

(x>{{x}_{0}}Rightarrow {{a}_{x}}>0)

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

(x<{{x}_{0}}Rightarrow {{b}_{x}}<0)

Пример на конкретных числах:

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

(x={{x}_{0}}Rightarrow {{c}_{x}}=0)

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

(alpha <{{90}^{o}}Rightarrow {{a}_{x}}>0)

Если угол тупой, проекция отрицательна:

(beta >{{90}^{o}}Rightarrow {{b}_{x}}<0)

Если угол прямой, она равна нулю:

(gamma ={{90}^{o}}Rightarrow {{c}_{x}}>0)

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180О). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

(alpha ={{0}^{o}}Rightarrow {{a}_{x}}=a)

Если вектор направлен в другую сторону, проекция отрицательна:

(alpha ={{180}^{o}}Rightarrow {{a}_{x}}=-a)

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

(vec{a}) направлен в ту же сторону, что и ось. Его проекция положительна.

(vec{b}) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

(vec{a}’=-vec{a}) — векторы обратны друг другу;

(left| {vec{a}} right|=left| vec{a}’ right|) — равенство длин векторов;

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

(alpha =alpha ‘)

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

({{a}_{x}}=-a_{x}^{‘})

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Тогда обозначим прямой угол и угол между вектором и осью:

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

(sin alpha =frac{{{a}_{y}}}{a})

(cos alpha =frac{{{a}_{x}}}{a})

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

({{a}^{2}}=a_{x}^{2}+a_{y}^{2})

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Давай попробуем.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Заметим, что некоторые точки совпадают. Начало (vec{a}) совпадает с началом (vec{c}). Как мы заметили ранее, конец (vec{a}) совпадает с началом (vec{b}). А конец (vec{b}) совпадает с концом (vec{c}).

Затем запишем, чему равна сумма этих векторов.

Видим, что конец (vec{a}) и начало (vec{b}) одинаковы. Поэтому избавимся от повторов:

У нас остались лишь начало (vec{a}) и конец (vec{b}). А это в свою очередь начало и конец (vec{c})!

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Таким образом,

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

(vec{c}=vec{a}pm vec{b}Rightarrow {{c}_{x}}={{a}_{x}}pm {{b}_{x}})

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

Убедимся в этом.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Рассмотрим (vec{c}). Заметим, что он является обратным для (vec{b}): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Поступаем с (vec{d}) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

С (vec{e}) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Обозначим угол (alpha ), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол (beta ). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла (beta ) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла (beta ) из 180 градусов найдем угол (alpha ):

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Подготовка к ЕГЭ на 90+ в мини-группах

Алексей Шевчук — ведущий мини-групп

математика, информатика, физика

+7 (905) 541-39-06 — WhatsApp/Телеграм для записи

alexei.shevchuk@youclever.org — email для записи

  • тысячи учеников, поступивших в лучшие ВУЗы страны
  • автор понятного всем учебника по математике ЮКлэва (с сотнями благодарных отзывов);
  • закончил МФТИ, преподавал на малом физтехе;
  • репетиторский стаж — c 2003 года;
  • в 2021 году сдал ЕГЭ (математика 100 баллов, физика 100 баллов, информатика 98 баллов — как обычно дурацкая ошибка:);
  • отзыв на Профи.ру: «Рейтинг: 4,87 из 5. Очень хвалят. Такую отметку получают опытные специалисты с лучшими отзывами».

ВИДЕО УРОК

Сложение векторов.



ЗАДАЧА:



Пешеходу, стоящему на
перекрёстке двух улиц, надо перейти с угла, обозначенного 
М1, на угол  М2.

Он мог бы направиться
непосредственно к этому углу по прямой 
М1М2.
Тогда мы сказали бы, что перемещение пешехода равно


Но на улицах с оживлённым
движением такой переход запрещён. Поэтому дисциплинированный пешеход перейдёт
сначала из точки 
М1  в точку  А,
а затем из точки 
А  в точку 
М2.
Конечный результат будет таким же, как если бы он прошёл по прямой 
М1М2.
Перемещение


достигнуто в результате двух
перемещений
:


Эти перемещения заменили одно.
Естественно считать, что перемещени


е
есть сумма двух перемещений


Приведённый пример показывает, что векторы складываются геометрически.

Чтобы сложить два вектора, нужно их расположить так,
чтобы конец первого вектора примыкал к началу второго. 



Вектор, соединяющий начало
первого вектора с концом второго, есть сумма обоих векторов.



Правило параллелограмма.

Если нужно сложить два вектора

их располагают так, чтобы они исходили из одной точки.


Затем, считая, что расположенные таким образом векторы образуют две стороны
параллелограмма, достраивают параллелограмм и проводят диагональ из точки, где
совмещены начала обоих векторов. Эта диагональ и есть сумма векторов или
результирующий вектор.

Другой способ сложения двух векторов состоит в том, что складываемые векторы

располагаются так, чтобы конец одного из них примыкал к началу другого.
Сумма обоих векторов – это вектор, направленный от начала первого вектора к
концу второго.


Этим же способом пользуются, если нужно сложить не два, а больше векторов.
Все складываемые векторы располагаются так, чтобы конец первого вектора
примыкал к началу второго, конец второго – к началу третьего и т. д. Сумма всех
векторов или результирующий вектор – это вектор, направленный от начала первого
вектора к концу последнего.


Чтобы сложить несколько векторов, надо расположить их
так, чтобы конец первого вектора примыкал к началу второго, конец второго – к
началу третьего и т. д. 

Результирующим будет вектор, направленный от начала
первого вектора к концу последнего.



По этому же правилу складывают векторы, направленные вдоль одной прямой
(коллинеарные векторы). Сложение коллинеарных векторов, направленных в одну и
ту же сторону и в стороны, противоположные друг другу показано на рисунках:

Из этих рисунков видно, что параллельные (коллинеарные) векторы
складываются, как алгебраические величины, если приписать одному из направлений
знак
<<+>> , а противоположному знак <<–>>.

Как найти проекцию вектора, являющегося суммой нескольких векторов ? 
На
рисунке

проведены векторы


и показан результирующий вектор


равный сумме этих векторов:


Из этого рисунка видно, что проекции векторов


на ось  Х  положительны, а
проекция вектора


отрицательна. Видно также, что проекция результирующего вектора


получается, если сложить проекции всех трёх складываемых векторов
алгебраически, т. е. с учётом того, что знак проекции вектора


отрицательный.

Следовательно, 


проекция суммы векторов на заданную ось
равна алгебраической сумме проекций слагаемых векторов на ту же ось.



Поэтому, для того чтобы найти проекцию суммы векторов, нет необходимости
находить результирующий вектор и определить его проекцию. Надо просто сложить
проекции всех векторов, учитывая их знаки.

Задачей, обратной сложению вектора, является разложение вектора на
составляющие. Так, в частности, нахождение по данной скорости её составляющих
называется разложением скорости. Данная
скорость

раскладывается на составляющие самым различным образом, так как можно
построить сколько угодно параллелограммов с заданной диагональю, равной вектору


чтобы задача разложения данного вектора


на две составляющие была бы однозначной, нужно дополнительно знать
направления составляющих векторов


или величину и направление одного из них.


Вычитание векторов.


Чтобы найти вектор

равный разности двух векторов


нужно сложить векторы


Вектор


равен по модулю и направлен противоположно вектору


Чтобы найти разность двух векторов, нужно расположить их
так, чтобы они исходили из одной точки, и соединить концы обоих векторов
отрезком, направленным от второго вектора к первому
(от вычитаемого к
уменьшаемому
). Этот направленный
отрезок и есть вектор-разность.



По такому же правилу производят вычитание коллинеарных векторов

Если нам нужно найти проекцию разности двух векторов


то, так же как в случае сложения векторов, нет необходимости выполнять
геометрические построения. Нетрудно убедиться в том, что 



проекция
разности векторов на ось равна алгебраической разности их проекций на эту ось
.



Умножение вектора на скаляр.



ЗАДАЧА:



Два автомобиля, выехавшие из
гаража, к исходу дня оказались один в 
100
км, а другой в 
200
км  к северу от места, где расположен
гараж. Что можно сказать о перемещении этих двух автомобилей
? Очевидно, что
одно из них вдвое больше другого. Если обозначить перемещение в 
100
км  через

то перемещение в  200
км  будет равно


т. е. вектору


умноженному на  2. Вектор


имеет то же направление, что и
вектор


но его модуль вдвое больше.

Если бы второй автомобиль
отправился не на север, а на юг, то его перемещение было бы равно

т. е. вектору


умноженному на и  –2. Вектор


вдвое больше (по абсолютной
величине
) вектора


но направлен в противоположную
сторону.


Вектор


умноженный на скаляр  k, представляет собой вектор, модуль которого равен
произведению модуля вектора на модуль скаляра:


Вектор


направлен так же, как вектор


если знак  k  положительный.
Если же знак 
k  отрицательный, то
вектор


направлен в сторону, противоположную вектору


Проекция вектора


на ось равна умноженной на  k  проекции вектора


на эту ось: 

bx = kax.



Итак, действия над векторами производят по правилам геометрии.



При умножении вектора на скалярную величину  k  изменяется его
модуль
:
увеличивается при 
k ˃ 1  или уменьшается
при 
k < 1.



Если величина  k  положительна, то
направление вектора

совпадает с направлением вектора


Если же величина  k  отрицательна, то
вектор


направлен противоположно вектору


Действия же над проекциями векторов производят по обычным правилам алгебры.
Если известны проекции 
ax  и  ay  вектора


на оси координат, то абсолютное значение самого вектора равно


(теорема Пифагора).

ЗАДАЧА:

Камень, который кинули из окна второго
этажа с высоты 
4 м, упал на поверхность земли на расстоянии  3
м  от стены здания. Найдите модуль перемещения
камня
.

РЕШЕНИЕ:


Перемещение камня

Проверим единицы измерения:


Числовое значение:


ОТВЕТ:  5 м



Относительность движения.



Положение тела (точки) в пространстве всегда задаётся относительно какого-то
другого тела, выбранного телом отсчёта. Через какую-нибудь точку тела отсчёта
связана система координат.

Но за тело отсчёта мы можем принять любое тело и с каждым из них связать
свою систему координат. Тогда положение одного и того же тела мы можем
одновременно рассматривать в разных системах координат. Очевидно, что
относительно разных тел отсчёта в разных системах координат положение одного и
того же тела может быть совершенно различным.



ПРИМЕР:



Положение автомобиля на дороге
можно определить, указав, что он находится на расстоянии 
l1 км  к северу от
населённого пункта 
А.

Пункт  А  служит в данном случае телом отсчёта, а
прямая, мысленно проведённая от него к северу, – координатной осью, связанной с
телом отсчёта. Но можно выбрать за тело отсчёта и какой-нибудь другой
населённый пункт, например 
В,
и сказать, что автомобиль расположен в 
l2 км  к востоку от
него.



Это значит, что положение тела относительно: 


оно
различно относительно разных тел отсчёта и связанных с ними разных систем
координат
.



Но не только положение тела относительно. 


Относительно
и его движение



В чём состоит относительность движения ?

Часто бывает, что движение одного и того же тела приходится рассматривать
относительно разных тел отсчёта, которые сами
движутся друг относительно друга
.



ПРИМЕР:



Артиллеристу важно знать, как
движется снаряд не только относительно Земли, на которой его орудие стоит
неподвижно, но и относительно танка, в который он стреляет и который сам
движется относительно Земли.

Пилот интересуется движением
самолёта и относительно Земли, и относительно воздуха, который в бурную погоду
сам движется.



Движение одного и того же тела относительно разных тел отсчёта, движущихся
одно относительно другого, могут сильно различаться. Различными могут быть и
траектории, и скорости движения этого тела.

Рассмотрим движения одного и того же тела относительно двух тел отсчёта,
движущихся друг относительно друга. Предположим, что одно тело отсчёта
неподвижно, а второе движется относительно первого. Примем для простоты, что оно
движется прямолинейно и равномерно. Выясним, как найти перемещение тела
относительно этих двух тел отсчёта (конечно, за одно и то же время).



ПРИМЕР:



Представим себе человека,
плывущего вниз по течению реки с некоторой скоростью, которую он поддерживает постоянной,
работая руками и ногами
(если бы он не работал руками и ногами, он бы
просто лежал на воде и относительно воды находился в покое
). Примем за неподвижное тело отсчёта берег,
а за подвижное – воду.

Как же движется пловец
относительно берега и относительно воды ? предположим, что за движением пловца
следит два наблюдателя: один – на берегу, а другой – на лодке, которая без
гребца плывёт по течению реки. Относительно воды лодка покоится, а относительно
берега она движется равномерно с такой же скоростью, как и сама вода.

Проведём мысленно через
точку 
О  на берегу, в которой расположился
наблюдатель, оси координат 
X  и  Y,
причём ось 
Х  направим вдоль течения реки.

С лодкой (с водой) мы тоже свяжем систему координат  XOY,
оси 
X  и  Y  которой параллельны осям  X  и  Y.
Лодка и вода движутся поступательно.

Найдём перемещение пловца
относительно этих двух систем координат
(систем отсчёта).

Для наглядности посмотрим, как
движение пловца будет представляться наблюдателям в лодке и на берегу. Наблюдатель
в лодке через некоторое время    отметит,
что пловец относительно него совершил перемещение

Разделив это перемещение на
время, он получит скорость пловца
:


это скорость пловца относительно
воды
(лодки),

т. е. в подвижной системе
координат
  XOY.

Наблюдатель на берегу отмети,
что за это же время 
t  перемещение пловца равно

а сама лодка совершила
перемещение


относительно берега. Из рисунка
видно, что перемещение


пловца относительно берега, т.
е. в системе координат,
XOY, равно сумме обоих перемещений:


Разделив


на  t,
наблюдатель на берегу получит скорость


пловца относительно берега:


Первое слагаемое


– это скорость пловца
относительно подвижной системы координат
(воды или лодки). Слагаемое же


– это, очевидно, скорость лодки
(воды) относительно
неподвижной системы координат
(берега). Обозначим её через


Значит,


– это скорость подвижной
системы координат относительно покоящейся.

Следовательно

Эта формула называется формулой
сложения скоростей
.

Точно такую же формулу сложения скоростей мы получили бы и в том случае,
если бы пловец плыл против течения.

Скорость движения тела относительно неподвижной системы
координат равна геометрической сумме двух скоростей
: скорости тела
относительно подвижной системы координат и скорости самой подвижной системы относительно
неподвижной.



Скорости тела относительно различных систем отсчёта, движущихся друг
относительно друга, различны. В этом и проявляется относительность движения.

В рассмотренном примере движущееся тело (пловец) и подвижная система координат
(лодка или вода) движутся вдоль одной прямой – вдоль оси 
Х.
Поэтому вместо векторов

мы можем воспользоваться их проекциями на ось  Х.
Тогда формула сложения скоростей будет иметь вид:



v = v1 + v2.


Величины  v, v1 и v2  в этой формуле
могут быть как положительными, так и отрицательными в зависимости от
направлений векторов


по отношению оси  Х.

Может случиться и так, что тело, которое движется в одной системе
координат, находится в покое относительно другой. Если бы тот же пловец
перестал работать руками и ногами и просто лежал бы на воде, то относительно
лодки он находился бы в покое, а относительно берега он двигался бы со
скоростью течения. Наоборот, если бы пловец плыл со скоростью течения, но в противоположном
направлении, то в покое он находился ба относительно берега, а относительно
воды он двигался бы со скоростью –
v1. Следовательно, относительно не только движение, но и
покой. Если тело относительно какой-то системы координат покоится, то всегда
можно найти такие системы координат, относительно которых оно движется. Это
значит, что абсолютно покоящихся тел не существует. Движение свойственно всем
телам и вообще всему, что существует в природе, т. е. всему материальному миру.

Не всегда скорости движущегося тела и подвижной системы координат
направлены вдоль одной прямой, как в примере с пловцом в предыдущем примере.



ПРИМЕР:



Предположим, что пловцу понадобилось
переплыть реку с одного берега на другой, так что двигаться он должен всё время
перпендикулярно течению, т. е. перпендикулярно оси 
Х.

По-прежнему будем считать
движение пловца равномерным.

Каким будет это движение для
наблюдателя в лодке
(относительно подвижной системы
координат 
XOY) и каким оно будет
для наблюдателя на берегу
(в
покоящейся системе координат 
XOY) ?

Наблюдатель в лодке видит, что
пловец всё время удаляется от него, двигаясь вдоль оси 
Y.
Он видит это, находясь и в точке 
А,
и в точке 
В,
и в любой другой точке. Через промежуток времени  
t, когда лодка будет находиться в точке  С,
пловец окажется на противоположном берегу в точке 
C1,
совершив перемещение

Перемещение самого наблюдателя
вдоль оси 
Х  равно


Разделив перемещение


На время  t,
наблюдатель в лодке получит скорость


пловца относительно подвижной
системы координат 
XOY:


Направлена она вдоль оси  Y.

Совсем другим будет
представляться движение пловца, переплывающего реку, наблюдателю, находящемуся
на берегу. Для этого наблюдателя перемещаться будет и ось 
Y. B  <<его>>  системе координат перемещение пловца за то же
время 
t  представится направленным отрезком

Пловца отнесло вниз по течению.
Из рисунка видно, что перемещение


равно геометрической сумме
перемещения


пловца относительно подвижной
системы координат 
XOY  и перемещения


cамой системы координат  XOY  относительно неподвижной системы  XOY.
Следовательно, и теперь так же, как и в примере, рассмотренном выше,


Скорость пловца


Относительно системы XOY   найдём так:


т. е.


Видно, что правило сложения скоростей осталось таким же как и раньше, но
теперь алгебраически скорости складывать нельзя, так как векторы


не параллельны друг другу.



рис. 1

Допустим, что из вектора $vec{a}$ надо вычесть вектор $vec{b}$ (рис. 1а), т. е. найти вектор $vec{c}$, равный разности $vec{a} – vec{b}$.

Когда мы вычитаем одно число из другого, например 5 из 8, мы пишем: 8 – 5 = 3. Но можно написать и так: 8 = 5 + 3. Точно так же равенство $vec{a} – vec{b} = vec{c}$ можно заменить равенством $vec{a} = vec{b} + vec{c}$. Поэтому, чтобы найти вектор $vec{c}$, равный разности векторов $vec{a}$ и $vec{b}$, нужно найти такой вектор, который в сумме с вычитаемым дает вектор уменьшаемый.

Сделать это можно следующим простым способом. Расположим векторы $vec{a}$ и $vec{b}$ (не меняя их направления) так, чтобы они исходили из одной точки (рис. 1б). Соединим концы обоих векторов отрезком, направив его от вычитаемого (вектора $vec{b}$) к уменьшаемому (вектору $a$). Это и есть вектор $c = a – b$. Действительно, как это видно из рисунка, вектор $vec{a}$ равен сумме векторов $vec{b}$ и $vec{c}$, а это и значит, что $vec{c} = vec{a} – vec{b}$.

Чтобы найти разность двух векторов $vec{a}$ и $vec{b}$, нужно расположить их так, чтобы они исходили из одной точки, и соединить концы обоих векторов отрезком, направленным от второго вектора к первому (от вычитаемого к уменьшаемому). Этот направленный отрезок и есть вектор-разность.



рис. 2



рис. 3

По этому же правилу можно вычитать и параллельные векторы (рис. 2, а, б и рис. 3). Анализ этих рисунков показывает, что параллельные векторы можно вычитать один из другого, как будто бы они являются алгебраическими величинами. Для этого нужно одному из направлений приписать знак «+», а другому – знак «-».

Если нам. нужно найти проекцию разности двух векторов, то, так же как и в случае сложения векторов, нет необходимости выполнять геометрические построения.

Действительно, если $vec{c} = vec{a} – vec{b}$, то $vec{a} = vec{c} + vec{b}$; а так как $a_{x} = c_{x} + b_{x}$ то $c_{x} = a_{x} – b_{x}$.

Следовательно, проекция разности векторов на данную ось равна алгебраической разности их проекций на эту ось.

Содержание:

  1. Векторы
  2. Действия над векторами
  3. Умножение вектора на число
  4. Скалярное произведение векторов
  5. Векторное произведение
  6. Смешенное произведение векторов
  7. Разложение вектора по базису
  8. Действия над векторами, заданными своими координатами
  9. Проекция вектора на ось
  10. Проекции вектора на оси координат
  11. Направляющие косинусы вектора
  12. Разложение вектора по ортам
  13. Действия над векторами, заданными в координатной форме
  14. Вектор – основные определения
  15. Операции над векторами и их свойства
  16. Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.
  17. Координаты вектора
  18. Скалярное произведение векторов и его свойства
  19. Векторы и их решение
  20. Собственные числа и собственные векторы
  21. Векторная алгебра
  22. Векторы: основные определения, линейные операции
  23. Линейные операции над векторами
  24. Умножения вектора на скаляр
  25. Основные свойства проекции вектора на ось
  26. Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов
  27. Скалярное, векторное, смешанное произведения векторов
  28. Векторное произведение двух векторов
  29. Смешанное произведение векторов, заданных в координатной форме
  30. Простейшие задачи аналитической геометрии
  31. Задача об определении площади треугольника
  32. Задача о деление отрезка в заданном отношении

Векторы

В математике вектором называют величину, которая характеризуется только числом и направлением. Так определённые векторы ещё называют свободными векторами. Примером физических величин, которые имеют векторный характер являются скорость, сила, ускорение. Геометрически вектор — это направленный отрезок, хотя правильней говорить про целый класс направленных отрезков, которые все параллельны между собой, имеют одинаковые длину и направление.

Векторы

Векторы обозначают малыми латинскими буквами с чертой сверху Векторы, или двумя большими латинскими буквами, которые обозначают его начало и конец, например  Векторы. Длина (модуль) вектора — это длина отрезка, который отвечает данному вектору и обозначается Векторы В зависимости от соотношения длин и направлений различают следующие виды векторов:

Векторы

Векторы

Действия над векторами

Рассмотрим основные действия, определённые над векторами.

1. Сложение векторов. Суммой векторов Векторы называют вектор Векторы, который соединяет начало вектора Векторы с концом вектора Векторы, при условии, что вектор Векторы отложен от конца вектора Векторы. Такой способ сложения векторов называют правилом треугольника.

Векторы

Учитывая, что Векторы, то найти сумму векторов Векторы можно также по так называемым “правилом параллелограмма” (рис. 3)

Векторы

Вычитание векторов сводится к сложению противоположного вектора

Векторы

Запишем основные свойства действий сложения векторов:

 Векторы

Заметим, что сумма нескольких векторов находится последовательным сложением двух из них, например:

Векторы

Геометрически сумма нескольких векторов находится их последовательным отложением один за одним так, чтоб начало следующего совпадало с концом предыдущего. Суммой является вектор, который будет соединять начало первого с концом последнего (рис. 4). Если такая последовательность векторов даёт замкнутую ломаную то суммой векторов является Векторы (рис. 5).

Векторы

Умножение вектора на число

Произведением вектора Векторы на число Векторы называют вектор Векторы, для которого выполняются условия:

а) Векторы;

б) Векторы, причём Векторы сонаправленные если Векторы противоположно направленные, если Векторы. Отсюда, очевидно, что необходимым и достаточным условием коллинеарности векторов является соотношение Векторы.

Запишем основные свойства действий умножения вектора на число:

Векторы

Скалярное произведение векторов

Скалярным произведением Векторы или Векторы векторов Векторы и Векторы называют выражение Векторы, где Векторы угол, который образуют векторы. Отметим, что углом между векторами считают угол между их направлениями. Если хотя бы один из векторов равен Векторы, то их скалярное произведение считают равным нулю.

Очевидно, что скалярное произведение двух ненулевых векторов будет равно нулю тогда и только тогда когда эти вектора перпендикулярны (ортогональны). Действительно, если Векторы. Но Векторы, следовательно,

Векторы

Наоборот, если Векторы и согласно определениям

Векторы.

Например, скалярное произведение Векторы будет равным

Векторы

Запишем основные свойства действий скалярного умножения векторов:

Векторы

Векторное произведение

Векторным произведением Векторы двух векторов Векторы и Векторы называется вектор Векторы, который удовлетворяет условия:

1) модуль вектора Векторы равен произведению модулей векторов  Векторы и Векторы на синус угла между ними

 Векторы

2) вектор Векторы перпендикулярный к плоскости, которая определяется векторами Векторы и Векторы (рис. 5).

3) вектор Векторы направленный так, что кратчайший поворот вектора Векторы к вектору Векторы видно с конца вектора Векторы таким, что происходит против движения стрелки (то есть вектора ВекторыВекторы и  образуют правую упорядоченную тройку, или правый руль).

Векторы

Модуль векторного произведения равен площади параллелограмма, построенного на векторах Векторы и Векторы. Векторное произведение выражается формулой Векторы, где Векторы площадь параллелограмма построенного на векторах Векторы и ВекторыВекторы единичный вектор направления Векторы.

Приведём основные свойства векторного произведения:

1) векторное произведение Векторы равно нулю, если векторы  Векторы и Векторы коллинеарные, или один из них нулевой;

2) от перестановки местами векторов-сомножителей векторное произведение меняет знак на противоположный: Векторы (векторное произведение не имеет свойств перестановки);

3) Векторы (распределительный закон);

4) Векторы (соединительный закон).

Физическое содержание векторного произведения такое. Если Векторы сила, а Векторы радиус-вектор точки её приложения, которая имеет начало в точке Векторы, то моментом силы Векторы относительно точки Векторы является вектор, который равен векторному произведению Векторы на Векторы, то есть Векторы.

Смешенное произведение векторов

Смешенным произведением векторов Векторы называют скалярное произведение вектора Векторы на вектор Векторы. Смешенное произведение обозначают (Векторы), поэтому по определению имеем

Векторы

Как результат скалярного произведения векторов Векторы и Векторы смешенное произведение является скалярной величиной (числом). Геометрически смешенное произведение — это объём параллелепипеда, построенного на эти векторах, взятый со знаком плюс, если векторы Векторы образуют правую тройку, и со знаком минус, когда эта тройка левая      (рис. 7).

 Векторы

Действительно, Векторы, где Векторы угол между векторами Векторы угол между векторами Векторы и Векторы.

Объём V параллелепипеда, построенного на векторах Векторы равный произведению площади основы S на высоту h.

Векторы

Однако, знак смешенного произведения совпадает со знаком Векторы, то есть он положительный, когда угол Векторы острый (Векторы образуют правую тройку векторов) и отрицательный, когда угол Векторы тупой (Векторы образуют левую тройку векторов). Поэтому:

Векторы

Из геометрического содержания смешенного произведения выходит, что 

1) смешанное произведение равно нулю тогда и только тогда, когда перемноженные вектора копланарные (условие компланарных векторов);

2) Векторы

Учитывая коммутативность скалярного произведения и антикоммутативность векторного, для произвольных векторов Векторы имеем

Векторы

Пример 1.

Доказать, что когда М — точка АВС и О — произвольные точки пространства, то выполняется равенство: Векторы

Решение.

Пусть Векторы медиана треугольника АВС. По свойствам медиан треугольника Векторы Применив к векторам Векторы и Векторы формулу вычитания векторов

Векторы

тогда

Векторы

Пример 2.

У прямоугольного параллелепипеда рёбра Векторы, имеют длину 2, 3, 5. Вычислить длины отрезков Векторы и Векторы и угол между прямыми Векторы и Векторы.

Решение.

Пусть Векторы единичные вектора направленные вдоль рёбер, которые рассматриваются. Тогда Векторы (поскольку параллелепипед прямоугольный).

рис. 9.Векторы

Далее,

Векторы

Этим закончен “перевод” условия задачи на “язык” векторов.

Теперь произведём вычисления с векторами:

Векторы

Наконец “переводим” полученные вектора равенства снова на “геометрический язык”. Поскольку Векторы аналогично Векторы.

Далее поскольку Векторы, где Векторы угол между данными векторами то Векторы, отсюда получаем Векторы. Теперь с помощью тригонометрических таблиц находим значения угла Векторы.

Разложение вектора по базису

Базисом на площади называют упорядоченную пару неколлинеарных векторов и точку отсчёта. 

Теорема. Любой вектор Векторы на плоскости можно разложить по двум неколлинеарным векторам Векторы и Векторы, то есть представить в виде: Векторы.

Доказательство.

Векторы

Пусть векторы Векторы компланарные и векторы Векторы и Векторы неколлинеарные. От точки О отложим все три вектора и на продолжении векторов Векторы и Векторы построим параллелограмм  ONCM так, чтобы вектор Векторы был его диагональю.

Тогда по правилу параллелограмма Векторы.

Но Векторы, как коллинеарные векторы. Следовательно, векторВекторы.

Числа, которые стоят при базисных векторах в разложении вектора за двумя неколлинеарными векторами называют координатами вектора в данном базисе и обозначают Векторы.

Соответственно в пространстве базисом называется упорядоченная тройка некомпланарных векторов и точки отсчёта.  Для четырёх некомпланарных векторов справедлива следующая теорема.

Теорема. Любой вектор  Векторы в пространстве можно разложить по трём некомпланарным векторам ВекторыВекторы и Векторы, то есть представить в виде: Векторы.

Доказательство.

От точки О отложим векторы  Векторы и на продолжении векторов Векторы построим параллелограмм Векторы 

Векторы

в котором вектор Векторы является диагональю. Как видим

Векторы

Числа х,у,z которые стоят при базисных векторах в разложении вектора по трём некомпланарным векторам называют координатами вектора в пространстве и обозначают Векторы. Если базисные вектора взаимно перпендикулярны (их обозначают Векторы), то вместе с точкой отсчёта они образуют декартовую систему координат, а координаты вектора в таком базисе называют декартовыми координатами. В декартовой системе координат разложение вектора будет иметь вид Векторы. Если началом вектора Векторы является точка Векторы, а концом — точка Векторы, то координаты вектора Векторы вычисляют как разность соответствующих координат точек А и В,

Векторы

Отсюда легко установить длину вектора как расстояние между двумя точками:

Векторы

Действия над векторами, заданными своими координатами

1. При сложении двух, или более векторов их соответствующие координаты складываются:

Векторы

Действительно:

Векторы

2. При вычитании векторов соответствующие координаты вычитаются:

Векторы

Доказательство аналогично предыдущему.

3. При умножении вектора на число все координаты умножаются на это число.

Правда, для вектора Векторы и числа Векторы имеем:

Векторы

4. Скалярное произведение двух векторов Векторы равно сумме произведений соответствующих координат:Векторы

Правда:

Векторы

Поскольку Векторы выполняется ВекторыСледовательно, мы можем записать

Векторы

5. Векторное произведение векторов Векторы заданных своими координатами вычисляется так:

Векторы

6. Смешенное произведение трёх векторов Векторы равняется:

Векторы

Пример 1.

Зная координаты векторов Векторы, найти координаты векторов Векторы.

Решение:

Векторы

Ответ: Векторы.

Пример 2.

Зная координаты векторов Векторы вычислить координаты вектора Векторы.

Решение.

Векторы

Ответ: Векторы.

Пример 3.

Зная координаты векторов Векторы вычислить:

а) скалярное произведение векторов Векторы

б) векторное произведение векторов Векторы

в) смешенное произведение векторов Векторы.

Решение.

Векторы

Ответ: Векторы

На основании приведённых выше формул действий над векторами можно установить следующие условия и соотношения для нулевых векторов

Векторы

1. Угол между векторами.

Векторы

2. Условие перпендикулярности двух векторов:

Векторы

(векторы перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю).

3. Условие коллинеарности двух векторов: Векторы (векторы коллинеарные тогда и только тогда, когда соответствующие их координаты пропорциональны).

4. Условие компланарности трёх векторов.

 Векторы

(три вектора компланарны тогда и только тогда, когда их смешенное произведение равно нулю).

5. Деление отрезка АВ в заданном отношении.

Если точка Векторы делит отрезок АВ в отношении Векторы, то координаты точки М находят по формуле:

Векторы

Если точка М делит отрезок АВ на пополам то Векторы, и координаты точки находят согласно формуле:

Векторы

Действия над векторами (теория)

а) Произведение вектора на число.
Определение 1. Произведением вектора Векторы на число λ называется вектор Векторы,
который имеет длину Векторы  и направление его совпадает с направлением вектора Векторыесли λ > 0,  и противоположно ему, если λ < 0 (рис.12).

Векторы
Рис. 12.

Условие Векторы                                                                           (2.6)
является условием коллинеарности двух векторов.

б) Сложение векторов.

Определение 2. Суммой двух векторов Векторы  и  Векторы  называется вектор   Векторы , начало которого совпадает с началом вектора Векторы,  а конец совпадает с концом вектора Векторы, при условии, что начало вектора Векторы  совпадает с концом вектора  Векторы  (правило треугольника)  (рис.13).

Векторы

Рис. 13.

Понятно, что вектор Векторы в этом случае является диагональю параллелограмма, построенного на векторах Векторы  и  Векторы  (правило параллелограмма) (рис.13).
Для векторной суммы справедливый переместительный закон
Векторы
Легко убедиться, что для векторной суммы имеет место соединительный
закон  Векторы .
Исходя из определения 2, легко находим сумму, например, четырех векторов Векторы (рис. 14).
Векторы
Рис. 14.
Вектор Векторы соединяет начало первого вектора   Векторы с концом вектора  Векторы  (правило многоугольника).

в) Вычитание векторов.
Действие вычитание векторов можно рассматривать как обратное действие относительно сложения векторов.

Определение. Разностью Векторы  называется вектор Векторы , который в сумме с вектором Векторы дает вектор  Векторы  (рис. 15), т.е. Векторы

Векторы
Рис. 15.

Как видно из рис. 15,  одна диагональ Векторы является суммой  Векторы ,  а  вторая диагональ Векторы  является разностью векторов  Векторы и  Векторы.
Дадим еще одно определение разности векторов.

Определение. Разностью двух векторов Векторы и  Векторы , которые имеют общее начало, называется вектор Векторы , который соединяет концы этих векторов и направлен в сторону уменьшаемого.

Проекция вектора на ось

Пусть имеем произвольную ось l на плоскости и некоторый вектор Векторы (рис. 16).
Векторы

Рис. 16.

Опустим из начала A вектора и из конца B перпендикуляры на ось l. Основаниями перпендикуляров будут точки A1 и B1, которые называются проекциями точек A и B.

Величина A1B1 называется проекцией вектора Векторы на ось l и обозначается  Векторы, то есть Векторы.
Определение 1. Проекцией вектора Векторы  на ось l называется величина отрезка  A1B1, взята со знаком плюс, если направление отрезка A1B1  совпадает с направлением оси l, и с знаком минус, если направления противоположные.

Из точки A проведем прямую, параллельную оси l, которая пересечет отрезок  BB1 в точке C. Вектор Векторы образует с осью l угол φ. Величина отрезка AC равна величине отрезка  A1B1, а тогда из Δ ABC находим  
Векторы    или       Векторы                                        (2.7)

Определение 2. Проекция вектора на любую ось равна произведению длины этого вектора на косинус угла между осью и вектором.

Если угол φ острый, то проекция  Векторы — положительное число, а если угол φ тупой, то проекция Векторы  —  отрицательное число.

Свойства проекций.

1. Если векторы  Векторы и  Векторы равны, то величины их проекций на одну и ту же ось l также равны, то есть:  Векторы.
2. Проекция суммы векторов на любую ось равна сумме проекций слагаемых на ту же ось, то есть:
Векторы

3. Проекция разности двух векторов на ось l равна разности величин проекций на ту же ось, то есть:
Векторы

4. Если вектор Векторы умножен на любое число λ, то величина проекции вектора Векторы на ось также умножится на число λ, то есть: 
Векторы
 

Проекции вектора на оси координат

Рассматривается прямоугольная система координат Oxyz в пространстве и произвольный вектор Векторы.
Пусть Векторы  Векторы
Проекции x, y, z вектора Векторы  на координатные оси называют координатами вектора и записывают Векторы.
Если заданы две точки A (x1; y1; z1и B (x2; y2; z2), то координаты вектора Векторы находятся по формулам
x = x2 – x1,   y = y2 –  y1,  z = z2 – z.

Векторы

Рис. 17

Действительно, проведем через точки A и B плоскости, перпендикулярные оси Ox и обозначим точки их пересечения соответственно A1 и B1 (рис.17). Точки A1 и B1 имеют на оси Ox координаты   x1  и  x, но Векторы на основе формулы (2.1), а потому
x = x2 – x1 . Аналогично доказывается, что y = y2 –  y1,  z = z2 – z.
 

Направляющие косинусы вектора

Пусть имеем вектор Векторы  и будем считать, что он выходит из начала координат и не находится ни в одной координатной плоскости.

Векторы

Рис. 18

Через точку M проведем плоскости, перпендикулярные к осям координат, и вместе с координатными плоскостями они образуют параллелепипед, диагональ которого — отрезок OM (рис.18). Через α, β, γ обозначим углы, которые образует вектор Векторы с осями координат. Величины cos α, cos β, cos γ называются направляющими косинусами вектора Векторы. Координаты вектора Векторы.

Квадрат диагонали прямоугольного параллелепипеда равна сумме квадратов длин трех его измерений.
Поэтому
Векторы или  Векторы
Векторы                                                                     (2.8)
Формула (2.8) выражает длину вектора через его координаты. Тогда на основе формул (2.7) и (2.8) получим
Векторы
Отсюда для направляющих косинусов получаем

Векторы                  (2.9)

Для направляющих косинусов справедливо равенство Векторы  (это вытекает из (2.9)).

Разложение вектора по ортам

Рассмотрим прямоугольную систему координат в пространстве и вектор, начало которого в точке O (рис.19) .

Векторы

Рис. 19.

Обозначим орты осей координат Ox, Oy, Oz соответственно через  Векторы,  причем
Векторы

Спроецируем вектор Векторы  на координатные оси (через точку M проведем плоскости, перпендикулярные координатным осям). Проекциями точки M на координатные оси будут соответственно точки А, В, С (рис.19).

Из прямоугольника ODMC видно, что вектор  Векторы, но из прямоугольника AOBD получаем, что вектор  Векторы.
Тогда
Векторы                                                                          (2.10)
Вектор  Векторы, который соединяет точку O с точкой M (x, y, z) называется радиусом-вектором этой точки.
Векторы Векторы называются составными или компонентами вектора Векторы, а их величины OA = x, OB = y, OC = z  координатами этого вектора. Компоненты вектора Векторывыразим через его координаты и единичные векторы Векторы, а именно Векторы.
Подставляя эти значения в равенство (2.10), учитывая, что  Векторы, получим
Векторы                                                                                 (2.11)

Слагаемые  Векторы являются составными или компонентами вектора  Векторы.
Тройка векторов  Векторы  называется координатным базисом, а разложение (2.11) называется разложением вектора по базису Векторы.  Это основная формула векторной алгебры.

Пример 1. Построить вектор Векторы.
Векторы

Рис. 20.

Решение. Компоненты вектора  Векторы  являются  Векторы  и  Векторы, и им 
соответствует прямоугольный параллелепипед, диагональ которого является искомый вектор (рис. 20).

Действия над векторами, заданными в координатной форме

Если векторы заданы в координатной форме, то действия сложения, вычитания, умножения вектора на число можно заменить простыми арифметическими операциями над координатами этих векторов по таким правилам.

Правило 1. При сложении векторов их одноименные координаты складываются

Пусть имеем векторы Векторы и  Векторы. Найдем  Векторы.  Запишем разложение векторов  Векторы  и  Векторы.  Тогда  Векторы.
Сложив эти равенства, получим
Векторы.
Итак, координаты вектора   Векторы  будут  Векторы

Правило 2. Чтобы отнять от вектора Векторы   вектор Векторы нужно вычесть из координат вектора Векторы  соответствующие координаты вектора  Векторы, то есть
Векторы

Правило 3. Чтобы умножить вектор  Векторы на число λ,  нужно каждую из его координат умножить на это число. То есть, если
Векторы   то  Векторы.
Пример 1. Найти вектор Векторы , если   Векторы
Решение. Выполним действия последовательно и найдем
Векторы
Векторы.
Значит, Векторы

Вектор – основные определения

Определение вектора в пространстве ничем не отличается от определения вектора на плоскости.

Определение 1. Вектором называется направленный отрезок, т.е. отрезок, для которого указано, какая из его граничных точек является началом, а какая — концом.

Так же как и на плоскости, векторы обозначаются Векторы и т. п. и на чертеже изображаются стрелкой.

Определение 2. Длиной (или модулем) вектора Векторы называется длина отрезка Векторы а направление, определяемое лучом Векторы называется направлением вектора Векторы

Длина вектора Векторы обозначается Векторы длина вектора Векторы обозначается Векторы

Любая точка пространства также считается вектором, который называется нулевым. Начало такого вектора совпадает с его концом, а длина равна нулю. Обозначения нулевого вектора: Векторы

По этой ссылке вы найдёте полный курс лекций по высшей математике:

Определение 3. Векторы Векторы и Векторы называются коллинеарными, если они лежат на одной прямой или на параллельных прямых.

Если ненулевые векторы Векторы и Векторы лежат на параллельных прямых (следовательно, в одной плоскости), причём лучи Векторы лежат в одной полуплоскости, границей которой является прямая Векторы то векторы Векторы и Векторы называются сонаправленными в случае же, когда эти векторы принадлежат одной прямой, они называются сонаправленными, если один из лучей Векторы или Векторы целиком содержится в другом. Нулевой вектор будем считать сонаправленным с любым вектором в пространстве.

Ясно, что сонаправленные векторы, в силу их определения, коллинеарны. Если два коллинеарных вектора не сонаправлены, то они называются противоположно направленными. Обозначения остаются обычными: Векторы (векторы Векторы и Векторы сонаправлены), Векторы (векторы Векторы и Векторы противоположно направлены).

Определение 4. Векторы Векторы и Векторы называются равными, если Векторы и Векторы (т.е. если векторы сонаправлены и их длины равны).

Теорема 1. От любой тонки пространства можно отложить вектор, равный данному, и притом только один.

Доказательство этой теоремы аналогично доказательству соответствующей планиметрической теоремы.

Возможно вам будут полезны данные страницы:

Операции над векторами и их свойства

Операции над векторами в пространстве аналогичны соответствующим операциям на плоскости.

Пусть даны два вектора Векторы и Векторы В силу теоремы 1 от произвольной точки Векторы пространства можно отложить вектор Векторы а от точки Векторы — вектор Векторы Тогда вектор Векторы называется по определению суммой векторов Векторы и Векторы а описанное правило построения суммы двух векторов — правилом треугольника (рис. 1).

Теорема 2. Сумма Векторы векторов Векторы и Векторы не зависит от выбора точки Векторы от которой при сложении откладывается вектор Векторы (Докажите эту теорему самостоятельно.)

Правило треугольника можно сформулировать и так: для любых трёх точек Векторы пространства выполняется равенство

Векторы

Кроме того, сумму двух неколлинеарных векторов с общим началом можно построить и по правилу параллелограмма: Векторы где Векторы — вектор, модуль которого_равен длине диагонали параллелограмма, построенного на векторах Векторы причём вектор Векторы откладывают от той же точки, что и векторы Векторы (рис. 2).

Все свойства операции сложения векторов, справедливые на плоскости, остаются справедливыми и в пространстве:

1) Векторы

2) Векторы — коммутативность (переместительный закон);

3) Векторы — ассоциативность (сочетательный закон).

Здесь Векторы — произвольные векторы в пространстве.

Определение 5. Два ненулевых вектора называются противоположными, если их длины равны и эти векторы противоположно направлены.

Вектор, противоположный данному ненулевому вектору Векторы обозначается Векторы

Определение 6. Разностью двух векторов Векторы и Векторы называется вектор Векторы такой, что его сумма с вектором Векторы равна вектору Векторы

Разность векторов Векторы и Векторы обозначается Векторы Таким образом, по определению Векторы если Векторы

Разность векторов Векторы и Векторы можно найти по формуле Векторы (рис. 3) (докажите эту формулу самостоятельно). Векторы Замечание. Так же как и на плоскости, для сложения нескольких векторов в пространстве можно использовать правило многоугольника (рис. 4), только в последнем случае этот многоугольник будет пространственным (т.е. не все векторы, его составляющие, лежат в одной плоскости).

Векторы

Из законов сложения векторов следует, что сумма нескольких векторов не зависит от порядка слагаемых.

Умножение (произведение) вектора на число и его свойства, так же как и свойства операции сложения, не претерпевают изменений и в пространстве.

Определение 7. Произведением ненулевого вектора Векторы на действительное число Векторы называется вектор Векторы длина которого равна произведению длины вектора Векторы на модуль числа Векторы причём вектор Векторы сонаправлен с вектором Векторы при Векторы и противоположно направлен вектору Векторы при Векторы

Таким образом, по определению, Векторы если Векторы причём Векторы при Векторы Ясно, что векторы Векторы коллинеарны. Если же Векторы или Векторы то Векторы

Свойства умножения вектора на число не отличаются от аналогичных свойств на плоскости:

  1.  Векторы — ассоциативность (сочетательный закон);
  2.  Векторы —дистрибутивность относительно сложения векторов (1-й распределительный закон);
  3.  Векторы — дистрибутивность относительно сложения чисел (2-й распределительный закон).

Здесь Векторы и Векторы — произвольные векторы, Векторы — произвольные действительные числа.

Справедлива также и лемма о коллинеарных векторах: если векторы Векторы и Векторы коллинеарны и Векторы то существует такое действительное число Векторы

что Векторы (ясно, что Векторы если Векторы

Сформулируем и докажем ещё одну важную для решения некоторых задач теорему.

Теорема 3. Пусть Векторы где Векторы — некоторое действительное число, отличное от -1, тогда точки ВекторыВекторы принадлежат одной прямой. Для произвольной точки Векторы пространства справедливо равенство:

Векторы

Доказательство 

1. Из равенства Векторы следует, что векторы Векторы коллинеарны, и так как Векторы — общая точка прямых Векторы и Векторы эти прямые совпадают, поэтому точки Векторы принадлежат одной прямой.

2. Пусть Векторы — произвольная точка пространства. Тогда Векторы и поскольку ВекторыВекторы откуда Векторы Поделив обе части последнего равенства на Векторы приходим к формуле (1). Теорема доказана.

З. Компланарные и некомпланарные векторы

Следующее понятие уже не имеет аналога в планиметрии.

Определение 8. Векторы называются компланарными, если лучи, задающие их направления, параллельны некоторой плоскости.

Замечание. Из определения 8 следует, что при откладывании от одной точки векторов, равных нескольким данным компланарным векторам, получим векторы, лежащие в одной плоскости. Таким образом, компланарные векторы лежат либо в одной плоскости, либо в параллельных плоскостях.

Очевидно, что любые два вектора компланарны и любые три вектора, два из которых коллинеарны, также являются компланарными (поясните). Рассмотрим теперь условия, при которых три вектора, из которых никакие два не коллинеарны, являются компланарными.

Теорема 4. Векторы Векторы из которых никакие два не коллинеарны, являются компланарными в том и только том случае, если существуют такие действительные числа Векторы и Векторы что

Векторы (иными словами, векторы Векторы являются компланарными в том и только том случае, если один из них можно выразить через два других, или, как говорят, разложить по двум другим).

Доказательство

1. Пусть векторы Векторы компланарны. Докажем, что для них имеет место равенство (5). Отложим от произвольной

точки Векторы векторы ВекторыВекторы Векторы Векторы лежат в одной плоскости (см. замечание). Проведём через точку Векторы прямую Векторы до пересечения с прямой Векторы в точке Векторы и прямую Векторы до пересечения с прямой Векторы в точке Векторы (см. рис. 8). Так как векторы Векторы коллинеарны, по лемме о коллинеарных векторах (см. §1.2) существуют такие действительные числа Векторы и Векторы что Векторы ВекторыНо по правилу параллелограмма Векторы откуда Векторы Обратно, пусть выполнено равенство (5).

Докажем, что векторы Векторы компланарны. Векторы Векторы при откладывании от одной точки определяют некоторую плоскость. Согласно правилу параллелограмма и равенству (5) вектор Векторы принадлежит той же плоскости, откуда следует, что векторы Векторы Векторы и Векторы а значит, и векторы Векторы компланарны. Теорема доказана.

Отложим от произвольной точки Векторы пространства векторы Векторы Векторыгде Векторы — три данных некомпланарных вектора, и рассмотрим параллелепипед Векторы построенный на векторах Векторы (рис. 9). Тогда сумму векторов Векторыможно найти следующим образом: ВекторыВекторы Это правило сложения трёх некомпланарных векторов называется правилом параллелепипеда.

Если векторы Векторы не являются компланарными и для вектора Векторы имеет место равенство Векторы где Векторы — некоторые действительные числа, то говорят, что вектор Векторы разложен по трём некомпланарным векторам

Векторы а числа Векторы называются коэффициентами разложения.

Следующая теорема, называемая теоремой о разложении вектора по трём некомпланарным векторам, является основной во всей элементарной (школьной) векторной алгебре.

Теорема 5. Любой вектор Векторы пространства можно разложить по трём данным некомпланарным векторам Векторы причём коэффициенты разложения определятся единственным образом. Доказательство. 1. Если векторы Векторы и Векторы коллинеарны, то ВекторыВекторы и теорема доказана.

2. Пусть векторы Векторы и Векторы не коллинеарны. Отложим от произвольной точки Векторы пространства векторы ВекторыВекторы (рис. 10). Проведём через точку Векторы прямую Векторы до пересечения с плоскостью Векторы в точке Векторы Через точку Векторы в плоскости Векторы проведём прямую Векторы до пересечения с прямой Векторы в точке Векторы (в частности, если Векторы то точка Векторы совпадает с точкой Векторы Согласно правилу многоугольника Векторы но векторы Векторы Векторы по построению коллинеарны, поэтому в силу леммы о коллинеарных векторах ВекторыВекторы где Векторы — некоторые действительные числа Таким образом, учитывая, что Векторы приходим к равенству ВекторыВекторы

3. Докажем теперь, что разложение вектора Векторы по данным векторам Векторы единственно. Допустим, что это не так, т.е. существует ещё одно разложение Векторы в котором хотя бы один коэффициент не равен соответствующему коэффициенту в полученном нами разложении. Пусть, например, Векторы Вычтем последнее равенство из предпоследнего.

Тогда Векторы отсюда ВекторыВекторы– т. е. векторы Векторы компланарны, что противоречит условию теоремы. Значит, наше допущение о ещё одном разложении неверно, т.е. разложение вектора Векторы по данным векторам Векторы единственно. Теорема доказана.

Итак, любой вектор Векторы пространства можно разложить по трём данным некомпланарным векторам Векторы причём единственным образом. Заданную тройку некомпланарных векторов Векторы называют базисом, сами векторы Векторы — базисными векторами, а разложение вектора Векторы по векторам Векторы называют разложением по данному базису Векторы

Координаты вектора

Так же как и на плоскости, в пространстве помимо координат точки вводятся координаты вектора. Рассмотрим три попарно перпендикулярных вектора Векторы отложенных от некоторой точки Векторы пространства, таких, что Векторы (например, их можно направить по рёбрам единичного куба). Эти векторы, очевидно, не являются компланарными. Поэтому, в силу теоремы 5, любой вектор Векторы можно разложить_по векторам Векторы причём единственным образом: Векторы Введём прямоугольную систему координат с началом в точке Векторы так, чтобы направления осей Векторы совпали_с направлениями векторов Векторы соответственно. Тогда векторы Векторы называются единичными векторами осей координат, а числа Векторы — координатами вектора Векторы в системе координат Векторы (обозначения: Векторы

Свойства векторов пространства, заданных своими координатами, аналогичны соответствующим свойствам векторов на плоскости:

  1. Два вектора равны в том и только том случае, если равны их координаты.
  2. Координаты суммы (разности) двух векторов равны суммам (разностям) соответствующих координат этих векторов, т.е. для векторов Векторы получаем Векторы
  3. При умножении вектора на число каждая его координата умножается на это число, т.е. для вектора Векторы и действительного числа Векторы получаем Векторы

Докажем, например, свойство 2. Так как ВекторыВекторы то, согласно свойствам сложения векторов и умножения вектора на число, Векторы т. е. вектор Векторы имеет координаты Векторы что и требовалось доказать. Остальные свойства доказываются аналогично.

Скалярное произведение векторов и его свойства

Определение скалярного произведения векторов Векторы и Векторы в пространстве ничем не отличается от аналогичного определения для векторов на плоскости.

Определение 11. Скалярным произведением векторов Векторы называется произведение длин этих векторов на косинус угла между ними (обозначение: Векторы Таким образом, по определению,

Векторы

Теорема 8. Два ненулевых вектора Векторы взаимно перпендикулярны тогда и только тогда, когда их скалярное произведение равно нулю, т. е.

Векторы

Доказательство этой теоремы вытекает из формулы (9).

Определение 12. Скалярным квадратом вектора Векторы называется скалярное произведение Векторы Скалярный квадрат обозначается Векторы т.е. по определению Векторы

Так как Векторы то

Векторы

Таким образом, длина вектора равна квадратному корню из его скалярного квадрата.

Замечание. Скалярное произведение есть число, поэтому грубой ошибкой явилась бы запись: Векторы

Если векторы Векторы и Векторы заданы своими координатами: ВекторыВекторы то скалярное произведение может быть выражено через их координаты.

Теорема 9. Скалярное произведение векторов равно сумме произведений их соответственных координат, т. е.

Векторы

Доказательство. Отложим от произвольной точки Векторы пространства векторы Векторы При этом, как мы знаем, соответствующие координаты векторов Векторы и Векторы а также Векторы и Векторы будут равны, а угол Векторы По теореме косинусов для треугольника Векторы получим

Векторы

итак как Векторы имеем ВекторыВекторы откуда Векторы Но

Векторы

поэтому

Векторы

Решение любой геометрической задачи на вычисление сводится, в сущности, к нахождению величин двух типов: расстояний и углов. Если в пространстве задан некоторый базис (в частности, прямоугольный), т. е. тройка некомпланарных векторов, то на основании теоремы 5 любой вектор пространства можно разложить по векторам этого базиса, причём единственным образом.

Если известны длины векторов, образующих базис, углы между ними и разложение некоторого вектора по векторам этого базиса, то, используя свойства скалярного произведения, можно определить длину такого вектора и угол, образуемый им с любым другим вектором, разложение которого по векторам этого базиса известно.

Таким образом, векторы позволяют находить решения довольно широкого класса геометрических задач, а умение определять разложение вектора по базисным векторам является важнейшим фактором их решения.

Для решения задач о разложении вектора по трём данным некомпланарным векторам, разумеется, необходимо, помимо теоремы 5, знание предшествующего ей материала.

Примеры с решением

Задача 1.

Основанием четырёхугольной пирамиды Векторы является параллелограмм Векторы Точки Векторы и Векторы — середины рёбер Векторы и Векторы соответственно. Найдите разложение векторов Векторы по векторам Векторы

Решение (см. рис. 14).

1. Векторы но Векторы поэтому Векторы

2. Так как Векторы — середина Векторы но ВекторыВекторы (см. следствие 1 теоремы 3), поэтому ВекторыВекторы

Ответ: Векторы

Заметим, что в разложении вектора Векторы по векторам Векторы коэффициент разложения при векторе Векторы равен нулю, а это означает, в силу теоремы 4, что векторы Векторы компланарны. Если заранее «увидеть», что Векторы где Векторы — середина Векторы (отсюда Векторы то разложение вектора Векторы можно было бы найти проще. Но векторный метод тем и хорош, что, даже не обладая развитым пространственным воображением, а лишь зная основные определения и теоремы, можно получить правильный ответ (пусть и не всегда самым оптимальным путём)!

Задача 2.

Пусть Векторы — точка пересечения медиан треугольника Векторы — произвольная точка пространства. Найдите разложение вектора Векторы по векторам Векторы

Решение (см. рис. 15). Пусть Векторы — середина ребра Векторы Так как Векторы — точка пересечения медиан треугольника Векторы точки Векторы принадлежат одной прямой, причём, в силу теоремы о точке пересечения медиан треугольника, ВекторыСогласно следствию I теоремы 3 Векторы Тогда Векторы

Векторы

Ответ: Векторы

Векторы и их решение

Вектором называется направленный отрезок. Направление отрезка показывается стрелкой. Различают начало и конец отрезка. 

Два вектора называются равными между собой, если каждый из них можно получить параллельными перенесениями другого. 

Равные векторы являются параллельными (колинеарными), имеют одно и то же направление и одинаковую длину. Длина вектора Векторы называется абсолютной величиной или модулем вектора и обозначается Векторы

Вектор называется нулевым (ноль- вектором), если он имеет нулевую длину, то есть его конец сходится с началом. 

Чтобы найти сумму двух векторов Векторы и Векторы совместим начало вектора Векторы с концом вектора Векторы.

Суммой Векторы векторов Векторы и Векторы  называется вектор, начало которого сходится с началом вектора Векторы, а конец – с концом вектора Векторы (рис. 1.1).

Векторы Правило треугольника

Векторы Правило параллелограмма 

Векторы

Для складывания векторов имеют место такие законы: 

1) переставной (коммутативный)

Векторы

2) связующий 

Векторы

3) для каждого вектора Векторы существует противоположный Векторы такой, что 

Векторы

4)Векторы

5) для некоторых двух  векторов Векторы и Векторы  выполняются неравенства: 

Векторы

Если вектор Векторы образует угол Векторы с осью Векторы (рис. 1.2), то проекцию вектора Векторы на ость называется величина 

Векторы

Пусть вектор имеет начало в точке Векторы а конец – в точке  Векторы Тогда величины Векторы Векторы являются проекциями вектора Векторы на оси Векторы Проекции вектора однозначно определяют вектор. Потому имеет место равенство 

Векторы

Если вектор Векторы то проекция суммы векторов 

Векторы

Произведением вектора Векторы на число Векторы называется вектор Векторы длина которого равна Векторы Умножение вектора на число имеет свойство ассоциативности и дистрибутивности, то есть для произвольных чисел Векторы и векторов Векторы и Векторы справедливы равенства: 

Векторы

Любой вектор Векторы можно записать в видеВекторы

где Векторы – единичные векторы, Векторы Векторы называются компонентами вектора   Векторы  (рис. 1.3) .

Векторы

Векторы

Пример 1.73  

Даны два вектора: Векторы и Векторы 

Найти вектор Векторы

Решение Векторы

Признаком колинеарности двух векторов Векторы  и  Векторы  является пропорциональность их координат: 

Векторы

Скалярным произведением двух векторов Векторы  и  Векторы  называется число Векторы которое равно произведению их модулей на косинус угла между ними: 

Векторы

Скалярное произведение можно записать в таком виде: 

Векторы

Если векторы Векторы  и  Векторы  заданы своими координатами, то их скалярное произведение вычисляется по формуле: 

Векторы

Учитывая формулы (1.18) и (1.19), можно найти косинус угла между векторами  Векторы  и  Векторы

Векторы

Отсюда получается условие перпендикулярности двух векторов: если Векторы  и Векторы   или в координатной форме: 

Векторы

Среди свойств скалярного произведения отметим так: 

Векторы

Векторным произведением вектора Векторы на вектор Векторы называется вектор Векторы который имеет такие свойства: 

1) длина вектора Векторы равна произведению длин сомножителей на синус угла между ними: Векторы

2) вектор Векторы перпендикулярный к векторам Векторы и Векторы

3) из конца вектора Векторы  кратчайший поворот от Векторы  к  Векторы  является таким, что происходит против часовой стрелки (рис. 1.4). 

Векторы

Заметим, что Векторы а модуль векторного произведения равен плоскости параллелограмма, построенного на векторах Векторы  и   Векторы, если у них общее начало.  

В координатной форме векторное произведение векторов Векторы и Векторы можно записать в виде:  

Векторы

Смешанным или скалярно – векторным произведением трех векторов Векторы называется векторное произведение векторов  Векторы  и   Векторы, скалярно умноженный на вектор Векторы то есть Векторы

Если векторы Векторы – компланарны, то есть расположены в одной плоскости или на параллельных плоскостях, то их смешанное произведение равно нулю. 

Если известные координаты сомножителей ВекторыВекторы то смешанное произведение вычисляется по формуле: 

Векторы

Если три ненулевых Векторы разложены в одной плоскости (компланарны), то из смешанное произведение Векторы

Следует, в координатной форме условие компланарности трех ненулевых векторов имеет вид: 

Векторы

Решение примеров:

Пример 1.74 

Заданы координатами точек Векторы Векторы и Векторы Найти: 

1) вектор Векторы если Векторы

2) угол между векторами Векторы и Векторы

3) координаты вектора Векторы

4) объем пирамиды с вершинами в точках Векторы

Решение 

1) По формуле (1.14) находим 

Векторы

тогда Векторы

2) Косинус угла между векторами Векторы и Векторы вычислим по формуле (1.20): 

Векторы

Поскольку косинус угла отрицательный, то угол Векторы тупой. 

3) Координаты векторного произведения находим по формуле (1.22):

Векторы

Векторы

4) Чтобы найти объем пирамиды, найдем сначала смешанное произведение векторов, что выходят из одной вершины пирамиды: 

Векторы

Тогда объем пирамиды

Векторы

Собственные числа и собственные векторы

Вектор – столбец Векторы  называется собственным вектором квадратной матрицы Векторы Векторы – ого порядка, что соответствует собственному значению Векторы если он удовлетворяют матричному уравнению Векторы или ВекторыВекторы

Тут Векторы – единичная матрица Векторы – ого порядка, а Векторы – нулевой вектор – столбец. При условии, что Векторы получим характеристическое уравнение для определения собственных значений Векторы

Векторы

Координаты собственного вектора Векторы что соответствуют собственному значению Векторы является решением системы уравнений: 

Векторы

Собственный вектор обозначаются с точностью к постоянному множителю.

Решение примеров:

Пример 1.90.

Обозначить  собственные определения и собственные векторы матрицы

Векторы

Решение. Характеристические уравнения данной матрицы имеет вид (1.24): 

Векторы или Векторы

отсюда получается, что матрица Векторы имеет два собственных значения Векторы и Векторы Собственный вектор Векторы что соответствует Векторы обозначаются с системой уравнений вида (1.25)

Векторы  или Векторы

которое приводится к одному уравнению Векторы

Возьмем Векторы получим решение в виде Векторы

Следует, первый собственный вектор является 

Векторы

Второй вектор Векторы что соответствует собственному значению Векторы определяется из системы уравнений вида (1.25)

Векторы

Эта система уравнений так же приводится к одному уравнению Векторы положив Векторы запишем ее решение в виде Векторы Следует, второй собственный вектор: 

Векторы

Таким образом, матрица Векторы имеет два разных определения Векторы и Векторы и два собственных вектора, равных Векторы и Векторы (с точностью к постоянному множителю). 

Пример 1.91 

Найти собственные векторы и собственные значения матрицы 

Векторы

Решение. Характеристическое уравнение

Векторы

Раскрыв определитель получим: 

Векторы

Корень Векторы – кратный, показатель кратности Векторы корень Векторы – простой, Векторы

Система уравнений для определения собственных векторов имеет вид: 

Векторы

Последовательно подставим Векторы и Векторы в записанную систему: 

Векторы

Векторы

Фундаментальная система уравнений получается, если свободным переменным Векторы последовательно дать значения Векторы

Векторы

Получили два линейно независимые собственные векторы. Вся совокупность векторов, что соответствуют собственному значению Векторы имеет вид: 

Векторы

Векторы

Векторы

Фундаментальная система решений получается, если взять Векторы

Векторы

Векторная алгебра

Понятие «вектор» (от лат. vector – носитель), как отрезка, имеет определенную длину и определенное направление, впервые появилось в работах по построению числовых систем в ирландского математика Уильяма Гамильтона (1805-1865). Это понятие связано с объектами, которые характеризуются величиной и направлением, например, скорость, сила, ускорение. При этом скорость можно понимать в широком смысле: скорость изменения издержек производства, доходов, спроса, потребления и предложения и др. Вектор может указывать направление наибольшего возрастания или убывания функции, описывающей различные экономические процессы. Векторы, рассмотренные в данном разделе, является частным случаем Векторы-мерных векторов: они предполагают геометрическую интерпретацию, потому что принадлежат к векторным линейных пространств размерности Векторы

Для графического изображения решения экономических задач на плоскости и в пространстве применяются средства аналитической геометрии. Аналитическая геометрия – математическая наука, объектом изучения которой являются геометрические фигуры, а предметом – установление их свойств средствами алгебры с помощью координатного метода. Теоретической базой этой науки является частично известна из школы векторная алгебра.

Основателем метода координат и, вместе с тем, аналитической геометрии является Рене Декарт (1596-1650) – французский философ, математик, физик и физиолог. Его именем и названа известная «декартова прямоугольная система координат», которая позволяет определить положение фигуры на плоскости и тела в пространстве.

После изучения данной темы вы сможете:

● использовать инструмент векторной алгебры для геометрического изображения и анализа объектов экономических процессов;
● применять уравнение прямой линии на плоскости для геометрической интерпретации зависимости между функциональному признаку и аргументом, что на нее влияет;
● применять уравнение кривых второго порядка при построении нелинейных математических моделей экономических задач;
● осуществлять геометрическую интерпретацию решений экономических задач с помощью поверхностей и плоскостей.

Векторы: основные определения, линейные операции

Выберем на произвольной прямой (в Векторы или в Векторы) отрезок Векторы и укажем, которую из точек Векторы или Векторы считать начальной (началом отрезка), а какую – конечной (концом отрезка). Конец отрезка обозначают стрелке и говорят, что на отрезке задано направление. Отрезок Векторы с заданным на нем направлением, или коротко – направленный отрезок, называется вектором. Вектор обозначается символом Векторы или строчными буквами латинского
алфавита с чертой: Векторы и др. (Рис. 6.1). 

Векторы

Рис. 6.1

В применимых задачах естественных наук существенным является обстоятельство – где, в какой точке находится начало вектора. Например, результат действия силы зависит не только от ее величины и направления действия, но и от того, в какой точке она прикладывается.

Вектор, для которого фиксированная (не фиксирована) начальная точка называется связанным (свободным). Векторы, которые применяются в экономических задачах, как правило, не являются связанными, поэтому в дальнейшем будем рассматривать преимущественно свободные векторы

Длиной, или модулем, вектора называется длина соответствующего отрезка и обозначается одним из символов: Векторы

Нулевым вектором 0, или ноль-вектором, называется вектор, длина которого равна нулю, а направление его считается произвольным (неопределенным).

Единичным вектором Векторы называется вектор, длина которого равна единице.

Равными векторами называются векторы, которые принадлежат одной прямой или параллельным прямым, одинаково направлены и имеют равные длины.

Взаимно противоположными называются векторы, которые принадлежат одной прямой или параллельным прямым, имеют равные длины, но противоположно направлены. Вектор, противоположный вектору Векторы, обозначают символом Векторы.

Коллинеарными называют векторы, которые принадлежат одной прямой или параллельным прямым.

Компланарными называются векторы, которые принадлежат одной плоскости или параллельным плоскостям.

Линейные операции над векторами

Будем считать, что векторы Векторы принадлежат одни плоскости. Осуществляя параллельный перенос одного из векторов Векторы, совместим начало вектора Векторы с концом вектора Векторы (или наоборот) и по отрезками, соответствующие векторам, как по двум сторонам, построим треугольник (рис. 6.2 а).

1. Суммой векторов Векторы называется вектор Векторы, который определяется третьей стороной треугольника, с началом в начале вектора Векторы. Порядок построения суммы двух векторов по этому определению называют правилом треугольника.

Параллельный перенос можно осуществить и так, что объединятся начала векторов Векторы и Векторы, тогда на векторах как на сторонах построим параллелограмм (рис. 6.2 б), и придем к известному из школьного курса алгебры правилу параллелограмма.

Векторы

Рис. 6.2

Правило треугольника обобщается на произвольное конечное число векторов. Если параллельным переносом расположить векторы так, что конец предыдущего вектора (начиная с первого) является началом следующего, то результирующим будет вектор, соединяющий начало первого вектора слагаемого с концом последнего (рис. 6.3):

Векторы

Векторы

Рис. 6.3

Соответствующее правило называют правилом многоугольника.
Свойства суммы векторов:
1) переставная, или коммутативна:

Векторы

2) соединительная, или ассоциативная:

Векторы

3) Векторы

4) Векторы

Разницу Векторы можно рассматривать как сумму вектора Векторы с вектором, противоположным вектору Векторы

Векторы

Умножения вектора на скаляр

Пусть Векторы – некоторое действительное число Векторы. Произведением вектора Векторы со скаляром Векторы называется вектор Векторы, модуль которого равен произведению модулей Векторы, а направление Векторы совпадает с направлением Векторы, если Векторы, или противоположно направлению Векторы, если Векторы (рис. 6.4):

Векторы

Векторы

Рис. 6.4

ПриВекторы вектор Векторы превращается в ноль-вектор Векторы.
Свойства умножения вектора на скаляр:
1) переставной или коммутативных закон:

 Векторы где Векторы

2) соединительный, или ассоциативный закон:

Векторы где Векторы

3) распределительный или дистрибутивный закон:

Векторы где Векторы

4) Векторы

5) Векторы

Из определения умножения вектора на скаляр следует необходимое и достаточное условие коллинеарности двух векторов: вектора Векторы и Векторы коллинеарны тогда и только тогда, когда каждый из них является произведением другого из скаляром:

Векторы

Известно, что три ненулевые векторы Векторы и Векторы компланарны тогда и только тогда, когда один из них является линейной комбинацией двух других:

Векторы компланарны Векторы

Рассмотрим понятие, имеет очень важное значение в теории векторов – проекции вектора на ось (прямую, имеет направление; заданное направление считать положительным, противоположное направление – отрицательным).

Компонентой вектора Векторы относительно оси Векторы называют вектор, начало которого является проекцией начала вектора Векторы на ось Векторы, а конец – проекцией конца вектора Векторы на ось Векторы (рис. 6.5).

Векторы

Рис. 6.5

Проекцией вектора Векторы на ось Векторы называют скаляр, равный длине компоненты вектора Векторы относительно оси Векторы со знаком Векторы, если направление компоненты совпадает с направлением оси Векторы, или со знаком Векторы, если ее направление противоположно направлению оси:

Векторы

Основные свойства проекции вектора на ось

1. Проекция вектора на ось Векторы равна произведению длины вектора Векторы с косинусом угла между вектором и осью:

Векторы

2. Проекция суммы двух векторов на эту ось равна сумме их проекций на эту ось:

Векторы

Это свойство обобщается на любое конечное число векторов.

3. Проекция на ось произведения вектора со скаляром равна произведению со скаляром проекции самого вектора на ось:

Векторы

Прямоугольная система координат в пространстве. Координатная и алгебраическая формы задания векторов

Пусть в трехмерном векторном пространстве Векторы задана прямоугольная декартова система координат Векторы, что определяется тремя взаимно перпендикулярными числовыми осями – осями, на которых указано масштаб (единицу длины) – с общей точкой Векторыначалом координат (рис. 6.6).

Векторы

Рис. 6.6

Выберем в пространстве произвольную точку Векторы и соединим ее отрезком прямой с началом координат Векторы. Вектор Векторы, началом которого является начало координат Векторы, а концом данная точка Векторы, называется радиусом-вектором точки Векторы. Отметим, что радиусы-векторы точек пространства являются связанными векторами. 

Под декартовыми прямоугольными координатами точки Векторы понимают проекции ее радиус-вектора Векторы на оси Векторы

Векторы

Точка Векторы с координатами Векторы обозначается через Векторы. Вектор Векторы каждой точки пространства (кроме точки Векторы) определяет прямоугольный параллелепипед с диагональю, что является отрезком, на котором построено вектор Векторы (рис. 6.6).

Измерениями параллелепипеда есть модули координат точки Векторы. Длина диагонали параллелепипеда определяется по формуле: 

Векторы

Углы Векторы, которые образованы радиусом-вектором Векторы с координатными осями Векторы называются его направляющими углами. 

Векторы

откуда:

Векторы

Косинусы направляющих углов называются направляющими косинусами радиус-вектора Векторы. С (6.4) получаем свойства:
1) направляющие косинусы являются координатами единичного радиус-вектора: Векторы

2) сумма квадратов направляющих косинусов вектора Векторы равна единице: Векторы

Понятие «координата», «направляющие углы», «направляющие косинусы» без изменений переносятся на любые свободные векторы, потому начало каждого из них параллельным переносом можно поместить в начало Векторы, дает радиус вектор определенной точки.

Координатами любого вектора Векторы в пространстве называются его проекции на оси координат. Они обозначаются символами Векторы и пишут: Векторыили Векторы, где согласно определению координат:

Векторы

Задача вектора тройкой его координат Векторы, называют координатной формой задачи.

Для единичных векторов Векторы, расположенных соответственно на осям Векторы, имеем:

Векторы

Длина произвольного вектора Векторы и его направляющие косинусы вычисляются по формулам:

Векторы

Найти длину и направляющие косинусы вектора ВекторыВекторы

По формулам (6.5) имеем: 

Векторы

Установим связь между координатами вектора – числами – и его компонентами – векторами – с помощью единичных векторов Векторы (рис. 6.7).

Векторы

Рис. 6.7

Компонентами вектора Векторы относительно координатных осей являются векторы Векторы Векторы (рис. 6.7). Согласно операции сложения векторов по правилу многоугольника получаем:

Векторы

Следовательно, любой вектор Векторы в трехмерном пространстве является суммой трех его компонент относительно координатных осей:

Векторы

Изображение вектора с Векторы в виде суммы произведений координат с единичными векторами (ортами) называют алгебраической формой задания вектора.

Согласно свойствами операций над векторами, алгебраическая форма задания дает возможность установить результаты действий над векторами, заданными в координатной форме.
1. При добавлении (вычитании) двух векторов с Векторы: Векторы и Векторы, их соответствующие по номеру координаты прилагаются (вычитаются):

Векторы

Действительно, по свойствам ассоциативности и дистрибутивности имеем:

Векторы

2. При умножении вектора Векторы на скаляр Векторы все его координаты умножаются на этот скаляр:

Векторы

Действительно, согласно распределительным свойствам умножения скаляра на сумму векторов имеем:

Векторы

Скалярное, векторное, смешанное произведения векторов

Скалярным произведением двух векторов Векторы и Векторы называется число (скаляр), равное произведению их модулей с косинус угла между ними Векторы и обозначается Векторы:

Векторы

Вместо Векторы часто пишут Векторы или используют обозначения Векторы. Название этой операции согласуется с ее сути, а именно: скалярное произведение является скаляром, то есть числом.

Для определения угла Векторы между векторами Векторы и Векторы совмещают их начала и рассматривают угол между двумя лучами Векторы и Векторы (рис. 6.8). Если угол Векторы острый, то Векторы, если тупой, то Векторы.

Основные свойства скалярного произведения векторов вытекают из его определения (6.7).

1. Скалярное произведение Векторы ненулевых векторов равно нулю тогда и только тогда, когда векторы взаимно перпендикулярны (ортогональные):

Векторы

2. Скалярный квадрат вектора равен квадрату его модуля, то есть

Векторы

3. Скалярное произведение подчиняется всем законам арифметики чисел относительно линейных операций:

Векторы

Векторы

4. Скалярное произведение двух векторов равно произведению модуля одного из них с проекцией второго на ось, направление которого определяется первым вектором:

Векторы

Доказательство этого свойства основывается на определении (6.3).

Скалярное произведение векторов Векторы и Векторы, заданных в координатной форме. Пусть имеем два вектора Векторы

1. Вычислим скалярные произведения единичных векторов Векторы По свойству Векторы Для других пар на основании свойства 1 имеем: Векторы

2. Находим произведение Векторы, подавая векторы в алгебраической форме (6.6) и используя распределительный закон:

Векторы

Раскрываем скобки и получаем:

Векторы

Скалярное произведение двух векторов равно сумме произведений одноименных координат. Это полностью совпадает с определением скалярного произведения Векторы-мерных векторов.

Как следствие из (6.12) при Векторы получаем формулу (6.5) модуля вектора через его координаты:

Векторы

Определим угол между двумя ненулевыми векторами Векторы и Векторы, заданные в координатной форме. Воспользуемся определением скалярного произведения (6.7) и соотношения (6.5). В результате получаем:

Векторы

Следовательно, косинус угла между двумя векторами определяется формулой: 

Векторы

Отсюда Векторы

В результате с соотношением (6.13) получим критерий ортогональности двух векторов, заданных в координатной форме: 

Векторы

Критерием коллинеарности векторов Векторы и Векторы, заданных в координатной форме является пропорциональность их координат:

Векторы

Векторное произведение двух векторов

Пусть Векторы и Векторы – векторы пространства Векторы Векторы, определяющие некоторую плоскость Векторы. Вектор Векторы называется векторным произведением векторов Векторы и Векторы, если вектор Векторы удовлетворяет условиям: 

1) модуль его численно равен площади параллелограмма, построенного на векторах Векторы и Векторы как на сторонах;
2) он перпендикулярный плоскости параллелограмма Векторы и направленный так, что поворот вектора Векторы до совмещения с вектором Векторы кратчайшим путем наблюдается с конца вектора Векторы против часовой стрелки (рис. 6.9).

Векторы

Рис. 6.9

Векторное произведение обозначается символами: Векторы, или Векторы

Следовательно,

Векторы

где Векторынаименьший из углов Векторы что соответствует совмещению Векторы с Векторы поворотом вектора Векторы против часовой стрелки.

Основные свойства векторного произведения вытекают из его определения.
1. Векторное произведение ненулевых векторов равно ноль-вектору тогда и только тогда, когда векторы Векторы и Векторы коллинеарны:

Векторы

Еще одним критерием коллинеарности векторов является равенство нулевому вектору их векторного произведения.

2. Векторные произведения с разным порядком сомножителей являются взаимно противоположными векторами:

Векторы

Это означает, что векторное произведение не подчиняется переставному (коммутативному) закону.

3. Векторное произведение подчиняется ассоциативному закону относительно скалярного множителя и дистрибутивному закону относительно сложения:

Векторы

где Векторы

Векторное произведение векторов Векторы и Векторы, заданных в координатной форме. Пусть имеем два ненулевые векторы: Векторы

1. Определяем векторные произведения ортов Векторы (рис. 6.10).

Векторное произведение одноименных векторов по свойству 1 дает ноль вектор:

Векторы

Однако все векторные произведения разноименных единичных векторов будут давать единичные векторы:

Векторы

Векторы

Рис. 6.10

Рассмотрим, например, произведение Векторы. Совмещение Векторы с Векторы кратчайшим путем (указано дугой со стрелкой на рис. 6.10) происходит против часовой стрелки, если смотреть с конца вектора Векторы, следовательно, Векторы. Тогда по свойству Векторы

2. Находим произведение Векторы, подавая векторы в алгебраической форме и используя арифметические свойства (6.18) и соотношения (6.19):

Векторы

Множители при Векторы это вскрытые определители 2-го порядка, поэтому Векторы

Коэффициенты при единичных векторах в соотношении (6.20) являются координатами вектора Векторы как векторного произведения векторов Векторы и Векторы.

Если символы Векторы в соотношении (6.20) считать элементами первой строки определителя 3-го порядка, то окончательно получим представление Векторы в виде определителя: 

Векторы

Найдем векторное произведение векторов Векторы и Векторы

Векторы

Модуль векторного произведения Векторы определяет площадь параллелограмма, построенного на векторах Векторы и Векторы

Смешанным произведением трех векторов Векторы и Векторы называется векторное произведение двух из них, умножен скалярно на третий вектор, то есть Векторы и т. д.

Смешанное произведение можно обозначать тройкой векторов Векторы, в которой первые два элемента считают связанными векторным произведением, а результат векторного произведения умножают на третий вектор скалярно, то есть Векторы – это все равно, что Векторы. Понятно, что результатом смешанного произведения является скаляр, поскольку векторное произведение Векторы является вектором (обозначим его через Векторы), а произведение Векторы дает скаляр.

Геометрическая интерпретация смешанного произведения. Пусть Векторы и Векторы – некомпланарные векторы. Построим на этих векторах как на ребрах параллелепипед (рис. 6.11).

Векторы

Рис. 6.11

Вектор Векторы по длине численно равна площади параллелограмма, построенного на векторах Векторы и Векторы как на сторонах. Этот параллелограмм является основой параллелепипеда, построенного на векторах Векторы и Векторы. Вектор Векторы является перпендикулярным плоскости параллелограмма.

Согласно (6.11) скалярное произведение Векторы можно представить как произведение модуля Векторы и проекции вектора Векторы на ось, определяется вектором Векторы:

Векторы

где Векторы, причем Векторы является положительным числом, если угол между векторами Векторы и Векторы острый, и отрицательным, если этот угол тупой. По модулю эта проекция равна высоте параллелепипеда Векторы.

Модуль смешанного произведения трех векторов численно равен объему параллелепипеда Векторы, построенного на векторах как на ребрах:

Векторы

Основные свойства смешанного произведения вытекают из его определения и геометрической интерпретации.
1. Смешанное произведение ненулевых векторов равно нулю, если по крайней мере два из трех векторов коллинеарны или все три – компланарны, и наоборот.

Необходимым и достаточным условием компланарности трех ненулевых векторов является равенство нулю их смешанного произведения:

Векторы компланарны Векторы

Свяжем с изображенными на плоскости векторами Векторы круг (рис. 6.12). Перечисление векторов, начиная с любого, против часовой стрелки назовем положительным, или циклическим, перестановкой векторов, в противном случае – отрицательной перестановкой.

2. Циклическая перестановка трех сомножителей смешанного произведения не меняет его величины, а отрицательное перестановки меняет его знак на противоположный:

Векторы

Смешанное произведение векторов, заданных в координатной форме

Пусть имеем три ненулевые векторы Векторы По определению смешанного произведения и представлением векторного и скалярного произведений в координатной форме имеем:

Векторы

Полученная сумма произведений является расписанием определителя 3-го порядка, составленный из координат векторов, по элементам его третьей строки, то есть:

Векторы

Векторы Векторы компланарны тогда и только тогда, когда определитель 3-го порядка, элементами строк которого являются координаты этих векторов равен нулю (свойство 1):

Векторы компланарны Векторы

С помощью смешанного произведения векторов легко определить, относятся ли четыре точки Векторы одной плоскости. Для этого следует проверить выполнение условия компланарности трех векторов с общим началом в одной из точек.

Простейшие задачи аналитической геометрии

Задача об определении длины отрезка. Найти длину отрезка Векторы, если известны координаты его концов: Векторы. Эту задачу можно рассматривать как задачу о нахождении расстояния между двумя точками.

1. Введем в рассмотрение вектор Векторы с началом Векторы и концом Векторы и радиусы-векторы ВекторыВекторы (рис. 6.13).
2. Определим координаты вектора Векторы как разности векторов Векторыи Векторы: Векторы
3. Находим модуль вектора Векторы, который и равна длине отрезка Векторы:

Векторы

Задача об определении площади треугольника

Найдем площадь треугольника, заданного координатами вершин: ВекторыВекторы

По аксиомой стереометрии известно, что три точки в пространстве определяют плоскость и притом только одну. Для упрощения изложения, не нарушает общего подхода к решению задачи, договоримся рассматривать треугольник Векторы, принадлежащей плоскости Векторы: Векторы и Векторы.

1. Введем в рассмотрение векторы:

Векторы

и найдем их векторное произведение Векторы

По соотношению (6.20) имеем: 

Векторы

2. Вычислим модуль вектора Векторы, численно равна площади параллелограмма Векторы, построенного на векторах Векторы как на сторонах (рис. 6.14):

Векторы

Тогда для площади треугольника Векторы имеем: 

Векторы

Знак Векторыили Векторы берется в зависимости от того, каким будет определитель – положительным или отрицательным.

Если треугольник принадлежит не плоскости Векторы, а любой другой плоскости в пространстве, то его площадь тоже можно найти по формуле:

Векторы

Найдем площадь треугольника с вершинами Векторы Векторы Векторы

Введем в рассмотрение векторы: Векторы и Векторы Векторы и определим их векторное произведение:

Векторы

Тогда 

Векторы (кв. ед.)

Задача о деление отрезка в заданном отношении

Пусть в пространстве заданы две точки Векторы. Проведем через них произвольную прямую Векторы и установим на этой прямой положительное направление, согласно которому определим направление на отрезке Векторы (рис. 6.15). На прямой Векторы возьмем точку Векторы, которая может принадлежать отрезку Векторы, или его продолжению. При этом, если точка Векторы принадлежит отрезку Векторы (рис. 6.15 а), говорится, что она осуществляет внутреннее деление отрезка на части, если не принадлежит (рис. 6.15 б) – то внешний.

Векторы

Рис. 6.15

Число Векторы, которое определяется формулой

Векторы

называется отношением, в котором точка Векторы разделяет направленный отрезок Векторы. Если Векторы, то Векторы осуществляет внутреннее (внешнее) деление отрезка на части.

Задача о деление отрезка в заданном отношении формулируется так: найти координаты точки Векторы, что разделяет отрезок Векторы в отношении Векторы, если отрезок Векторы задан координатами начала Векторы и конца – Векторы

Пусть точкам Векторы соответствуют радиусы-векторы Векторы (рис. 6.16). Из определения (6.29) следует, что векторы Векторы и Векторы коллинеарны, то есть Векторы. Следовательно, Векторы

С этого векторного равенства найдем вектор Векторы

Векторы

или в координатах:

Векторы

Отсюда, если отрезок разделить на две равные части точкой Векторы то координаты точки Векторы могут быть найдены следующим образом:

Векторы

Можно доказать, что координаты точки пересечения медиан треугольника, заданного координатами его вершин Векторы вычисляются по формулам: 

Векторы

Векторы

Векторы

Лекции:

  • Объем конуса
  • Разложение на множители
  • Деление многочлена на многочлен
  • Правила дифференцирования
  • Теорема Пифагора
  • Асимптотическое поведение функций. Сравнение бесконечно малых функций
  • Прямая линия на плоскости
  • Выпуклость и вогнутость графика функции
  • Матанализ для чайников
  • Производные некоторых элементарных функций

Если вектор умножить на ноль, он станет нулевым.

Обязательно нужно ставить значок вектора над нулем! Нельзя говорить, что векторная величина просто равна скалярной:

Рассмотрим некоторые свойства нулевого вектора.

А это значит, что его начало совпадает с концом, это просто какая-то точка.

Нулевой вектор принято считать сонаправленным любому вектору.

Его мы можем получить не только путем умножения вектора на ноль, но и путем сложения противонаправленных векторов:

Если вектор умножают на отрицательное число, он изменит свое направление на противоположное. Такой вектор называется обратным данному.

Но такие векторы должны быть коллинеарны. Звучит как скороговорка, но ничего страшного. Главное – понять суть.

Векторы лежат на одной прямой: они коллинеарны. По направлению видно, что они противонаправлены, это обозначается так:

Векторы лежат на параллельных прямых, они коллинеарны. При этом они сонаправлены:

Эти двое тоже коллинеарны! Они ведь лежат на параллельных прямых. При этом они противонаправлены:

Коллинеарные векторы, имеющие одинаковую длину и противоположные направления, называются обратными друг другу.

Параллельный перенос векторов

Одно из важных свойств вектора, которое очень часто помогает в операциях над ним, – параллельный перенос.

Если передвинуть вектор, не меняя его направления и длины, он будет идентичен начальному. Это свойство – параллельный перенос.

Сложение векторов по правилу треугольника

Сложение векторов – одна из самых легких и приятных вещей. Предположим, у нас есть два вектора:

Наша цель – найти такой вектор, который будет являться суммой двух данных:

Для начала нужно сделать так, чтобы конец одного вектора был началом другого. Для этого воспользуемся параллельным переносом:

Теперь достроим до треугольника.

Но как узнать направление нужного нам вектора?

Все просто: вектор суммы идет от начала первого слагаемого к концу второго, мы словно «идём» по векторам:

Это называется правилом треугольника.

Больше двух слагаемых векторов. Сложение по правилу многоугольника

Но что делать, нам нужно сложить не два, а три, пять векторов или даже больше?

Мы руководствуемся той же логикой: соединяем векторы и «идём» по ним:

Это называется правилом многоугольника.

Вычитание векторов через сложение

Вычитание векторов не сложнее. Это даже можно сделать через сумму! Для этого нам понадобится понятие обратного вектора. Запишем разность так:

Тогда нам лишь остается найти сумму с обратным вектором:

А сделать это очень легко по правилу треугольника:

Всегда помни, что вычитание можно представлять сложением, а деление — умножением на дробь.

Вычитание векторов через треугольник

Вычитать векторы можно через треугольник. Основная задача будет состоять в том, чтобы определить направление вектора разности.

Итак, векторы должны выходить из одной точки. Далее мы достраиваем рисунок до треугольника и определяем положение. Рассмотрим два случая:

Направление вектора разности зависит от того, из какого вектора мы вычитаем. У них совпадают концы.

Универсальное правило параллелограмма

Есть еще один способ сложения и вычитания векторов.

Способ параллелограмма наиболее востребован в физике и сейчас ты поймешь, почему. Основа в том, чтобы векторы выходили из одной точки, имели одинаковое начало.

Ничего не напоминает?

Именно! Когда мы делаем чертеж к задачам по физике, все силы, приложенные к телу, мы рисуем из одной точки.

В чем же заключается правило параллелограмма? С помощью параллельного переноса достроим до параллелограмма:

Тогда вектор суммы будет диагональю этой фигуры. Это легко проверяется правилом треугольника. Начало этого вектора совпадает с началом двух слагаемых векторов:

Другая диагональ будет являться разностью этих векторов. Направление определяем так же, как делали раньше.

Скалярное произведение векторов

Еще одной важной операцией является произведение векторов. Рассмотрим скалярное произведение. Его результатом является скаляр.

Уравнение очень простое: произведение длин этих векторов на косинус угла между ними.

Векторное произведение векторов

Векторное произведение векторов пригодится нам в электродинамике.

Его формула лишь немного отличается от предыдущей:

В отличие от скалярного произведения, результатом его является вектор и его даже можно изобразить!

После параллельного переноса векторов и нахождения угла между ними достроим их до параллелограмма и найдем его площадь. Площадь параллелограмма равна длине вектора произведения:

Этот вектор одновременно перпендикулярен двум другим. Его направление зависит от условного порядка векторов, который либо определен какими-то фактами (когда мы будем изучать силу Лоренца), либо является свободным.

Об этом мы поговорим подробнее, когда будем изучать электродинамику.

Итак, мы разобрали операции с векторами, рассмотрев даже самые сложные из них. Это было не так тяжело, верно? Так происходит не только с векторами, но и со многими другими темами. Идя от легкого к сложному, мы даже не заметили трудностей.

Ведь всегда стоит помнить о том, что даже самое длинное путешествие начинается с первого шага.

Проекции векторов

Что такое проекция вектора и с чем ее едят?

Мы уже выяснили, что над векторами можно проводить множество операций. Здорово, когда можешь начертить векторы, достроить их до треугольника и измерить результат линейкой.

Но зачастую физика не дает нам легких цифр. Наша задача – не отчаиваться и быть умнее, упрощая себе задачи.

Для того, чтобы работать с векторами как с числами и не переживать об их положении и о точности рисунков, были придуманы проекции.

Проекция вектора – словно тень, которую он отбрасывает на ось координат. И эта тень может о многом рассказать.

Ось координат — прямая с указанными на ней направлением, началом отсчёта и выбранной единицей масштаба.

Ось можно выбрать произвольно. В зависимости от ее выбора можно либо значительно упростить решение задачи, либо сделать его очень сложным.

Именно поэтому необходимо научиться работать с проекциями и осями.

Построение проекции. Определение знака

Возьмем вектор и начертим рядом с ним произвольную ось. Назвать ее тоже можно как угодно, но мы назовем ее осью Х.

Теперь опустим из начала и конца вектора перпендикуляры на эту ось. Отметим координаты начала (Х0) и конца (Х). Рассмотрим отрезок, заключенный между этими точками.

Казалось бы, мы нашли проекцию. Однако думать, что проекция является простым отрезком, – большое заблуждение.

Не все так просто: проекция может быть не только положительной. Чтобы найти проекцию, нужно из координаты конца вычесть координату начала:

Проекция вектора на ось — разность между координатами проекций точек конца и начала вектора на ось.

В случае выше определить знак довольно легко. Сразу видим, что координата конца численно больше координаты начала и делаем вывод о том, что проекция положительна:

Порой работать с буквами трудно. Поэтому предлагаю взять конкретный пример:

Рассмотрим другой случай. В этот раз координата начала больше координаты конца, следовательно, проекция отрицательна:

Рассмотрим еще один интересный случай.

Давай разместим ось так, чтобы вектор был ей перпендикулярен. Проекции точек начала и конца совпадут и проекция вектора будет равна нулю!

Анализ углов

Рассматривая эти ситуации, можно заметить, что знак, который принимает проекция вектора напрямую зависит от угла между вектором и осью, то есть от его направления!

Из начала вектора проведем луч, параллельный оси и направленный в ту же сторону, что и ось. Получим угол между вектором и осью.

Если угол острый, проекция положительна:

Если угол тупой, проекция отрицательна:

Обрати особое внимание на то, какой именно угол является углом между вектором и осью!

Частные случаи проекции

Настоящий подарок судьбы – тот момент, когда вектор параллелен оси. Это сохраняет драгоценное время при решении множества задач. Рассмотрим эти случаи.

Если вектор параллелен оси, угол между ними либо равен нулю, либо является развернутым (180 О ). Это зависит от направления.

При этом длина проекции совпадает с длиной вектора! Смотри!

Как и прежде, если вектор направлен туда же, куда и ось, проекция положительна:

Если вектор направлен в другую сторону, проекция отрицательна:

Если вектор направлен туда же, куда и ось, его проекция положительна. Если вектор направлен в другую сторону, его проекция отрицательна.

Эти утверждения применимы не только к векторам, которые параллельны оси. Это особенно удобно использовать в тех случаях, когда ось направлена под углом.

Что? Почему раньше не сказал? А… Ну…

Хватит вопросов! Вот тебе пример:

(vec) направлен противоположно оси. Его проекция отрицательна.

Еще один частный случай – работа с обратными векторами.

Давай выясним, как связаны проекции данного вектора и вектора, который является ему обратным. Начертим их и обозначим координаты начал и концов:

Проведем дополнительные линии и рассмотрим два получившихся треугольника. Они прямоугольны, так как проекция строится с помощью перпендикуляра к оси.

Наши векторы отличаются лишь направлением. При этом, если мы просто посмотрим на них как на прямые, мы можем сказать, что они параллельны. Их длины тоже одинаковы.

Прямоугольные треугольники равны по углу и гипотенузе. Это значит, что численно равны и их катеты, в том числе те, которые равны проекциям:

Мы помним, что обратные векторы всегда коллинеарны. Это значит, что прямые, на которых они расположены, находятся под одним углом к оси:

Остается лишь определиться со знаками. Данный вектор направлен по оси Х, а обратный ему – против. Значит, первый положителен, а второй отрицателен. Но модули их равны, так как равны их длины.

Проекции обратных векторов равны по модулю и противоположны по знаку.

Давайте еще раз уточним.

Вектор сам по себе не может быть отрицательным (обратный вектор есть вектор, умноженный на минус единицу).

Длина вектора так же не может быть отрицательной. Длина есть модуль вектора, а модуль всегда положителен.

Проекция вектора бывает отрицательной. Это зависит от направления вектора.

Способы нахождения проекций и векторов с помощью тригонометрии

Зная угол между вектором и осью, можно не прибегать к координатам. Углы, прямоугольные треугольники… Всегда стоит помнить, что, если ты видишь прямоугольный трегольник, тригонометрия протянет тебе руку помощи.

Именно тригонометрия чаще всего применяется в задачах, где требуется работать с проекциями. Особенно она помогает в задачах на второй закон Ньютона.

Рассмотрим вектор и его проекции на оси:

Можем заметить, что проекции вектора соответствуют катетам прямоугольного треугольника, который легко можно достроить:

Тогда обозначим прямой угол и угол между вектором и осью:

Зная, что проекции соответствуют катетам, мы можем записать, чему равны синус и косинус угла. Они равны отношению проекций к гипотенузе. За гипотенузу считаем длину данного вектора.

Из этих уравнений легко выражаются проекции.

А еще следует помнить, что из проекций мы можем найти длину данного вектора с помощью теоремы Пифагора:

Зная, как работать с проекциями векторов и часто практикуясь, можно довести свои навыки решения большинства задач механики до совершенства.

Действия над проекциями векторов. Решение задач

Умение применять свои знания на практике невероятно важны. Это касается не только физики.

Мы знаем, что проекции были придуманы для того, чтобы работать не с векторами, а с числами.

Сложение проекций. Доказательство главного свойства

Предположим, у нас есть два вектора и нам нужно найти их сумму. Посчитать по клеткам нам вряд ли удастся:

Спроецируем оба вектора на ось Х. Заметим, что конец одного вектора есть начало второго, то есть их координаты совпадают:

Давай посчитаем проекции векторов и проекцию вектора их суммы:

Мы можем заметить, что сумма проекций двух данных векторов оказалась равна проекции вектора их суммы!

Намного важнее уметь доказывать гипотезы в общем виде.

Тогда никто не сможет упрекнуть тебя в том, что твои утверждения – просто результат совпадения!

Согласно определению проекции, запишем уравнения проекций для двух данных векторов и вектора их суммы:

Затем запишем, чему равна сумма этих векторов.

Мы доказали нашу гипотезу.

Но что насчет разности?

Все очень просто! Помнишь, как мы считали разность через сумму? Здесь это делается аналогично!

Проекция суммы векторов равна сумме проекций векторов.

Проекция разности векторов равна разности проекций векторов.

Или можно записать так:

Простейшие задачи на нахождение проекций

Простейшие задачи на нахождение проекций чаще представлены в виде различных графиков или рисунков.

Давай научимся с ними работать.

Нам даны оси и векторы. Задача: найти проекции каждого из них на обе оси.

Будем делать все по порядку. Для каждого вектора предлагаю сначала определить знак проекций, а затем посчитать их.

В первом случае вектор направлен против оси Х.

Значит, его проекция на эту ось будет отрицательна. Мы убедимся в этом с помощью вычислений.

Сразу бросается в глаза то, что вектор расположен перпендикулярно оси Y. Его проекция на эту ось будет равна нулю, ведь расстояние между проекциями точек начала и конца равно нулю!

Рассмотрим второй вектор.

Он «сонаправлен» оси Y и «противонаправлен» оси Х. Значит, проекция на ось будет положительна, а на ось Х – отрицательна.

Убедимся в этом.

На осях для удобства отметим проекции точек начала и конца вектора, проведя перпендикуляры. Затем проведем вычисления:

Рассмотрим (vec). Заметим, что он является обратным для (vec): их длины равны, а направления противоположны.

Мы помним, что в таком случае их проекции отличаются лишь знаками. И это действительно так:

Поступаем с (vec) так же, как поступали с первым вектором.

Он перпендикулярен оси Х, а значит его проекция (что есть разность между проекциями точки конца и начала!) на эту ось равна нулю.

Проведя перпендикуляры, считаем проекцию на ось Y:

С (vec) работать приятно: он расположен по направлению обеих осей. Обе его проекции будут положительны, остается лишь посчитать их:

Задачи на нахождение вектора и его угла с осью

С помощью проекций можно найти длину вектора и его направление, а также угол, под которым он находится относительно оси.

Давай попробуем это сделать.

Даны проекции вектора на две оси. Для начала нарисуем оси:

Расположить вектор можно как угодно, поэтому произвольно отметим на осях его проекции. Мы помним, что проекции и вектор образуют прямоугольный треугольник. Давай попробуем его составить.

С проекцией на ось Х все понятно, просто поднимаем ее. Но куда поставить проекцию оси Y?

Для этого нам нужно определить направление вектора. Проекция на ось Х отрицательна, значит вектор направлен в другую сторону от оси.

Проекция на ось Y положительна. Вектор смотрит в ту же сторону, что и ось.

Исходя из этого, мы можем нарисовать вектор и получить прямоугольный треугольник:

Теперь нужно найти длину этого вектора. Используем старую добрую теорему Пифагора:

Обозначим угол (alpha ), который необходимо найти, мы учились это делать в начале изучения проекций. Он расположен вне треугольника. Мы ведь не ищем легких путей, верно?

Рассмотрим смежный ему угол (beta ). Его найти гораздо проще, а в сумме они дадут 180 градусов.

Чтобы сделать это, абстрагируемся от векторов, проекций и просто поработаем с треугольником, стороны которого равны 3, 4 и 5. Найдем синус угла (beta ) и по таблице Брадиса (либо с помощью инженерного калькулятора) определим его значение.

Вычитанием угла (beta ) из 180 градусов найдем угол (alpha ):

Главный метод работы с осями и проекциями в решении физических задач

В большинстве задач по физике, когда в условиях нам дают значения векторных величин, например, скорости, нам дают длину вектора.

Поэтому важно научиться искать проекции вектора и связывать их с ней.

Рассмотрим следующий рисунок (вектор F2 перпендикулярен вектору F3):

Чаще всего с подобным расположением векторов мы встречаемся в задачах, где необходимо обозначить все силы, действующие на тело.

Одним из важных этапов решение «векторной части» этих задач является правильный выбор расположения осей. Он заключается в том, чтобы расположить оси так, чтобы как можно большее число векторов оказались им параллельны.

Как правило, оси располагаются под прямым углом друг к другу, чтобы не получить лишней работы с углами.

Сделаем это для данного рисунка:

Мы видим, что остальные векторы расположены к осям под каким-то углом.

Пунктиром проведем горизонтальную линию и отметим этот угол, а затем отметим другие равные ему углы:

Пришло время искать проекции. У нас две оси, поэтому сделаем для удобства табличку:

Мы располагали оси так, чтобы некоторые векторы были расположены параллельно осям, значит их проекции будут равняться их длинам.

Оси перпендикулярны друг другу, поэтому некоторые проекции будут равняться нулю. Запишем это:

Переходим к векторам, которые расположены под углом.

Выглядит страшно, но это не так!

Дальше идет чистая геометрия. Чтобы не запутаться, рассмотрим лишь часть рисунка. А лучше и вовсе перерисовать его часть, могут открыться много новых вещей.

Из конца вектора F1 проведем перпендикуляр к оси Y. Мы получим прямоугольный треугольник, где нам известен угол (альфа) и гипотенуза (вектор).

Обозначим, что является проекцией. Это катет:

Здесь на помощь придет тригонометрия. Этот катет прилежащий к известному углу. Синус угла есть проекция катета, деленная на гипотенузу. Отсюда можно выразить катет (проекцию) и записать ее в таблицу.

Вспомни, когда мы первый раз встретились с тригонометрией, изучая векторы. Мы тоже рассматривали прямоугольный треугольник.

Найдем проекцию на ось Х. Это, кажется, сложнее, ведь мы не знаем угол…

Знаем! Ведь проекция вектора на ось Х – то же самое, что противолежащий катет уже рассмотренного треугольника, смотри:

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Значит, проекцию на ось Х можно найти через косинус.

Не забываем смотреть на направления векторов!

Попробуй найти проекции четвертого вектора самостоятельно и сверься с таблицей.

Заключение

Итак, теперь мы знаем о векторах очень много! Мы выяснили, зачем они нужны и как с ними работать, а еще разобрали их роль в решении различных задач. Теперь векторы — наша прочная опора.

Именно из таких знаний складывается порой нечто более сложное и комплексное, что-то, что безусловно нам однажды поможет.

[spoiler title=”источники:”]

http://ege-study.ru/ru/ege/materialy/matematika/vektory-na-ege-po-matematike-v-zadache-v6-dejstviya-nad-vektorami/

[/spoiler]

Добавить комментарий