Как найти проекцию стороны треугольника на основание

Треугольник — фигура, которая состоит из трёх точек, не лежащих на одной прямой, и трёх отрезков, попарно соединяющих эти точки. Точки называются вершинами треугольника, а отрезки — его сторонами.

— все углы треугольника острые.

— один из углов треугольника тупой (больше 90°).

— один из углов треугольника прямой (равен 90°).

— все три стороны не равны.

— две стороны равны.

— все три стороны равны.

Стороны треугольника пропорциональны синусам противолежащих углов.

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон без удвоенного произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 b c · cos α
b 2 = a 2 + c 2 – 2 a c · cos β
c 2 = a 2 + b 2 – 2 a b · cos γ

Медиана треугольника — отрезок внутри треугольника, который соединяет вершину треугольника с серединой противоположной стороны.

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)
AO OD = BO OE = CO OF = 2 1

Биссектриса угла — луч с началом в вершине угла, делящий угол на два равных угла.

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника
AE AB = EC BC

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°

где p = a + b + c 2 — полупериметр треугольника.

Высота треугольника — это перпендикуляр, опущенный из вершины треугольника на прямую содержащую противоположную сторону.

При пересечении всех трёх средних линий образуются 4 равных треугольника, подобных (даже гомотетичных) исходному с коэффициентом 1/2.
∆MBN

Признаки

Если отрезок параллелен одной из сторон треугольника и соединяет середину стороны треугольника с точкой, лежащей на другой стороне треугольника, то этот отрезок — средняя линия.

Периметр треугольника

Периметр треугольника ∆ABC равен сумме длин его сторон.

Формулы площади треугольника

Формула площади треугольника по стороне и высоте

Площадь треугольника равна половине произведения длины стороны треугольника на длину проведенной к этой стороне высоты.

S = 1 2 a · h a ,
S = 1 2 b · h b ,
S = 1 2 c · h c ,

где a, b, c — стороны треугольника,
ha, hb, hc — высоты, проведенные к сторонам a, b, c треугольника.

Формула площади треугольника по трем сторонам

Формула Герона формула для вычисления площади треугольника S по длинам его сторон a, b, c .

S = p p – a p – b p – c ,

где p — полупериметр треугольника: p = a + b + c 2
a, b, c — стороны треугольника.

Формула площади треугольника по двум сторонам и углу между ними

Площадь треугольника равна половине произведения двух его сторон умноженного на синус угла между ними.

S = 1 2 a · b · sin γ ,
S = 1 2 b · c · sin α ,
S = 1 2 a · c · sin β ,

где a, b, c — стороны треугольника,
γ — угол между сторонами a и b ,
α — угол между сторонами b и c ,
β — угол между сторонами a и c .

Формула площади треугольника по трем сторонам и радиусу описанной окружности

a, b, c — стороны треугольника,
R – радиус описанной окружности.

Формула площади треугольника по трем сторонам и радиусу вписанной окружности

Площадь треугольника равна произведения полупериметра треугольника на радиус вписанной окружности.

где S — площадь треугольника,
r – радиус вписанной окружности,
p — полупериметр треугольника: p = a + b + c 2

Равенство треугольников

Определение

Если два треугольника АВС и А1В1С1 можно совместить наложением, то они равны.

Свойства

У равных треугольников равны и их соответствующие элементы. (В равных треугольниках против равных сторон лежат равные углы, против равных углов лежат равные стороны).

Признаки равенства треугольников

По двум сторонам и углу между ними

Если две стороны и угол между ними одного треугольника соответственно равны двум сторонам и углу между ними другого треугольника, то такие треугольники равны.

По стороне и двум прилежащим углам

Если сторона и два прилежащих к ней угла одного треугольника соответственно равны стороне и двум прилежащим к ней углам другого треугольника, то такие треугольники равны.

По трем сторонам

Если три стороны одного треугольника соответственно равны трем сторонам другого треугольника, то такие треугольники равны.

Подобие треугольников

Определение

Подобные треугольники — треугольники, у которых углы соответственно равны, а стороны одного соответственно пропорциональны сторонам другого треугольника.

∆MNK => α = α 1 , β = β 1 , γ = γ 1 и AB MN = BC NK = AC MK = k

где k — коэффициент подобия.

Признаки подобия треугольников

  1. Если два угла одного треугольника соответственно равны двум углам другого, то такие треугольники подобны.
  2. Если три стороны одного треугольника пропорциональны трем сторонам другого, то такие треугольники подобны.
  3. Если две стороны одного треугольника пропорциональны двум сторонам другого, а углы, между этими сторонами, равны, то такие треугольники подобны.

Свойства

Площади подобных треугольников относятся как квадрат коэффициента подобия:

S ∆АВС S ∆MNK = k 2

Прямоугольные треугольники

Прямоугольный треугольник — треугольник, в котором один угол прямой (то есть равен 90˚).

Свойства прямоугольного треугольника

Катет прямоугольного треугольника, лежащий против угла в 30°, равен половине гипотенузы (гипотенуза в два раза длиннее катета, лежащего против угла в 30°).

Рассмотрим прямоугольный треугольник ABC, в котором ∠ A — прямой, ∠ B = 30°, и значит, что ∠ C = 60°.

Докажем, что BC=2AC.
Приложим к треугольнику ABC равный ему треугольник ABD , как показано на рисунке.
Получим треугольник BCD, в котором ∠ B = ∠ D = 60° , поэтому DC = BC. Но DC = 2AC. Следовательно, BC = 2AC.

Справедливо и обратное суждение: Если катет прямоугольного треугольника равен половине гипотенузы (или гипотенуза в два раза длиннее катета), то угол, лежащий против этого катета, равен 30°.

Признаки равенства прямоугольных треугольников

Так как в прямоугольном треугольнике угол между двумя катетами — прямой, а любые два прямых угла равны, то из общих признаков равенства треугольников для прямоугольных треугольников можно сформулировать свои признаки равенства.

  1. Если катеты одного прямоугольного треугольника соответственно равны катетам другого, то такие треугольники равны.
  2. Если катет и прилежащий к нему острый угол одного прямоугольного треугольника соответственно равны катету и прилежащему к нему острому углу другого, то такие треугольники равны.
  3. Если гипотенуза и острый угол одного прямоугольного треугольника соответственно равны гипотенузе и острому углу другого, то такие треугольники равны.
  4. Если гипотенуза и катет одного прямоугольного треугольника соответственно равны гипотенузе и катету другого, то такие треугольники равны.

Свойства

Площади подобных треугольников относятся как квадрат коэффициента подобия:

Треугольник. Формулы и свойства треугольников.

Типы треугольников

По величине углов

По числу равных сторон

Вершины углы и стороны треугольника

Свойства углов и сторон треугольника

Сумма углов треугольника равна 180°:

В треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы:

если α > β , тогда a > b

если α = β , тогда a = b

Сумма длин двух любых сторон треугольника больше длины оставшейся стороны:

a + b > c
b + c > a
c + a > b

Теорема синусов

Стороны треугольника пропорциональны синусам противолежащих углов.

a = b = c = 2R
sin α sin β sin γ

Теорема косинусов

Квадрат любой стороны треугольника равен сумме квадратов двух других сторон треугольника минус удвоенное произведение этих сторон на косинус угла между ними.

a 2 = b 2 + c 2 – 2 bc · cos α

b 2 = a 2 + c 2 – 2 ac · cos β

c 2 = a 2 + b 2 – 2 ab · cos γ

Теорема о проекциях

Для остроугольного треугольника:

a = b cos γ + c cos β

b = a cos γ + c cos α

c = a cos β + b cos α

Формулы для вычисления длин сторон треугольника

Медианы треугольника

Свойства медиан треугольника:

В точке пересечения медианы треугольника делятся в отношении два к одному (2:1)

Медиана треугольника делит треугольник на две равновеликие части

Треугольник делится тремя медианами на шесть равновеликих треугольников.

Формулы медиан треугольника

Формулы медиан треугольника через стороны

ma = 1 2 √ 2 b 2 +2 c 2 – a 2

mb = 1 2 √ 2 a 2 +2 c 2 – b 2

mc = 1 2 √ 2 a 2 +2 b 2 – c 2

Биссектрисы треугольника

Свойства биссектрис треугольника:

Биссектриса треугольника делит противолежащую сторону на отрезки, пропорциональные прилежащим сторонам треугольника

Угол между биссектрисами внутреннего и внешнего углов треугольника при одной вершине равен 90°.

Формулы биссектрис треугольника

Формулы биссектрис треугольника через стороны:

la = 2√ bcp ( p – a ) b + c

lb = 2√ acp ( p – b ) a + c

lc = 2√ abp ( p – c ) a + b

где p = a + b + c 2 – полупериметр треугольника

Формулы биссектрис треугольника через две стороны и угол:

la = 2 bc cos α 2 b + c

lb = 2 ac cos β 2 a + c

lc = 2 ab cos γ 2 a + b

Высоты треугольника

Свойства высот треугольника

Формулы высот треугольника

ha = b sin γ = c sin β

hb = c sin α = a sin γ

hc = a sin β = b sin α

Окружность вписанная в треугольник

Свойства окружности вписанной в треугольник

Формулы радиуса окружности вписанной в треугольник

r = ( a + b – c )( b + c – a )( c + a – b ) 4( a + b + c )

Окружность описанная вокруг треугольника

Свойства окружности описанной вокруг треугольника

Формулы радиуса окружности описанной вокруг треугольника

R = S 2 sin α sin β sin γ

R = a 2 sin α = b 2 sin β = c 2 sin γ

Связь между вписанной и описанной окружностями треугольника

Средняя линия треугольника

Свойства средней линии треугольника

MN = 1 2 AC KN = 1 2 AB KM = 1 2 BC

MN || AC KN || AB KM || BC

Периметр треугольника

Периметр треугольника ∆ ABC равен сумме длин его сторон

Формулы площади треугольника

Формула Герона

Равенство треугольников

Признаки равенства треугольников

Первый признак равенства треугольников — по двум сторонам и углу между ними

Второй признак равенства треугольников — по стороне и двум прилежащим углам

Третий признак равенства треугольников — по трем сторонам

Подобие треугольников

∆MNK => α = α 1, β = β 1, γ = γ 1 и AB MN = BC NK = AC MK = k ,

где k – коэффициент подобия

Признаки подобия треугольников

Первый признак подобия треугольников

Второй признак подобия треугольников

Третий признак подобия треугольников

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Проекция на сторону треугольника

Плоскостью называется поверхность, образуемая движением прямой линии, которая движется параллельно самой себе по неподвижной направляющей прямой .

Проекции плоскости на комплексном чертеже будут различны в зависимости от того, чем она задана. Как известно из геометрии, плоскость может быть задана: а) тремя точками, не лежащими на одной прямой; б) прямой линией и точкой, лежащей вне этой прямой; в) двумя пересекающимися прямыми; г) двумя параллельными прямыми.

На комплексном чертеже (рис. 99) проекции плоскости также задаются проекциями этих элементов, например, на рис 99, а — проекциями трех точек А, , и С, не лежащих на одной прямой; на рис. 99, б — проекциями прямой ВС и точки А у не лежащей на этой прямой; на рис. 99, в — проекциями двух пересекающихся прямых; на рис. 99, г проекциями двух параллельных прямых линий АВ и CD.

На рис. 100 плоскость задана прямыми линиями, по которым эта плоскость пересекает плоскости проекций. Такие линии называются следами плоскости.
Линия пересечения данной плоскости Р с горизонтальной плоскостью проекций Н называется горизонтальным следом плоскости Р и обозначается Рн.
Линия пересечения плоскости Р с фронтальной плоскостью проекций V называется фронтальным следом этой плоскости и обозначается Рv.

Линия пересечения плоскости Р с профильной плоскостью проекций W называется профильным следом этой плоскости и обозначается Pw.

Следы плоскости пересекаются на осях проекций. Точки пересечения следов плоскости с осями проекций называются точками схода следов. Эти точки обозначаются Рx, Рy и Рz.

Расположение следов плоскости Р на комплексном чертеже по отношению к осям проекций определяет положение самой плоскости по отношению к плоскостям проекций. Например, если плоскость Р имеет фронтальный и профильный следы Pv и Pw, параллельные осям Ох и Оу то такая плоскость параллельна плоскости Н и называется горизонтальной (рис. 101, и). Плоскость Р со следами Рн и Pw , параллельными осям проекций Ох и Oz (рис. 101, называется фронтальной, а плоскость Р со следами Pv и Pн параллельными осям проекций Оу и Oz, — профильной (рис. 101, в).

Горизонтальная, фронтальная и профильная плоскости, перпендикулярные к двум плоскостям проекций, называются плоскостями уровня. Если на комплексном чертеже плоскость уровня задана не следами, а какой-нибудь плоской фигурой, например, треугольником или параллелограммом (рис. 101, г, д, е), то на одну из плоскостей проекций эта фигура проецируется без искажения, а на две другие плоскости проекций — в виде отрезков прямых.

ПРОЕЦИРУЮЩИЕ ПЛОСКОСТИ И ПЛОСКОСТЬ ОБЩЕГО ПОЛОЖЕНИЯ

Плоскость, перпендикулярная к плоскости Н (рис. 102, а),называется горизонтально-проецирующей плоскостью. Фронтальный след Pv этой плоскости перпендикулярен оси Ох, а горизонтальный след Рн расположен под углом к оси Ох (комплексный чертеж на рис. 102, а)

Если горизонтально-проецирующая плоскость задана не следами, а какой-либо фигурой, например треугольником АВС (рис. 102, 6), то горизонтальная проекция этой плоскости представляет собой прямую линию, а фронтальная и профильная проекции — искаженный вид треугольника АВС.

Фронтально-проецирующей плоскостью называется плоскость, перпендикулярная к фронтальной плоскости проекций (рис. 102, в).

Горизонтальный след этой плоскости перпендикулярен оси Ох, а фронтальный след расположен под некоторым углом к оси Ох (комплексный чертеж на рис. 102, в).

При задании фронтально-проецирующей плоскости не следами, а, например, параллелограммом ABCD фронтальная проекция такой плоскости представляет собой прямую линию (рис. 102, г), а на горизонтальную и профильную плоскости проекций параллелограмм проецируется с искажением.

Профильно-проецирующей плоскостью называется плоскость, перпендикулярная к плоскости W (рис. 102, д). Следы Pv и Рн этой плоскости параллельны оси Ох.

При задании профильно-проецирующей плоскости не следами, а, например, треугольником АВС (рис. 102, е) профильная проекция такой плоскости представляет собой прямую линию. Плоскости, перпендикулярные двум плоскостям проекций, как было сказано, называются плоскостями уровня.

Если плоскость Р не перпендикулярна ни одной из плоскостей проекций (рис. 102, ж), то такая плоскость называется плоскостью общего положения. Все три


следа Pv, Рн и Pw плоскости Р наклонены к осям проекций.

Если плоскость общего положения задана не следами, а, например, треугольником АВС (рис. 102, з), то этот треугольник проецируется на плоскости H, V и W в искаженном виде.

ПРОЕКЦИИ ТОЧКИ И ПРЯМОЙ, РАСПОЛОЖЕННЫХ НА ПЛОСКОСТИ

Если прямая расположена на плоскости, то она должна проходить через две какие-либо точки, принадлежащие этой плоскости. Такие две точки могут быть взяты на следах плоскости — одна на горизонтальном, а другая на фронтальном. Так как следы прямой и плоскости находятся на плоскостях проекций и то следы прямой, принадлежащей плоскости, должны быть расположены на одноименных следах этой плоскости (рис. 103, а);например, горизонтальный след Н прямой — на горизонтальном следе плоскости, фронтальный след V прямой — на фронтальном следе Рv плоскости (рис. 103, б).

Для того чтобы на комплексном чертеже плоскости Р, заданной следами, провести какую-либо прямую общего положения, необходимо наметить на следах плоскости точки v’ или считать их следами искомой прямой (точнее, v’ — фронтальной проекцией горизонтального следа прямой).

Опустив перпендикуляры из v’ и на ось проекций х, находим на ней вторые проекции следов прямой: v — горизонтальную проекцию фронтального следа прямой и h’ — фронтальную проекцию горизонтального следа прямой. Соединив одноименные проекции следов, т. е. v’c h и v c h прямыми, получим две проекции прямой линии, расположенной в плоскости общего положения Р.

Очень часто требуется провести на плоскости горизонталь и фронталь, которые называются главными линиями плоскости или линиями уровня. Главные линии помогают решать многие задачи проекционного черчения.

Горизонталь и фронталь имеют в системе двух плоскостей V и Н только по одному следу (например, горизонталь имеет только фронтальный след). Поэтому, зная один след главной линии, проекцию главной линии проводят по заранее известному направлению. Это направление для горизонтали видно из рис. 104, а, где показана плоскость общего положения и горизонталь, лежащая на ней. Из рисунка видно, что горизонтальная проекция горизонтали параллельна горизонтальному следу плоскости.

Таким образом, чтобы на комплексном чертеже плоскости Р провести в этой плоскости какую-либо горизонталь, нужно наметить на следе Рv плоскости точку v’ (рис. 104, б) и считать ее фронтальной проекцией фронтального следа горизонтали. Затем через точку v’ параллельно оси х проводят прямую, которая будет фронтальной проекцией горизонтали.

Опустив перпендикуляр из точки v’ на ось x , получают точку v, которая будет горизонтальной проекцией фронтального следа горизонтали. Прямая, проведенная из точки v параллельно следу PH плоскости, представляет собой горизонтальную проекцию искомой горизонтали. Построение проекции фронтали показано на рис. 104, в и г.

11 с редко требуется провести горизонталь и фронталь на проецирующих плоскостях. Рассмотрим, например, построение горизонтали на фронтально-проецирующей плоскости (рис. 105). На следе плоскости Рv намечаем фронтальную проекцию фронтального следа горизонтали и на оси находим его горизонтальную проекцию v (рис. 105, а). Затем через точку проводим параллельно Рн горизонтальную проекцию горизонтали; фронтальная проекция горизонтали совпадает с точкой v’.

Если плоскость задана не следами, а пересекающимися или параллельными прямыми, то построение проекций горизонтали или фронтали, расположенных в этой плоскости, выполняется следующим образом.

Пусть плоскость задана двумя параллельными прямыми AВ и СD (рис. 105, 6). Для построения горизонтали, лежащей в этой плоскости, проводим параллельно оси х фронтальную проекцию горизонтали и отмечаем точки е’и f’ пересечения фронтальной проекции горизонтали с фронтальными проекциями параллельных прямых, которыми задана плоскость. Через точки е’и f’ проводим вертикальные линии связи до пересечения с ab и cd в точках е и f. Точки е и f соединяем прямой линией, которая и будет горизонтальной проекцией горизонтали.

Если требуется найти следы плоскости, заданной пересекающимися или параллельными прямыми, надо найти следы этих прямых и через полученные точки провести искомые следы плоскости.

Рассмотрим комплексный чертеж параллелограмма ABCD (рис. 106, a),который задает некоторую плоскость X. Отрезок DC расположен в плоскости H, следовательно, его горизонтальная проекция dc является горизонтальным следом плоскости (точнее — горизонтальной проекцией горизонтального следа плоскости).

Чтобы найти фронтальный след этой плоскости, необходимо продолжить горизонтальную проекцию dc прямой DC до пересечения с осью х в точке Рх, через которую должен пройти искомый фронтальный след плоскости.

Второй точкой v’, через которую пройдет искомый фронтальный след плоскости, является фронтальный след прямой АВ (фронтальная проекция фронтального следа). Фронтальную проекцию фронтального следа прямой АВ находим, продолжая горизонтальную проекцию ab прямой АВ до пересечения с осью х в точке v, которая будет горизонтальной проекцией искомого фронтального следа прямой АВ. Фронтальная проекция фронтального следа этой прямой находится на перпендикуляре, восставленном из точки v к оси х, в точке v’ его пересечения с продолжением фронтальной проекции а’в’ прямой АB. Соединив точки Px с v’, находим фронтальный след Pv плоскости.

Пример решения подобной задачи приведен на рис 106, б.

Часто на комплексных чертежах приходится решать такую задачу: по одной из заданных проекций точки, расположенной на заданной плоскости, определить две другие проекции точки. Ход решения задачи следующий.

Через заданную проекцию точки, например фронтальную проекцию n’ точки N, расположенной на плоскости треугольника АВС (рис. 107), проводим одноименную проекцию вспомогательной прямой любого направления, например m’к’.

Горизонталью плоскости называется прямая, принадлежащая этой плоскости и параллельная горизонтальной плоскости проекций Н.

Строим другую проекцию mк вспомогательной прямой. Для этого проводим вертикальные линии связи через точки m’ и к’ до пересечения с линиями ас и вс. Из точки n’ проводим линию связи до пересечения с проекцией mк в искомой точке n.

Профильную проекцию n” находим по общим правилам проецирования.

В качестве вспомогательной прямой для упрощения построения чаще используются горизонталь или фронталь.

Чтобы найти какую-либо точку на плоскости Р, например точку А (рис. 108, а и б) надо найти ее проекции а’и а, которые располагаются на одноименных проекциях горизонтали, проходящей через эту точку. Через точку А проведена горизонталь Av’ .

Проводим проекции горизонтали: фронтальную — через v’ параллельно оси х, горизонтальную — через v параллельно следу Рн плоскости Р. На фронтальной проекции горизонтали намечаем фронтальную проекцию а’ искомой точки и, проводя вертикальную линию связи, определяем горизонтальную проекцию а точки А.

Если точка лежит на проецирующей плоскости, то построение ее проекций упрощается. В этом случае одна из проекций точки всегда расположена на следу плоскости (точнее, на его проекции). Например, горизонтальная проекция а точки А, расположенной на горизонтально-проецирующей плоскости Р, находится на горизонтальной проекции горизонтального следа плоскости (рис. 108, в и г)

При заданной фронтальной проекции a’ точки А, лежащей на горизонтально-проецирующей плоскости , найти вторую проекцию этой точки (горизонтальную) можно без вспомогательной прямой, посредством проведения линии связи через а’ до пересечения со следом РН.

Если точка расположена на фронтально-проецирующей плоскости Р (рис. 108, д и е), то ее фронтальная проекция а’ находится на фронтальном следе Хv плоскости Р.

ПРОЕКЦИИ ПЛОСКИХ ФИГУР

Зная построение проекций прямых и точек, расположенных на плоскости, можно построить проекции любой плоской фигуры, например, прямоугольника, треугольника, круга.

Как известно, каждая плоская фигура ограничена отрезками прямых или кривых линий, которые могут быть построены по точкам.

Проекции фигуры, ограниченной прямыми линиями (треугольника и многоугольника), строят по точкам (вершинам). Затем одноименные проекции вершин соединяют прямыми линиями и получают проекции фигур.

Проекции круга или другой криволинейной фигуры строят при помощи нескольких точек, которые берут равномерно по контуру фигуры. Одноименные проекции точек соединяют плавной кривой по лекалу.

Проекции плоской фигуры строят различными способами в зависимости от положения фигуры относительно плоскостей проекций и Наиболее просто построить проекции фигуры, расположенной параллельно плоскостям Н и V; сложнее — при расположении фигуры на проецирующей плоскости или на плоскости общего положения.

Рассмотрим несколько примеров.

Если треугольник АВС расположен на плоскости, параллельной плоскости H (рис. 109, a), то горизонтальная проекция этого треугольника будет его действительным видом, а фронтальная проекция — отрезком прямой, параллельным оси х. Комплексный чертеж треугольника АВС показан на рис. 109, 6. Такой треугольник можно видеть на изображении резьбового резца (рис. 109, в),передняя грань которого треугольная.

Трапеция ABCD расположена на фронтально-проецирующей плоскости (рис. 110, а). Фронтальная проекция трапеции представляет собой отрезок прямой линии, а горизонтальная — трапецию (рис. 110, б)

Задняя грань отрезного резца (рис. 110, в) имеет форму трапеции.

Рассматривая плоскость, параллельную горизонтальной, фронтальной или профильной плоскости проекций (плоскость уровня), можно заметить, что любая фигура, лежащая в этой плоскости, имеет одну из проекций, представляющую собой действительный вид этой фигуры; вторая и третья проекции фигуры совпадают со следами этой плоскости.

Рассматривая проецирующую плоскость, заметим, что любая точка, отрезок прямой или кривой линии, а также фигуры, расположенные на проецирующей плоскости, имеют одну проекцию, расположенную на следе этой плоскости. Например, если круг лежит на фронтально-проецирующей плоскости Р (рис. 111), то фронтальная проекция круга совпадает с фронтальным следом Pv плоскости Р. Две другие проекции круга искажены и представляют собой эллипсы. Большие оси эллипсов равны проекциям диаметра круга 37. Малые оси эллипсов равны проекциям диаметра круга 15, перпендикулярного диаметру 37.

На рис. 111,6 показано колено трубы с двумя фланцами. Горизонтальная проекция контура нижнего фланца, который расположен в горизонтальной плоскости, будет действительным видом окружности. Горизонтальная проекция контура верхнего фланца изобразится в виде эллипса.

ВЗАИМНОЕ РАСПОЛОЖЕНИЕ ПЛОСКОСТЕЙ

Две плоскости могут быть взаимно параллельными или пересекающимися.

Из стереометрии известно, что если две параллельные плоскости пересекают какую-либо третью плоскость, то линии пересечения этих плоскостей параллельны между собой. Исходя из этого положения, можно сделать вывод, что одноименные следы двух параллельных плоскостей Р и Q также параллельны между собой.

Если даны две профильно-проецирующие плоскости Р и К (рис. 112, а), то параллельность их фронтальных и горизонтальных следов на комплексном чертеже в системе V и Н недостаточна для того, чтобы определить, параллельны эти плоскости или нет. Для этого необходимо построить их профильные следы в системе V, Н и W (рис. 112, б). Плоскости Р и K будут параллельны только в том случае, если параллельны их профильные следы Pw и Kw.

Одноименные следы пересекающихся плоскостей Р и Q (рис. 112, в) пересекаются в точках V и H, которые принадлежат обеим плоскостям, т. е. линии их пересечения. Так как эти точки расположены на плоскостях проекций, то, следовательно, они являются также следами линии пересечения плоскостей. Чтобы на комплексном чертеже построить проекции линии пересечения двух плоскостей Р и Q, заданных следами Pv, Рн и Qv,Qh, необходимо отметить точки пересечения одноименных следов плоскостей, т. е. точки v’ и h (рис. 112, г); точка v’ — фронтальная проекция фронтального следа искомой линии пересечения плоскостей Р и Q, h — горизонтальная проекция горизонтального следа этой же прямой. Опуская перпендикуляры из точек v’ и h на ось х, находим точки v и h’. Соединив прямыми одноименные проекции следов, т. е. точки v’ и h’, v и h’ получим проекции линии пересечения плоскостей Р и Q.

ПРЯМАЯ, ПРИНАДЛЕЖАЩАЯ ПЛОСКОСТИ

Для этого фронтальную проекцию отрезка m’n’ продолжаем до пересечения с отрезками a’b’ и c’d’ (проекциями сторон треугольника АВС), получаем точки (рис. 113, б).

Из точек е’к’ проводим линии связи на горизонтальную проекцию до пересечения с отрезками ab и ca , получаем точки еk. Продолжим горизонтальную проекцию mn отрезка прямой MN до пересечения с проекциями сторон bа и са, если точки пересечения совпадут с ранее полученными точками e и k то прямая MN принадлежит плоскости треугольника.

ПЕРЕСЕЧЕНИЕ ПРЯМОЙ С ПЛОСКОСТЬЮ

Если прямая АВ пересекается с плоскостью Р, то на комплексном чертеже точка их пересечения определяется следующим образом.

Через прямую А В проводят любую вспомогательную плоскость Q. Для упрощения построений плоскость Q обычно берется проецирующей (рис. 114, a). В данном случае проведена вспомогательная горизонтально-проецирующая плоскость Q. Через горизонтальную проекцию аb прямой АВ проводят горизонтальный след QH плоскости Q и продолжают его до пересечения с осью x в точке Qx . Из точки Qx к оси х восставляют перпендикуляр QxQy , который будет фронтальным следом Qv вспомогательной плоскости Q.

Вспомогательная плоскость Q пересекает данную плоскость Р по прямой VH, следы которой лежат на пересечении следов плоскостей Р и Q. Заметив точки пересечения следов Pv и Qv — точку v’ и следов Qн и PH — точку h,опускают из этих точек на ось х перпендикуляры, основания которых — точки v’ и h’ — будут вторыми проекциями следов прямой VH. Соединяя точки v’и h’, v и h, получают фронтальную и горизонтальную проекции линии пересечения плоскостей.

Точка пересечения М заданной прямой AB и найденной прямой VH и будет искомой точкой пересечения прямой АВ с плоскостью Р. Фронтальная проекция m’ этой точки расположена на пересечении проекций a’b’ и v’h’. Горизонтальную проекцию m точки М находят, проводя вертикальную линию связи из точки m’ до пересечения с ab.

Если плоскость задана не следами, а плоской фигурой, например, треугольником (рис. 114, 6), то точку пересечения прямой MN с плоскостью треугольника АВС находят следующим образом.

Через прямую МN проводят вспомогательную фронтально-проецирующую плоскость . Для этого через точки m’ и n’ проводят фронтальный след плоскости Ру продолжают его до оси x и из точки пересечения следа плоскости Ру с осью х опускают перпендикуляр Рн, который будет горизонтальным следом плоскости Р.

Затем находят линию ED пересечения плоскости Р с плоскостью данного треугольника ABC. Фронтальная проекция e’d’ линии ED совпадает с m’n’. Горизонтальную проекцию ed находят, проводя вертикальные линии связи из точек е’и d’ до встречи с проекциями ab и ас сторон треугольника АВС. Точки e и d соединяют прямой. На пересечении горизонтальной проекции ed линии ED с горизонтальной проекцией прямой MN находят горизонтальную проекцию k искомой точки К. Проведя из точки k вертикальную линяю связи, на ходят фронтальную проекцию k’ Точка К — искомая точка пересечения прямой МК с плоскостью треугольника АВС.

В частном случае прямая может быть перпендикулярна плоскости Р.Из условия перпендикулярности прямой к плоскости следует, что прямая перпендикулярна плоскости, если она перпендикулярна двум пересекающимся прямым, лежащим на этой плоскости (в частности, этими прямыми могут быть следы плоскости). Тогда проекции прямой АВ будут перпендикулярны одноименным следам этой плоскости (рис 115, а) Фронтальная проекция а’b’ перпендикулярна фронтальному следу Ру, а горизонтальная проекция ab перпендикулярна горизонтальному следу Рн плоскости Р.

Если плоскость задана параллельными или пересекающимися прямыми, то проекции прямой, перпендикулярной этой плоскости, будут перпендикулярны горизонтальной проекции горизонтали и фронтальной проекции фронтали, лежащих на плоскости.

Таким образом, если, например, на плоскость, заданную треугольником АВС необходимо опустить перпендикуляр, то построение выполняется следующим образом (рис. 115, б).

На плоскости проводят горизонталь СЕ и фронталь FA. Затем из заданных проекций d и d’ точки D опускают перпендикуляры соответственно на ce и f’a’. Прямая, проведенная из точки D будет перпендикулярна плоскости треугольника АВС.

ПЕРЕСЕЧЕНИЕ ПЛОСКОСТЕЙ

Задачи на построение линии пересечения плоскостей, заданных пересекающимися прямыми, можно решать подобно задаче на пересечение плоскости с прямыми линиями. На рис. 116 показано построение линии пересечения плоскостей, заданных треугольниками АВС и DEF. Прямая MN построена по найденным точкам пересечения сторон DE и EF треугольника DEF с плоскостью треугольника АВС.

Например, чтобы найти точку M, через прямую DF проводят фронтально-проецирующую плоскость Р, которая пересекается с плоскостью треугольника АВС по прямой 12. Через полученные точки 1′ и 2′ проводят вертикальные линии связи до пересечения их с горизонтальными проекциями ав и ас сторон треугольника АВС в точках 1 и 2. На пересечении горизонтальных проекций df и 12 получают горизонтальную проекцию m искомой точки М, которая будет точкой пересечения прямой DF с плоскостью АВС. Затем находят фронтальную проекцию m’ точки M. Точку N пересечения прямой EF с плоскостью АВС находят так же, как и точку М.

Соединив попарно точки m’ и n’, m и n, получают проекции линий пересечения MN плоскостей АВС и DEF.

[spoiler title=”источники:”]

http://ru.onlinemschool.com/math/formula/triangle/

http://forkettle.ru/vidioteka/tekhnicheskie-nauki/cherchenie/780-osnovy-nachertatelnoj-geometrii/8631-proetsirovanie-ploskikh-figur

[/spoiler]

Что такое проекция стороны в треугольника?



Ученик

(90),
на голосовании



7 лет назад

Голосование за лучший ответ

alen

Мастер

(2117)


7 лет назад

опускаешь перпендикуляры от каждой стороны, в какую упрётся, то и будет сторона. А третья сторона (1-перпендикуляр, 2- сторона от которой ищем проекцию) и будет проекцией.

Дильбар Гайсина

Ученик

(216)


7 лет назад

проекция куда? на что она должна проектироваться?
с концов стороны опустите перпендикуляры к прямой- куда должна быть проекция (прямая, на которой лежит другая сторона треугольника или ось координат, или какая-то прямая?) и соедините концы этих перпендикуляров – этот отрезок и есть проекция стороны треугольника на …
если на другую сторону треугольника – ясно, что перпендикуляр надо опускать только из одного конца стороны, т. к. дугой конец будет совпадать с концом проекции.

Треугольник
Triangle illustration.svg
Рёбра 3
Символ Шлефли {3}
Логотип Викисклада Медиафайлы на Викискладе

Треуго́льник (в евклидовом пространстве) — геометрическая фигура, образованная тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Указанные три точки называются вершинами треугольника, а отрезки — сторонами треугольника. Часть плоскости, ограниченная сторонами, называется внутренностью треугольника: нередко треугольник рассматривается вместе со своей внутренностью (например, для определения понятия площади)[1].

Стороны треугольника образуют в вершинах треугольника три угла, поэтому треугольник можно также определить как многоугольник, у которого имеется ровно три угла[2], т.е. как часть плоскости, ограниченную тремя отрезками, которые соединяют три точки, не лежащие на одной прямой. Треугольник является одной из важнейших геометрических фигур, повсеместно используемых в науке и технике, поэтому исследование его свойств проводилось начиная с глубокой древности.

Понятие треугольника допускает различные обобщения. Можно определить это понятие в неевклидовой геометрии (например, на сфере): на таких поверхностях треугольник определяется как три точки, соединённые геодезическими линиями. В n-мерной геометрии аналогом треугольника является n-й мерный симплекс.

Иногда рассматривают вырожденный треугольник, три вершины которого лежат на одной прямой. Если не оговорено иное, треугольник в данной статье предполагается невырожденным.

Основные элементы треугольника[править | править код]

Вершины, стороны, углы[править | править код]

Традиционно вершины треугольника обозначаются заглавными буквами латинского алфавита: A,B,C, а противолежащие им стороны — теми же строчными буквами (см. рисунок). Треугольник с вершинами A, B и C обозначается как Delta ABC. Стороны можно также обозначать буквами ограничивающих их вершин: {displaystyle AB=c}, {displaystyle BC=a}, {displaystyle CA=b}.

Треугольник Delta ABC имеет следующие углы:

Величины углов при соответствующих вершинах традиционно обозначаются греческими буквами (alpha , beta , gamma ).

Внешним углом {displaystyle DCA} плоского треугольника ABC при данной вершине C называется угол, смежный внутреннему углу {displaystyle ACB} треугольника при этой вершине

Внешним углом {displaystyle DCA} плоского треугольника ABC при данной вершине C называется угол, смежный внутреннему углу {displaystyle ACB} треугольника при этой вершине (см. рис.). Если внутренний угол при данной вершине треугольника образован двумя сторонами, выходящими из данной вершины, то внешний угол треугольника образован одной стороной, выходящей из данной вершины и продолжением другой стороны, выходящей из той же вершины. Внешний угол может принимать значения от {displaystyle 0} до 180^{circ }.

Периметром треугольника называют сумму длин трёх его сторон, а половину этой величины называют полупериметром.

Классификация треугольников[править | править код]

По виду наибольшего угла[править | править код]

Основной источник: [3]

  • Остроугольный

  • Тупоугольный

  • Прямоугольный

Поскольку в евклидовой геометрии сумма углов треугольника равна 180^{circ }, то не менее двух углов в треугольнике должны быть острыми (меньшими 90^{circ }). Выделяют следующие виды треугольников[2].

  • Если все углы треугольника острые, то треугольник называется остроугольным.
  • Если один из углов треугольника прямой (равен 90^{circ }), то треугольник называется прямоугольным. Две стороны, образующие прямой угол, называются катетами, а сторона, противолежащая прямому углу, называется гипотенузой.
  • Если один из углов треугольника тупой (больше 90^{circ }), то треугольник называется тупоугольным, Остальные два угла, очевидно, острые (треугольников с двумя тупыми или прямыми углами быть не может).

По числу равных сторон (или по степени симметричности)[править | править код]

  • Разносторонний

  • Равнобедренный

  • Равносторонний

  • Разносторонним называется треугольник, у которого все три стороны не равны.
  • Равнобедренным называется треугольник, у которого две стороны равны. Эти стороны называются боковыми, третья сторона называется основанием[4]. В равнобедренном треугольнике углы при основании равны.
  • Равносторонним или правильным называется треугольник, у которого все три стороны равны. В равностороннем треугольнике все углы равны 60°, а центры вписанной и описанной окружностей совпадают. Равносторонний треугольник является частным случаем равнобедренного треугольника.
Треугольник Количество осей симметрии Количество пар равных сторон
Разносторонний Нет Нет
Равнобедренный 1 1
Равносторонний 3 3

Медианы, высоты, биссектрисы[править | править код]

Медианой треугольника, проведённой из данной вершины, называется отрезок, соединяющий эту вершину с серединой противолежащей стороны (основанием медианы). Все три медианы треугольника пересекаются в одной точке. Эта точка пересечения называется центроидом или центром тяжести треугольника. Последнее название связано с тем, что у треугольника, сделанного из однородного материала, центр тяжести находится в точке пересечения медиан. Центроид делит каждую медиану в отношении 1:2, считая от основания медианы. Треугольник с вершинами в серединах медиан называется срединным треугольником. Основания медиан данного треугольника образуют так называемый дополнительный треугольник.
Длину медианы {displaystyle m_{c},} опущенной на сторону {displaystyle c,} можно найти по формулам:

{displaystyle m_{c}={1 over 2}{sqrt {2(a^{2}+b^{2})-c^{2}}}={1 over 2}{sqrt {a^{2}+b^{2}+2abcos gamma }};}      для других медиан аналогично.
  • Высота в треугольниках различного типа

    Высота в треугольниках различного типа

  • Высоты пересекаются в ортоцентре

    Высоты пересекаются в ортоцентре

Высотой треугольника, проведённой из данной вершины, называется перпендикуляр, опущенный из этой вершины на противоположную сторону или её продолжение. Три высоты треугольника пересекаются в одной точке, называемой ортоцентром треугольника. Треугольник с вершинами в основаниях высот называется ортотреугольником.

Длину высоты h_{c}, опущенной на сторону c, можно найти по формулам:

{displaystyle h_{c}=bsin alpha =asin beta =c,{frac {sin alpha cdot sin beta }{sin(alpha +beta )}}};      для других высот аналогично.

Длины высот, опущенных на стороны. можно также найти по формулам:[5]:p.64

{displaystyle h_{c}={frac {ab}{2R}},quad h_{a}={frac {bc}{2R}},quad h_{b}={frac {ca}{2R}}}.

Биссектриса AD делит пополам угол A

Биссектрисой (биссéктором) треугольника, проведённой из данной вершины, называют отрезок, соединяющий эту вершину с точкой на противоположной стороне и делящий угол при данной вершине пополам. Биссектрисы треугольника пересекаются в одной точке, и эта точка совпадает с центром вписанной окружности (инцентром).

Если треугольник разносторонний (не равнобедренный), то биссектриса, проведённая из любой его вершины, лежит между медианой и высотой, проведёнными из той же вершины. Ещё одно важное свойство биссектрисы: она делит противоположную сторону на части, пропорциональные прилегающим к ней сторонам[6].

Длину биссектрисы l_{c}, опущенной на сторону c, можно найти по одной из формул:

{displaystyle l_{c}={frac {sqrt {ab(a+b+c)(a+b-c)}}{a+b}}={frac {2{sqrt {abp(p-c)}}}{a+b}}}, где p — полупериметр.
{displaystyle l_{c}={frac {2abcos {frac {gamma }{2}}}{a+b}}={frac {c,sin alpha cdot sin beta }{sin(alpha +beta )cdot cos {frac {alpha -beta }{2}}}}}.
{displaystyle l_{c}={frac {h_{c}}{cos {frac {alpha -beta }{2}}}}};     здесь h_{c} — высота.

Высота, медиана и биссектриса равнобедренного треугольника, опущенные на основание, совпадают. Верно и обратное: если биссектриса, медиана и высота, проведённые из одной вершины, совпадают, то треугольник равнобедренный.

Описанная и вписанная окружности[править | править код]

Треугольник АВС и его окружности: вписанная (синяя), описанная (красная) и три вневписанные (зелёные)

Описанная окружность (см. рис. справа) — окружность, проходящая через все три вершины треугольника. Описанная окружность всегда единственна, её центр совпадает с точкой пересечения перпендикуляров к сторонам треугольника, проведённых через середины сторон. В тупоугольном треугольнике этот центр лежит вне треугольника[6].

Вписанная окружность (см. рис. справа) — окружность, касающаяся всех трёх сторон треугольника. Она единственна. Центр вписанной окружности называется инцентром, он совпадает с точкой пересечения биссектрис треугольника.

Следующие формулы позволяют вычислить радиусы описанной R и вписанной r окружностей.

{displaystyle r={S over p},} где S — площадь треугольника, p — его полупериметр.
{displaystyle r={sqrt {frac {(-a+b+c)(a-b+c)(a+b-c)}{4(a+b+c)}}}}
{displaystyle R={frac {a}{2sin alpha }}={frac {b}{2sin beta }}={frac {c}{2sin gamma }}}
{displaystyle R={frac {abc}{4S}}={frac {abc}{4{sqrt {p(p-a)(p-b)(p-c)}}}}},
{displaystyle {frac {1}{r}}={frac {1}{r_{a}}}+{frac {1}{r_{b}}}+{frac {1}{r_{c}}}}

где {displaystyle r_{a},r_{b},r_{c}}  — радиусы соответственных вневписанных окружностей

Ещё два полезных соотношения:

{displaystyle {frac {r}{R}}={frac {4S^{2}}{pabc}}=cos alpha +cos beta +cos gamma -1;}[7]
2Rr={frac {abc}{a+b+c}}.

Существует также формула Карно[8]:

{displaystyle R+r=k_{a}+k_{b}+k_{c}={frac {1}{2}}(d_{A}+d_{B}+d_{C})},

где {displaystyle k_{a}}, {displaystyle k_{b}}, {displaystyle k_{c}} — расстояния от центра описанной окружности соответственно до сторон a, b, c треугольника,
d_{A}, d_{B}, {displaystyle d_{C}} — расстояния от ортоцентра соответственно до вершин A, B, C треугольника.

Расстояние от центра описанной окружности например до стороны a треугольника равно:

{displaystyle k_{a}=a/(2operatorname {tg} A)};

расстояние от ортоцентра например до вершины A треугольника равно:

{displaystyle d_{A}=a/operatorname {tg} A}.

Признаки равенства треугольников[править | править код]

Равенство по двум сторонам и углу между ними

Равенство по стороне и двум прилежащим углам

Равенство по трем сторонам

Треугольник на евклидовой плоскости однозначно (с точностью до конгруэнтности) можно определить по следующим тройкам основных элементов:[9]

  1. a, b, gamma (равенство по двум сторонам и углу между ними);
  2. a, beta , gamma (равенство по стороне и двум прилежащим углам);
  3. a, b, c (равенство по трём сторонам).

Признаки равенства прямоугольных треугольников:

  1. по катету и гипотенузе;
  2. по двум катетам;
  3. по катету и острому углу;
  4. по гипотенузе и острому углу.

Дополнительный признак: треугольники равны, если у них совпадают две стороны и угол, лежащий против большей из этих сторон[10].

Дополнительный признак {по двум сторонам и углу не между ними, если этот угол прямой или тупой}.
Если в треугольниках {mathcal {ABC}} и {displaystyle {mathcal {A_{1}B_{1}C_{1}}}} имеют место равенства {displaystyle {mathcal {AB}}={mathcal {A_{1}B_{1}}}}, {displaystyle {mathcal {AC}}={mathcal {A_{1}C_{1}}}}, {displaystyle angle {mathcal {ABC}}=angle {mathcal {A_{1}B_{1}C_{1}}}}, причём указанные углы НЕ являются острыми, то эти треугольники равны[11].

В сферической геометрии и в геометрии Лобачевского существует признак равенства треугольников по трём углам.

Признаки подобия треугольников[править | править код]

Основные свойства элементов треугольника[править | править код]

Свойства углов[править | править код]

Во всяком треугольнике против большей стороны лежит больший угол, и обратно. Против равных сторон лежат равные углы[10].

Каждый внешний угол треугольника равен разности между 180° и соответствующим внутренним углом. Для внешнего угла также имеет место теорема о внешнем угле треугольника: внешний угол равен сумме двух других внутренних углов, с ним не смежных[10].

Неравенство треугольника[править | править код]

В невырожденном треугольнике сумма длин двух его сторон больше длины третьей стороны, в вырожденном — равна. Иначе говоря, длины сторон невырожденного треугольника связаны следующими неравенствами:

{displaystyle a<b+c,quad b<c+a,quad c<a+b}.

Дополнительное свойство: каждая сторона треугольника больше разности двух других сторон[10].

Теорема о сумме углов треугольника[править | править код]

Сумма углов треугольника равна 180°

Сумма внутренних углов треугольника всегда равна 180°:

alpha +beta +gamma =180^{circ }.

В геометрии Лобачевского сумма углов треугольника всегда меньше 180°, а на сфере — всегда больше.

Теорема синусов[править | править код]

{frac {a}{sin alpha }}={frac {b}{sin beta }}={frac {c}{sin gamma }}=2R,

где R — радиус окружности, описанной вокруг треугольника.

Теорема косинусов[править | править код]

{displaystyle c^{2}=a^{2}+b^{2}-2abcos gamma ,quad b^{2}=a^{2}+c^{2}-2accos beta ,quad a^{2}=b^{2}+c^{2}-2bccos alpha }.

Является обобщением теоремы Пифагора.

  • Замечание. теоремой косинусов также называют следующие две формулы, легко выводимые из основной теоремы косинусов (см. с. 51, ф. (1.11-2))[12].
{displaystyle a^{2}=(b+c)^{2}-4bccos ^{2}{frac {alpha }{2}},quad a^{2}=(b-c)^{2}+4bcsin ^{2}{frac {alpha }{2}}}.

Теорема о проекциях[править | править код]

Источник: [13].

{displaystyle c=acos beta +bcos alpha ,quad a=bcos gamma +ccos beta ,quad b=ccos alpha +acos gamma }.

Теорема тангенсов (формулы Региомонтана)[править | править код]

{displaystyle {dfrac {a-b}{a+b}}={dfrac {operatorname {tg} {dfrac {alpha -beta }{2}}}{operatorname {tg} {dfrac {alpha +beta }{2}}}}={dfrac {operatorname {tg} {dfrac {alpha -beta }{2}}}{operatorname {ctg} {dfrac {gamma }{2}}}};quad {frac {b-c}{b+c}}={frac {operatorname {tg} [{frac {1}{2}}(beta -gamma )]}{operatorname {tg} [{frac {1}{2}}(beta +gamma )]}};{frac {a-c}{a+c}}={frac {operatorname {tg} [{frac {1}{2}}(alpha -gamma )]}{operatorname {tg} [{frac {1}{2}}(alpha +gamma )]}}.}

Теорема котангенсов[править | править код]

{displaystyle {frac {p-a}{operatorname {ctg} (alpha /2)}}={frac {p-b}{operatorname {ctg} (beta /2)}}={frac {p-c}{operatorname {ctg} (gamma /2)}}=r}.

Формулы Мольвейде[править | править код]

{displaystyle {frac {a+b}{c}}={frac {cos {frac {A-B}{2}}}{sin {frac {C}{2}}}},quad {frac {a-b}{c}}={frac {sin {frac {A-B}{2}}}{cos {frac {C}{2}}}}}.

Решение треугольников[править | править код]

Вычисление неизвестных сторон, углов и других характеристик треугольника, исходя из известных, исторически получило название «решения треугольников». При этом используются приведенные выше общие тригонометрические теоремы, а также признаки равенства и подобия треугольников.

Площадь треугольника[править | править код]

Далее используются обозначения
Площадь треугольника связана с его основными элементами следующими соотношениями.
  1. {displaystyle S_{triangle ABC}={dfrac {1}{2}}acdot h_{a}={dfrac {1}{2}}bcdot h_{b}={dfrac {1}{2}}ccdot h_{c}}
  2. {displaystyle S_{triangle ABC}={dfrac {1}{2}}absin gamma ={dfrac {a^{2}sin {beta }cdot sin {gamma }}{2sin {left(beta +gamma right)}}}={dfrac {b^{2}sin {alpha }cdot sin {gamma }}{2sin {left(alpha +gamma right)}}}={dfrac {c^{2}sin {alpha }cdot sin {beta }}{2sin {left(alpha +beta right)}}}}
  3. {displaystyle S_{triangle ABC}={dfrac {abc}{4R}}}
  4. {displaystyle S_{triangle ABC}=rcdot p}
  5. {displaystyle S_{triangle ABC}=r^{2}+2rcdot R}
  6. {displaystyle S_{triangle ABC}={sqrt {pcdot p_{a}cdot p_{b}cdot p_{c}}}={sqrt {pleft(p-aright)left(p-bright)left(p-cright)}}={1 over 4}{sqrt {left(a+b+cright)left(b+c-aright)left(a+c-bright)left(a+b-cright)}}} — формула Герона
  7. {displaystyle S_{triangle ABC}=left(p-aright)r_{a}=left(p-bright)r_{b}=left(p-cright)r_{c}}[14]
  8. {displaystyle S_{triangle ABC}={sqrt {p_{m}left(p_{m}-aright)left(p_{m}-bright)left(p_{m}-2mright)}}}
  9. {displaystyle S={sqrt {rcdot r_{a}cdot r_{b}cdot r_{c}}}} [15]
  10. {displaystyle S_{triangle ABC}={Rcdot rcdot left(sin alpha +sin beta +sin gamma right)}}
  11. S_{triangle ABC}={2R^{2}sin alpha sin beta sin gamma }
  12. {displaystyle S_{triangle ABC}={dfrac {c^{2}}{2left(operatorname {ctg} alpha +operatorname {ctg} beta right)}}}
  13. {displaystyle S_{triangle ABC}={dfrac {1}{2}}left({overrightarrow {CA}}wedge {overrightarrow {CB}}right)={dfrac {left(x_{A}-x_{C}right)left(y_{B}-y_{C}right)-left(x_{B}-x_{C}right)left(y_{A}-y_{C}right)}{2}}} — ориентированная площадь треугольника.
  14. {displaystyle S_{triangle ABC}={dfrac {1}{displaystyle {sqrt {left({dfrac {1}{h_{a}}}+{dfrac {1}{h_{b}}}+{dfrac {1}{h_{c}}}right)left({dfrac {1}{h_{c}}}+{dfrac {1}{h_{b}}}-{dfrac {1}{h_{a}}}right)left({dfrac {1}{h_{a}}}+{dfrac {1}{h_{c}}}-{dfrac {1}{h_{b}}}right)left({dfrac {1}{h_{a}}}+{dfrac {1}{h_{b}}}-{dfrac {1}{h_{c}}}right)}}}}} — см. Аналоги формулы Герона
  15. {displaystyle S_{triangle ABC}=r^{2}operatorname {ctg} left({dfrac {alpha }{2}}right)operatorname {ctg} left({dfrac {beta }{2}}right)operatorname {ctg} left({dfrac {gamma }{2}}right)}
  16. {displaystyle S_{triangle ABC}={dfrac {p}{displaystyle {{dfrac {1}{h_{a}}}+{dfrac {1}{h_{b}}}+{dfrac {1}{h_{c}}}}}}}
  17. {displaystyle S_{triangle ABC}={dfrac {1}{2}}{sqrt {2h_{a}h_{b}h_{c}R}}}
  18. {displaystyle S_{triangle ABC}=acdot {dfrac {r_{b}r_{c}}{displaystyle {r_{b}+r_{c}}}}=bcdot {dfrac {r_{a}r_{c}}{displaystyle {r_{a}+r_{c}}}}=ccdot {dfrac {r_{a}r_{b}}{displaystyle {r_{a}+r_{b}}}}}
Частные случаи
  1. {displaystyle S_{triangle ABC}={dfrac {ab}{2}}} — для прямоугольного треугольника
  2. {displaystyle S={dfrac {a^{2}{sqrt {3}}}{4}}} — для равностороннего треугольника

Другие формулы[править | править код]

  • Существуют другие формулы, такие, как например,[16]
{displaystyle S={dfrac {operatorname {tg} alpha }{4}}left(b^{2}+c^{2}-a^{2}right)}

для угла {displaystyle alpha neq 90^{circ }}.

  • В 1885 г. Бейкер (Baker)[17] предложил список более ста формул площади треугольника. Он, в частности, включает:
{displaystyle S={dfrac {1}{2}}{sqrt[{3}]{abch_{a}h_{b}h_{c}}}},
{displaystyle S={dfrac {1}{2}}{sqrt {abh_{a}h_{b}}}},
{displaystyle S={dfrac {a+b}{2left({dfrac {1}{h_{a}}}+{dfrac {1}{h_{b}}}right)}}},
{displaystyle S={dfrac {Rh_{b}h_{c}}{a}}}.

Неравенства для площади треугольника[править | править код]

Для площади справедливы неравенства:

{displaystyle 4{sqrt {3}}Sleqslant a^{2}+b^{2}+c^{2}}    и    {displaystyle 4{sqrt {3}}Sleqslant {dfrac {9abc}{a+b+c}}},

где в обоих случаях равенство достигается тогда и только тогда, когда треугольник равносторонний (правильный).

История изучения[править | править код]

Свойства треугольника, изучаемые в школе, за редким исключением, известны с ранней античности. Зачатки тригонометрических знаний можно найти в математических рукописях Древнего Египта, Вавилона и Древнего Китая. Главным достижением этого периода стало соотношение, позже получившее имя теоремы Пифагора; Ван дер Варден считает, что вавилоняне открыли его между 2000 и 1786 годами до н. э.[21]

Общая и достаточно полная теория геометрии треугольников (как плоских, так и сферических) появилась в Древней Греции[22]. В частности, во второй книге „Начал“ Евклида теорема 12 представляет собой словесный аналог теоремы косинусов для тупоугольных треугольников[23]. Следующая за ней теорема 13 — вариант теоремы косинусов для остроугольных треугольников. Свойствами элементов треугольников (углов, сторон, биссектрис и др.) после Евклида занимались Архимед, Менелай, Клавдий Птолемей, Папп Александрийский[24].

В IV веке, после упадка античной науки, центр развития математики переместился в Индию. Сочинения индийских математиков (сиддханты) показывают, что их авторы были хорошо знакомы с трудами греческих астрономов и геометров[25]. Чистой геометрией индийцы интересовались мало, но их вклад в прикладную астрономию и расчётные аспекты тригонометрии очень значителен.

В VIII веке учёные стран Ближнего и Среднего Востока познакомились с трудами древнегреческих и индийских математиков и астрономов. Их астрономические трактаты, аналогичные индийским сиддхантам, назывались „зиджи“; типичный зидж представлял собой сборник астрономических и тригонометрических таблиц, снабжённый руководством по их использованию и (не всегда) изложением общей теории[26]. Сравнение зиджей периода VIII—XIII веков показывает быструю эволюцию тригонометрических знаний. Самые ранние из сохранившихся трудов принадлежат ал-Хорезми и ал-Марвази (IX век).

Сабит ибн Курра (IX век) и ал-Баттани (X век) первыми открыли фундаментальную теорему синусов для частного случая прямоугольного сферического треугольника. Для произвольного сферического треугольника доказательство было найдено (разными способами и, вероятно, независимо друг от друга) Абу-л-Вафой, ал-Худжанди и ибн Ираком в конце X века[27]. В другом трактате ибн Ирака сформулирована и доказана теорема синусов для плоского треугольника[28].

Фундаментальное изложение тригонометрии (как плоской, так и сферической) дал персидский математик и астроном Насир ад-Дин ат-Туси в 1260 году[29]. Его „Трактат о полном четырёхстороннике“ содержит практические способы решения типичных задач, в том числе труднейших, решённых самим ат-Туси[30]. Таким образом, к концу XIII века были открыты базовые теоремы, необходимые для практической работы с треугольниками.

В Европе развитие тригонометрической теории стало чрезвычайно важным в Новое время, в первую очередь для артиллерии, оптики и навигации при дальних морских путешествиях. В 1551 году появились 15-значные тригонометрические таблицы Ретика, ученика Коперника, с шагом 10»[31]. Потребность в сложных тригонометрических расчётах вызвала в начале XVII века открытие логарифмов, причём первые логарифмические таблицы Джона Непера содержали только логарифмы тригонометрических функций.

Изучение треугольника продолжилось в XVII веке: была доказана теорема Дезарга (1636), открыта точка Торричелли (1640) и изучены её свойства. Джованни Чева доказал свою теорему о трансверсалях (1678). Лейбниц показал, как вычислять расстояние от центра тяжести треугольника до других его замечательных точек[24]. В XVIII веке были обнаружены прямая Эйлера и окружность шести точек (1765).

В начале XIX века была открыта точка Жергонна. В 1828 году была доказана теорема Фейербаха. К концу XIX века относится творчество Эмиля Лемуана, Анри Брокара, Жозефа Нойберга. Окружность девяти точек исследовали Понселе, Брианшон и Штейнер, Были обнаружены ранее неизвестные геометрические связи и образы — например, окружность Брокара, точки Штейнера и Тарри. В 1860 году Шлёмильх доказал теорему: три прямые, соединяющие середины сторон треугольника с серединами его соответствующих высот, пересекаются в одной точке. В 1937 году советский математик С. И. Зетель показал, что эта теорема верна не только для высот, но и для любых других чевиан. Исследования перечисленных выше геометров превратили геометрию треугольника в самостоятельный раздел математики[32].

Значительный вклад в геометрию треугольника внёс в конце XIX — начале XX века Фрэнк Морли. Он доказал, что геометрическое место центров кардиоид, вписанных в треугольник, состоит из девяти прямых, которые, взятые по три, параллельны трём сторонам равностороннего треугольника. Кроме того, 27 точек, в которых пересекаются эти девять прямых, являются точками пересечения двух трисектрис треугольника, принадлежащих к одной и той же его стороне. Наибольшую известность получил частный случай этой теоремы: внутренние трисектрисы углов треугольника, прилежащих к одной и той же стороне, пересекаются попарно в трёх вершинах равностороннего треугольника. Обобщение этих работ опубликовал Анри Лебег (1940), он
ввел n-сектрисы треугольника и изучил их расположение в общем виде[33].

С 1830-х годов в геометрии треугольника стали широко использоваться трилинейные координаты точек. Активно развивалась теория преобразований — проективное, изогональное, изотомическое и другие. Полезной оказалась идея рассмотрения задач теории треугольников на комплексной плоскости.
[32].

Дополнительные сведения[править | править код]

Все факты, изложенные в этом разделе, относятся к евклидовой геометрии.

  • Отрезок, соединяющий вершину с точкой на противоположной стороне, называется чевианой. Обычно под чевианой понимают не один такой отрезок, а один из трёх таких отрезков, проведённых из трёх разных вершин треугольника и пересекающихся в одной точке. Они удовлетворяют условиям теоремы Чевы. Чевианы, соединяющие вершину треугольника с точками противоположной стороны, отстоящими на заданное отношение {frac {1}{n}} от её концов, называют недианами.
  • Средней линией треугольника называют отрезок, соединяющий середины двух сторон этого треугольника. Три средние линии треугольника разделяют его на четыре равных треугольника в 4 раза меньшей площади, чем площадь исходного треугольника.
  • Серединные перпендикуляры (медиатрисы) к сторонам треугольника также пересекаются в одной точке, которая совпадает с центром описанной окружности.
  • Чевианы, лежащие на прямых, симметричных медианам относительно биссектрис, называются симедианами. Они проходят через одну точку — точку Лемуана.
  • Чевианы, лежащие на прямых, изотомически сопряжённых биссектрисам относительно оснований медиан, называются антибиссектрисами. Они проходят через одну точку — центр антибиссектрис.
  • Кливер треугольника — это отрезок, одна вершина которого находится в середине одной из сторон треугольника, вторая вершина находится на одной из двух оставшихся сторон, при этом кливер разбивает периметр пополам.
  • Некоторые точки в треугольнике — «парные». Например, существует две точки, из которых все стороны видны либо под углом в 60°, либо под углом в 120°. Они называются точками Торричелли. Также существует две точки, проекции которых на стороны лежат в вершинах правильного треугольника. Это — точки Аполлония. Точки P и Q такие, что angle ABP=angle BCP=angle CAP и angle BAP=angle CBP=angle ACP называются точками Брокара.

Некоторые замечательные прямые треугольника[править | править код]

  • В любом треугольнике центр тяжести, ортоцентр, центр описанной окружности и центр окружности Эйлера лежат на одной прямой, называемой прямой Эйлера.
  • В любом треугольнике центр тяжести, центр круга, вписанного в него (инцентр), его точка Нагеля и центр круга, вписанного в дополнительный треугольник {displaystyle A'B'C'} (или Центр Шпикера), лежат на одной прямой, называемой второй прямой Эйлера (прямой Нагеля)
  • Прямая, проходящая через центр описанной окружности и точку Лемуана, называется осью Брокара. На ней лежат точки Аполлония.
  • Также на одной прямой лежат точки Торричелли и точка Лемуана.
  • Если на описанной окружности треугольника взять точку, то её проекции на стороны треугольника будут лежать на одной прямой, называемой прямой Симсона данной точки. Прямые Симсона диаметрально противоположных точек описанной окружности перпендикулярны.

Трилинейные поляры треугольника[править | править код]

Бесконечно удалённая прямая — трилинейная поляра центроида

Построение трилинейной поляры точки Y

Ось Лемуана — трилинейная поляра точки Лемуана показана красным цветом

  • Трилинейная полярой точки Лемуана служит ось Лемуана (см. рис.)

Ось внешних биссектрис или антиортовая ось (antiorthic axis) — трилинейная поляра центра вписанной окружности (инцентра) треугольника ABC)

Ортоцентрическая ось (Orthic axis) — трилинейная поляра ортоцентра

  • Ортоцентрическая ось {displaystyle DEF} (Orthic axis) — трилинейная поляра ортоцентра (см. рис.)
  • Трилинейные поляры точек, лежащих на описанной конике, пересекаются в одной точке (для описанной окружности это — точка Лемуана, для описанного эллипса Штейнера — центроид).

Вписанные и описанные фигуры для треугольника[править | править код]

Преобразования[править | править код]

Ниже описаны 3 вида преобразований: 1) Изогональное сопряжение, 2) Изотомическое сопряжение, 3) Изоциркулярное преобразование.

Изогональное сопряжение[править | править код]

  • Если прямые, проходящие через вершины и некоторую точку, не лежащую на сторонах и их продолжениях, отразить относительно соответствующих биссектрис, то их образы также пересекутся в одной точке, которая называется изогонально сопряжённой исходной (если точка лежала на описанной окружности, то получившиеся прямые будут параллельны).
  • Изогонально сопряжёнными являются многие пары замечательных точек:
    • Центр описанной окружности и ортоцентр (точка пересечения высот),
    • Центроид (точка пересечения медиан) и точка Лемуана (точка пересечения симедиан),
    • Центр девяти точек и точка Косниты треугольника, связанная с теоремой Косниты[34];
    • Две точки Брокара;
    • Точки Аполлония и точки Торричелли.
  • Точка Жергонна и центр отрицательной гомотетии вписанной и описанной окружности.
  • Точка Нагеля и центр положительной гомотетии вписанной и описанной окружности (точка Веррьера).
  • Описанные окружности подерных треугольников изогонально сопряжённых точек совпадают.
  • Фокусы вписанных эллипсов изогонально сопряжены.
  • Изогональное сопряжение имеет ровно четыре неподвижные точки (то есть точки, которые сопряжены самим себе): центр вписанной окружности и центры вневписанных окружностей треугольника[35].
  • Если для любой внутренней точки треугольника построить три точки, симметричные ей относительно сторон, а затем через три последние провести окружность, то ее центр изогонально сопряжен исходной точке[36].

Изогональные сопряжения линий треугольника[править | править код]

  • Под действием изогонального сопряжения прямые переходят в описанные коники, а описанные коники — в прямые.
  • Так, изогонально сопряжены:
    • гипербола Киперта и ось Брокара,
    • гипербола Енжабека и прямая Эйлера,
    • гипербола Фейербаха и линия центров вписанной и описанной окружностей.
  • Некоторые известные кубики — например, кубика Томсона — изогонально самосопряжены в том смысле, что при изогональном сопряжении всех их точек в треугольнике снова получаются кубики.

Изотомическое сопряжение[править | править код]

Если вместо симметричной чевианы брать чевиану, основание которой удалено от середины стороны так же, как и основание исходной, то такие чевианы также пересекутся в одной точке. Получившееся преобразование называется изотомическим сопряжением. Оно также переводит прямые в описанные коники.

  • Изотомически сопряжены следующие точки:
    • точка Жергонна и Нагеля,
    • точка пересечения биссектрис (инцентр) и точка пересечения антибиссектрис,
    • Точке Лемуана (точке пересечения симедиан) треугольника изотомически сопряжена его точке Брокара,
    • Центроид (точка пересечения медиан) изотомически сопряжён сам себе.

При аффинных преобразованиях изотомически сопряжённые точки переходят в изотомически сопряжённые. При изотомическом сопряжении в бесконечно удалённую прямую перейдёт описанный эллипс Штейнера.

Композиция изогонального (или изотомического) сопряжения и трилинейной поляры[править | править код]

Изоциркулярное преобразование[править | править код]

Если в сегменты, отсекаемые сторонами треугольника от описанного круга, вписать окружности, касающиеся сторон в основаниях чевиан, проведённых через некоторую точку, а затем соединить точки касания этих окружностей с описанной окружностью с противоположными вершинами, то такие прямые пересекутся в одной точке. Преобразование плоскости, сопоставляющее исходной точке получившуюся, называется изоциркулярным преобразованием [39]. Композиция изогонального и изотомического сопряжений является композицией изоциркулярного преобразования с самим собой. Эта композиция — проективное преобразование, которое стороны треугольника оставляет на месте, а ось внешних биссектрис переводит в бесконечно удалённую прямую.

Тригонометрические тождества только с углами[править | править код]

{displaystyle operatorname {tg} alpha +operatorname {tg} beta +operatorname {tg} gamma =operatorname {tg} alpha operatorname {tg} beta operatorname {tg} gamma }

(первое тождество для тангенсов)

Замечание. Соотношение выше применимо только тогда, когда ни один из углов не равен 90° (в таком случае функция тангенса всегда определена).

{displaystyle operatorname {tg} {frac {alpha }{2}}operatorname {tg} {frac {beta }{2}}+operatorname {tg} {frac {beta }{2}}operatorname {tg} {frac {gamma }{2}}+operatorname {tg} {frac {gamma }{2}}operatorname {tg} {frac {alpha }{2}}=1},[40]

(второе тождество для тангенсов)

{displaystyle sin(2alpha )+sin(2beta )+sin(2gamma )=4sin alpha sin beta sin gamma },

(первое тождество для синусов)

{displaystyle sin ^{2}{frac {alpha }{2}}+sin ^{2}{frac {beta }{2}}+sin ^{2}{frac {gamma }{2}}+2sin {frac {alpha }{2}}sin {frac {beta }{2}}sin {frac {gamma }{2}}=1},[40]

(второе тождество для синусов)

{displaystyle cos ^{2}alpha +cos ^{2}beta +cos ^{2}gamma +2cos alpha cos beta cos gamma =1},[7]

(тождество для косинусов)

{displaystyle {frac {r}{R}}=4sin {frac {alpha }{2}}sin {frac {beta }{2}}sin {frac {gamma }{2}}=cos alpha +cos beta +cos gamma -1}

(тождество для отношения радиусов)

Замечание. При делении обеих частей второго тождества для тангенсов на произведение {displaystyle operatorname {tg} {frac {alpha }{2}}operatorname {tg} {frac {beta }{2}}operatorname {tg} {frac {gamma }{2}}} получается тождество для котангенсов:

{displaystyle operatorname {ctg} {frac {alpha }{2}}+operatorname {ctg} {frac {beta }{2}}+operatorname {ctg} {frac {gamma }{2}}=operatorname {ctg} {frac {alpha }{2}}operatorname {ctg} {frac {beta }{2}}operatorname {ctg} {frac {gamma }{2}}},

по форме (но не по содержанию) очень похожее на первое тождество для тангенсов.

Разные соотношения[править | править код]

Метрические соотношения в треугольнике приведены для triangle ABC:

Где:

  • a, b и c — стороны треугольника,
  • {displaystyle a_{L}}, {displaystyle b_{L}} — отрезки, на которые биссектриса l_{c} делит сторону c,
  • m_{a}, m_{b}, m_{c} — медианы, проведённые соответственно к сторонам a, b и c,
  • h_{a}, h_{b}, h_{c} — высоты, опущенные соответственно на стороны a, b и c,
  • r — радиус вписанной окружности,
  • R — радиус описанной окружности,
  • {displaystyle p={frac {a+b+c}{2}}} — полупериметр,
  • S — площадь,
  • d — расстояние между центрами вписанной и описанной окружностей.
  • Для любого треугольника, у которого стороны связаны неравенствами {displaystyle ageqslant bgeqslant c}, а площадь равна S, длины срединных перпендикуляров или медиатрис, заключённых внутри треугольника, опущенных на соответствующую сторону (отмеченную нижним индексом), равны[41]:Corollaries 5 and 6
{displaystyle p_{a}={frac {2aS}{a^{2}+b^{2}-c^{2}}}}, {displaystyle p_{b}={frac {2bS}{a^{2}+b^{2}-c^{2}}}} и {displaystyle p_{c}={frac {2cS}{a^{2}-b^{2}+c^{2}}}}.

Формулы площади треугольника в декартовых координатах на плоскости[править | править код]

Обозначения
  •  (x_{A},y_{A});(x_{B},y_{B});(x_{C},y_{C}) — координаты вершин треугольника.

Общая формула площади треугольника в декартовых координатах на плоскости[править | править код]

S_{triangle ABC}={frac {1}{2}}{begin{vmatrix}x_{A}&y_{A}&1\x_{B}&y_{B}&1\x_{C}&y_{C}&1end{vmatrix}}={frac {left|x_{A}(y_{B}-y_{C})+x_{B}(y_{C}-y_{A})+x_{C}(y_{A}-y_{B})right|}{2}}={frac {left|(x_{B}-x_{A})(y_{C}-y_{A})-(x_{C}-x_{A})(y_{B}-y_{A})right|}{2}}

В частности, если вершина A находится в начале координат (0, 0), а координаты двух других вершин есть B = (xB, yB) и C = (xC, yC), то площадь может быть вычислена в виде 12 от абсолютного значения определителя

T={frac {1}{2}}left|det {begin{pmatrix}x_{B}&x_{C}\y_{B}&y_{C}end{pmatrix}}right|={frac {1}{2}}|x_{B}y_{C}-x_{C}y_{B}|.

Последнюю формулу площади треугольника в английской литературе именуют формулой площади, заключенной внутри ломаной натянутого на гвозди шнурка (shoelace formula), или геодезической формулой (surveyor’s formula[42]), или формулой площади Гаусса.

Вычисление площади треугольника в пространстве с помощью векторов[править | править код]

Пусть вершины треугольника находятся в точках  mathbf {r} _{A}(x_{A},y_{A},z_{A}),  mathbf {r} _{B}(x_{B},y_{B},z_{B}),  mathbf {r} _{C}(x_{C},y_{C},z_{C}).

Введём вектор площади  mathbf {S} ={frac {1}{2}}[mathbf {r} _{B}-mathbf {r} _{A},mathbf {r} _{C}-mathbf {r} _{A}]. Длина этого вектора равна площади треугольника, а направлен он по нормали к плоскости треугольника:

mathbf {S} ={frac {1}{2}}{begin{vmatrix}mathbf {i} &mathbf {j} &mathbf {k} \x_{B}-x_{A}&y_{B}-y_{A}&z_{B}-z_{A}\x_{C}-x_{A}&y_{C}-y_{A}&z_{C}-z_{A}end{vmatrix}}

Положим {displaystyle mathbf {S} =S_{x}mathbf {i} +S_{y}mathbf {j} +S_{z}mathbf {k} }, где S_{x}, {displaystyle S_{y}}, {displaystyle S_{z}} — проекции треугольника на координатные плоскости. При этом

S_{x}={frac {1}{2}}{begin{vmatrix}y_{B}-y_{A}&z_{B}-z_{A}\y_{C}-y_{A}&z_{C}-z_{A}end{vmatrix}}={frac {1}{2}}{begin{vmatrix}1&y_{A}&z_{A}\1&y_{B}&z_{B}\1&y_{C}&z_{C}end{vmatrix}}

и аналогично

S_{y}={frac {1}{2}}{begin{vmatrix}x_{A}&1&z_{A}\x_{B}&1&z_{B}\x_{C}&1&z_{C}end{vmatrix}},qquad S_{z}={frac {1}{2}}{begin{vmatrix}x_{A}&y_{A}&1\x_{B}&y_{B}&1\x_{C}&y_{C}&1end{vmatrix}}

Площадь треугольника равна S={sqrt {S_{x}^{2}+S_{y}^{2}+S_{z}^{2}}}.

Альтернативой служит вычисление длин сторон (по теореме Пифагора) и далее по формуле Герона.

Вычисление площади треугольника через комплексные декартовы координаты его вершин[править | править код]

Если обозначить комплексные декартовы координаты (на комплексной плоскости) вершин треугольника соответственно через {displaystyle a=x_{A}+y_{A}i}, {displaystyle b=x_{B}+y_{B}i} и {displaystyle c=x_{C}+y_{C}i} и обозначить их комплексно сопряженные точки соответственно через {bar {a}}, {bar {b}} и {bar {c}}, тогда получим формулу:

{displaystyle T={frac {i}{4}}{begin{vmatrix}a&{bar {a}}&1\b&{bar {b}}&1\c&{bar {c}}&1end{vmatrix}}},

что эквивалентно формуле площади, заключенной внутри ломаной натянутого на гвозди шнурка (shoelace formula), или геодезической формуле (surveyor’s formula[42]), или формуле площади Гаусса.

Треугольник в неевклидовых геометриях[править | править код]

На сфере[править | править код]

Свойства треугольника со сторонами a, b, c и углами A, B, C.

Сумма углов (невырожденного) треугольника строго больше 180^{circ }.

Любые подобные треугольники равны.

Теорема синусов (здесь и далее сторону сферического треугольника принято измерять не линейной мерой, а величиной опирающегося на неё центрального угла):

{displaystyle {frac {sin A}{sin a}}={frac {sin B}{sin b}}={frac {sin C}{sin c}}},

Теоремы косинусов:

{displaystyle cos c=cos acos b-sin asin bcos C},
{displaystyle cos C=-cos Acos B+sin Asin Bcos c}.

На плоскости Лобачевского[править | править код]

Для треугольника со сторонами a, b, c и углами A, B, C.

Сумма углов (невырожденного) треугольника строго меньше 180^{circ }.

Как и на сфере, любые подобные треугольники равны.

Теорема синусов

{displaystyle {frac {sin A}{operatorname {sh} a}}={frac {sin B}{operatorname {sh} b}}={frac {sin C}{operatorname {sh} c}}},

Теоремы косинусов

{displaystyle operatorname {ch} c=operatorname {ch} aoperatorname {ch} b-operatorname {sh} aoperatorname {sh} bcos C},
{displaystyle cos C=-cos Acos B+sin Asin Boperatorname {ch} c}.

Связь суммы углов с площадью треугольника[править | править код]

Значение для суммы углов треугольника во всех трёх случаях (евклидова плоскость, сфера, плоскость Лобачевского) является следствием формулы Гаусса — Бонне

{displaystyle int limits _{Omega }K,dsigma +sum _{i}varphi _{i}=2pi chi }.

В случае треугольника эйлерова характеристика {displaystyle chi =1}. Углы varphi _{i} — это внешние углы треугольника. Значение величины K (гауссовой кривизны) — это K=0 для евклидовой геометрии, K=1 для сферы, {displaystyle K=-1} для плоскости Лобачевского.

Пазлинка и перо

Этот раздел статьи ещё не написан.

Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017)

Треугольник в римановой геометрии[править | править код]

Пазлинка и перо

Этот раздел статьи ещё не написан.

Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017)

Обозначение[править | править код]

Символ Юникод Название
U+25B3 white up-pointing triangle

См. также[править | править код]

  • Глоссарий планиметрии
  • Тригонометрические тождества
  • Тригонометрия
  • Энциклопедия центров треугольника

Дополнительные статьи о геометрии треугольника можно найти в категориях:

  • Категория:Геометрия треугольника.
  • Категория:Теоремы евклидовой геометрии
  • Категория:Планиметрия
  • Категория:Теоремы планиметрии

Примечания[править | править код]

  1. Треугольник // Математическая энциклопедия (в 5 томах). — М.: Советская Энциклопедия, 1985. — Т. 5.
  2. 1 2 Справочник по элементарной математике, 1978, с. 218.
  3. Подходова Н. С. [и др.] Раздел II. Теория обучения математике. Глава 7. Математические понятия. Методика работы с ними (п. 7.5. Классификация понятий) // Методика обучения математике в 2 ч. Часть 1 : учебник для вузов / под ред. Н. С. Подходовой, В. И. Снегуровой. — М.: Издательство Юрайт, 2023. — С. 139. — 274 с. — ISBN 978-5-534-08766-6, ББК 74.202.5я73. — ISBN 978-5-534-14731-5.
  4. Основанием равнобедренного треугольника всегда называют сторону, не равную двум другим.
  5. 1 2 Altshiller-Court, Nathan, College Geometry, Dover, 2007.
  6. 1 2 Справочник по элементарной математике, 1978, с. 221.
  7. 1 2 Longuet-Higgins, Michael S., «On the ratio of the inradius to the circumradius of a triangle», Mathematical Gazette 87, March 2003, 119—120.
  8. Зетель С. И. Новая геометрия треугольника. Пособие для учителей. 2-е издание. М.: Учпедгиз, 1962. задача на с. 120—125. параграф 57, с.73.
  9. Геометрия по Киселёву Архивная копия от 1 марта 2021 на Wayback Machine, § 41.
  10. 1 2 3 4 Справочник по элементарной математике, 1978, с. 219.
  11. Шарыгин И. Ф. Глава 3. (п. 3.2. Признаки равенства треугольников) // Геометрия. 7—9 кл.: учеб. для общеобразоват. учреждений / И. Ф. Шарыгин, ответств.ред. Т. С. Зельдман. — М.: Дрофа, 2012. — С. 79—80. — 462 с. — 3000 экз. — ISBN 978-5-358-09918-0, ББК 22.151я72, УДК 373.167.1:514.
  12. Корн Г., Корн Т. Справочник по математике, 1973.
  13. Корн Г., Корн Т. Справочник по математике, 1973, ф. 1.11-4.
  14. Sa ́ndor Nagydobai Kiss, «A Distance Property of the Feuerbach Point and Its Extension», Forum Geometricorum 16, 2016, 283—290. http://forumgeom.fau.edu/FG2016volume16/FG201634.pdf Архивная копия от 24 октября 2018 на Wayback Machine
  15. Pathan, Alex, and Tony Collyer, “Area properties of triangles revisited, ” Mathematical Gazette 89, November 2005, 495—497.
  16. Mitchell, Douglas W., “The area of a quadrilateral, ” Mathematical Gazette 93, July 2009, 306—309.
  17. Baker, Marcus, “A collection of formulae for the area of a plane triangle, « Annals of Mathematics, part 1 in vol. 1(6), January 1885, 134—138; part 2 in vol. 2(1), September 1885, 11-18. The formulas given here are #9, #39a, #39b, #42, and #49. The reader is advised that several of the formulas in this source are not correct.
  18. Chakerian, G. D. „A Distorted View of Geometry.“ Ch. 7 in Mathematical Plums (R. Honsberger, editor). Washington, DC: Mathematical Association of America, 1979: 147.
  19. Rosenberg, Steven; Spillane, Michael; and Wulf, Daniel B. „Heron triangles and moduli spaces“, Mathematics Teacher 101, May 2008, 656—663.
  20. Posamentier, Alfred S., and Lehmann, Ingmar, The Secrets of Triangles, Prometheus Books, 2012.
  21. van der Waerden, Bartel Leendert. Geometry and Algebra in Ancient Civilizations. — Springer, 1983. — ISBN 3-540-12159-5.
  22. Глейзер Г. И., 1982, с. 77.
  23. Глейзер Г. И., 1982, с. 94—95.
  24. 1 2 Из истории геометрии треугольника, 1963, с. 129.
  25. Матвиевская Г. П., 2012, с. 40—44.
  26. Матвиевская Г. П., 2012, с. 51—55.
  27. Матвиевская Г. П., 2012, с. 92—96.
  28. Матвиевская Г. П., 2012, с. 111.
  29. Туси Насирэддин. Трактат о полном четырёхстороннике. Баку, Изд. АН АзССР, 1952.
  30. Рыбников К. А. История математики в двух томах. — М.: Изд. МГУ, 1960. — Т. I. — С. 105.
  31. История математики, том I, 1970, с. 320.
  32. 1 2 Из истории геометрии треугольника, 1963, с. 130—132.
  33. Из истории геометрии треугольника, 1963, с. 132—133.
  34. Rigby, John (1997), Brief notes on some forgotten geometrical theorems. Mathematics and Informatics Quarterly, volume 7, pages 156—158 (as cited by Kimberling).
  35. В. В. Прасолов. Точки Брокара и изогональное сопряжение. — М.: МЦНПО, 2000. — (Библиотека «Математическое просвещение»). — ISBN 5-900916-49-9.
  36. Математика в задачах. Сборник материалов выездных школ команды Москвы на Всероссийскую математическую олимпиаду. Под редакцией А. А. Заславского, Д. А. Пермякова, А. Б. Скопенкова, М. Б. Скопенкова и А. В. Шаповалова. Москва: МЦНМО, 2009.
  37. Kimberling, Clark. Central Points and Central Lines in the Plane of a Triangle (англ.) // Mathematics Magazine : magazine. — 1994. — June (vol. 67, no. 3). — P. 163—187. — doi:10.2307/2690608.
  38. Kimberling, Clark. Triangle Centers and Central Triangles. — Winnipeg, Canada: Utilitas Mathematica Publishing, Inc., 1998. — С. 285. Архивная копия от 10 марта 2016 на Wayback Machine
  39. Мякишев А.Г. Элементы геометрии треугольника(Серия: «Библиотека „Математическое просвещение“») М.:МЦНМО,2002.с.14—17
  40. 1 2 Vardan Verdiyan & Daniel Campos Salas, «Simple trigonometric substitutions with broad results», Mathematical Reflections no 6, 2007.
  41. Mitchell, Douglas W. (2013), «Perpendicular Bisectors of Triangle Sides», Forum Geometricorum 13, 53-59.
  42. 1 2 Bart Braden. The Surveyor’s Area Formula (англ.) // The College Mathematics Journal  (англ.) (рус. : magazine. — 1986. — Vol. 17, no. 4. — P. 326—337. — doi:10.2307/2686282. Архивировано 6 апреля 2015 года.

Литература[править | править код]

  • Адамар Ж. Элементарная геометрия. Часть 1: Планиметрия. Изд. 4-е, М.: Учпедгиз, 1957. 608 с.
  • Выгодский М. Я. Справочник по элементарной математике. — М.: Наука, 1978.
    • Переиздание: М.: АСТ, 2006, ISBN 5-17-009554-6, 509 с.
  • Ефремов Дм. Новая геометрия треугольника. Одесса, 1902.
  • Зайцев В. В., Рыжков В. В., Сканави М. И. Элементарная математика. Повторительный курс. — Издание третье, стереотипное. — М.: Наука, 1976. — 591 с.
  • Коксетер Г. С. М., Грейтцер С. П. Новые встречи с геометрией. — М.: Наука, 1978. — Т. 14. — (Библиотека математического кружка).
  • Корн Г., Корн Т. Справочник по математике (для научных работников и инженеров). — М.: Наука, 1973. — 720 с.
  • Мякишев А. Г. Элементы геометрии треугольника. — М.: МЦНМО, 2002.
  • Понарин Я. П. Элементарная геометрия. В 2 т. — М.: МЦНМО, 2004. — С. 48-50. — ISBN 5-94057-170-0.
История
  • Гайдук Ю. М., Хованский А. М. Из истории геометрии треугольника // Вопросы истории физико-математических наук. — М.: Высшая школа, 1963. — С. 129—133. — 524 с.
  • Глейзер Г. И. История математики в школе. VII-VIII классы. Пособие для учителей. — М.: Просвещение, 1982. — С. 76—95. — 240 с.
  • История математики под редакцией А. П. Юшкевича в трёх томах, М.: Наука.
    • История математики. С древнейших времен до начала Нового времени // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I.
    • Математика XVII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. II.
    • Математика XVIII столетия // История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1972. — Т. III.
  • Матвиевская Г. П. Очерки истории тригонометрии: Древняя Греция. Средневековый Восток. Позднее Средневековье. — Изд. 2-е. — М.: Либроком, 2012. — 160 с. — (Физико-математическое наследие: математика (история математики)). — ISBN 978-5-397-02777-9.

Ссылки[править | править код]

  • Расчёт элементов треугольника.
  • Расчёт параметров треугольника по координатам его вершин.

Так как высота, проведенная к гипотенузе, представляет собой проведенный к ней перпендикуляр, то катеты — это наклонные, а отрезки гипотенузы, на которые делит ее высота — проекции катетов на гипотенузу прямоугольного треугольника.

proektsii katetov na gipotenuzuВ треугольнике ABC, изображенном на рисунке, AD — проекция катета AC на гипотенузу AB, BD — проекция катета BC на гипотенузу.

Катеты, их проекции на гипотенузу, гипотенуза и высота прямоугольного треугольника связаны между собой формулами.

1) Свойство высоты, проведенной к гипотенузе.

Высота прямоугольного треугольника, проведенная к гипотенузе, есть среднее геометрическое (среднее пропорциональное) между проекциями катетов на гипотенузу.

    [CD = sqrt {AD cdot BD} ,]

или

    [C{D^2} = AD cdot BD.]

2) Свойства катетов прямоугольного треугольника.

Катет прямоугольного треугольника есть среднее геометрическое (среднее пропорциональное) между гипотенузой и проекцией этого катета на гипотенузу.

    [AC = sqrt {AB cdot AD} ]

    [BC = sqrt {AB cdot BD} ]

или

    [A{C^2} = AB cdot AD]

    [B{C^2} = AB cdot BD.]

Добавить комментарий