Проекция точки на плоскость онлайн
С помощю этого онлайн калькулятора можно найти проекцию точки на заданную плоскость. Дается подробное решение с пояснениями. Для построения проекции точки на данную плоскость введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку “Решить”.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Проекция точки на плоскость − теория, примеры и решения
Для нахождения проекции точки M0 на плоскость α, необходимо:
- построить прямую L, проходящую через точку M0 и ортогональной плоскости α.
- найти пересечение данной плоскости α с прямой L(Рис.1).
Общее уравнение плоскости имеет вид:
где n(A,B,C)− называется нормальным вектором плоскости.
Уравнение прямой, проходящей через точку M0(x0, y0, z0) и имеющий направляющий вектор q(l, m, n) имеет следующий вид:
Для того, чтобы прямая (2) была ортогональна плоскости (1), направляющий вектор q(l, m, n) прямой (2) должен быть коллинеарным нормальному вектору n(A,B,C) плоскости (1)(Рис. 1). Следовательно, в качестве направляющего вектора прямой (2) можно взять нормальный вектор плоскости (1) .
Таким образом, уравнение прямой, проходящей через точку M0(x0, y0, z0) и ортогональной плоскости (1) имеет следующий вид:
Для нахождения точку пересечения прямой L с плоскостью α, проще всего рассматривать параметрическое уравнение прямой. Составим ее
Выразим переменные x, y, z через рараметр t.
Подставим значения x,y,z из выражения (4) в (1) и решим относительно t.
Подставляя значение параметра t в выражения (4), находим проекцию M1 точки M0 на плоскость (1).
Пример 1.Найти проекцию M1 точки M0(4, -3, 2) на плоскость
Решение.
Нормальный вектор плоскости имеет вид:
т.е. A=5, B=1, C=−8.
Координаты точки M0: x0=4, y0=−3, z0=2.
Подставляя координаты точки M0 и нормального вектора плоскости в (5), получим:
Из выражений (7) находим:
Ответ:
Проекцией точки M0(4, -3, 2) на плоскость (6) является точка:
При решении геометрических задач в пространстве часто возникает проблема определения расстояния между плоскостью и точкой. В некоторых случаях это необходимо для комплексного решения. Эту величину можно вычислить, если найти проекцию на плоскость точки. Рассмотрим этот вопрос подробнее в статье.
Уравнение для описания плоскости
Перед тем как перейти к рассмотрению вопроса касательно того, как найти проекцию точки на плоскость, следует познакомиться с видами уравнений, которые задают последнюю в трехмерном пространстве. Подробнее – ниже.
Уравнением общего вида, определяющим все точки, которые принадлежат данной плоскости, является следующее:
A*x + B*y + C*z + D = 0.
Первые три коэффициента – это координаты вектора, который называется направляющим для плоскости. Он совпадает с нормалью для нее, то есть является перпендикулярным. Этот вектор обозначают n¯(A; B; C). Свободный коэффициент D однозначно определяется из знания координат любой точки, принадлежащей плоскости.
Далее в статье будем использовать записанное уравнение. Оно требуется, чтобы найти проекцию точки на плоскость.
Понятие о проекции точки и ее вычисление
Предположим, что задана некоторая точка P(x1; y1; z1) и плоскость. Она определена уравнением в общем виде. Если провести перпендикулярную прямую из P к заданной плоскости, то очевидно, что она пересечет последнюю в одной определенной точке Q (x2; y2; z2). Q называется проекцией P на рассматриваемую плоскость. Длина отрезка PQ называется расстоянием от точки P до плоскости. Таким образом, сам PQ является перпендикулярным плоскости.
Как можно найти координаты проекции точки на плоскость? Сделать это не сложно. Для начала следует составить уравнение прямой, которая будет перпендикулярна плоскости. Ей будет принадлежать точка P. Поскольку вектор нормали n¯(A; B; C) этой прямой должен быть параллелен, то уравнение для нее в соответствующей форме запишется так:
(x; y; z) = (x1; y1; z1) + λ*(A; B; C).
Где λ – действительное число, которое принято называть параметром уравнения. Изменяя его, можно получить любую точку прямой.
После того как записано векторное уравнение для перпендикулярной плоскости линии, необходимо найти общую точку пересечения для рассматриваемых геометрических объектов. Ее координаты и будут проекцией P. Поскольку они должны удовлетворять обоим равенствам (для прямой и для плоскости), то задача сводится к решению соответствующей системы линейных уравнений.
Понятие проекции часто используется при изучении чертежей. На них изображаются боковые и горизонтальные проекции детали на плоскости zy, zx, и xy.
Вычисление расстояния от плоскости до точки
Как выше было отмечено, знание координат проекции на плоскость точки позволяет определить дистанцию между ними. Используя обозначения, введенные в предыдущем пункте, получаем, что искомое расстояние равно длине отрезка PQ. Для его вычисления достаточно найти координаты вектора PQ¯, а затем рассчитать его модуль по известной формуле. Конечное выражение для d расстояния между P точкой и плоскостью принимает вид:
d = |PQ¯| = √((x2 – x1)2 + (y2 – y1)2 + (z2 – z1)2).
Полученное значение d представлено в единицах, в которых задается текущая декартова координатная система xyz.
Пример задачи
Допустим, имеется точка N(0; -2; 3) и плоскость, которая описывается следующим уравнением:
2*x – y + z + 4 = 0.
Следует найти точки проекцию на плоскость и вычислить между ними расстояние.
В первую очередь составим уравнение прямой, которая пересекает плоскость под углом 90o. Имеем:
(x; y; z) = (0; -2; 3) + λ*(2; -1; 1).
Записывая это равенство в явном виде, приходим к следующей системе уравнений:
x = 2*λ;
y = -2 – λ;
z = λ + 3;
2*x – y + z + 4 = 0.
Подставляя значения координат из первых трех равенств в четвертое, получим значение λ, определяющее координаты общей точки прямой и плоскости:
2*(2*λ) – (-2 – λ) + λ + 3 + 4 = 0 =>
6*λ + 9 = 0 =>
λ = 9/6 = 3/2 = 1,5.
Подставим найденный параметр в уравнение прямой и найдем координаты проекции исходной точки на плоскость:
(x; y; z) = (0; -2; 3) + 1,5*(2; -1; 1) = (3; -3,5; 4,5).
Для вычисления дистанции между заданными в условии задачи геометрическими объектами применим формулу для d:
d = √((3 – 0 )2 + (-3,5 + 2 )2 + (4,5 – 3 )2) = 3,674.
В данной задаче мы показали, как находить проекцию точки на произвольную плоскость и как вычислять между ними расстояние.
Комментарии преподавателя
1. Введение
Если через точку О в пространстве мы проведем три перпендикулярные прямые, назовем их, выберем направление, обозначим единичные отрезки, то мы получим прямоугольную систему координат в пространстве. Оси координат называются так: Ох – ось абсцисс, Оy – ось ординат и Оz – ось аппликат. Вся система координат обозначается – Oxyz. Таким образом, появляются три координатные плоскости: Оxy, Оxz, Оyz.
Приведем пример построения точки В(4;3;5) в прямоугольной системе координат (см. Рис. 1).
Рис. 1. Построение точки B в пространстве
Первая координата точки B – 4, поэтому откладываем на Ox 4, проводим прямую параллельно оси Oy до пересечения с прямой, проходящей через у=3. Таким образом, мы получаем точку K. Эта точка лежит в плоскости Oxy и имеет координаты K(4;3;0). Теперь нужно провести прямую параллельно оси Oz. И прямую, которая проходит через точку с аппликатой 5 и параллельна диагонали параллелограмма в плоскости Oxy. На их пересечении мы получим искомую точку B.
Рассмотрим расположение точек, у которых одна или две координаты равны 0 (см. Рис. 2).
Рис. 2.
Например, точка A(3;-1;0). Нужно продолжить ось Oy влево до значения -1, найти точку 3 на оси Ox, и на пересечении линий, проходящих через эти значения, получаем точку А. Эта точка имеет аппликату 0, а значит, она лежит в плоскости Oxy.
Точка C(0;2;0) имеет абсциссу и аппликату 0 – не отмечаем. Ордината равна 2, значит точка C лежит только на оси Oy, которая является пересечением плоскостей Oxy и Oyz.
Чтобы отложить точку D(-4;0;3) продолжаем ось Ox назад за начало координат до точки -4. Теперь восстанавливаем из этой точки перпендикуляр – прямую, параллельную оси Oz до пересечения с прямой, параллельной оси Ox и проходящей через значение 3 на оси Oz. Получаем току D(-4;0;3). Так как ордината точки равна 0, значит точка D лежит в плоскости Oxz.
Следующая точка E(0;5;-3). Ордината точки 5, аппликата -3, проводим прямые проходящие через эти значения на соответствующих осях, и на их пересечении получаем точку E(0;5;-3). Эта точка имеет первую координату 0, значит она лежит в плоскости Oyz.
2. Координаты вектора
Начертим прямоугольную систему координат в пространстве Oxyz. Зададим в пространстве прямоугольную систему координат Oxyz. На каждой из положительных полуосей отложим от начала координат единичный вектор, т. е. вектор, длина которого равна единице. Обозначим единичный вектор оси абсцисс, единичный вектор оси ординат , и единичный вектор оси аппликат (см. рис. 1). Эти векторы сонаправлены с направлениями осей, имеют единичную длину и ортогональны – попарно перпендикулярны. Такие вектора называют координатными векторами или базисом.
Рис. 1. Разложение вектора по трем координатным векторам
Возьмем вектор , поместим его в начало координат, и разложим этот вектор по трем некомпланарным – лежащим в разных плоскостях – векторам. Для этого опустим проекцию точки M на плоскость Oxy, и найдем координаты векторов , и . Получаем: . Рассмотрим по отдельности каждый из этих векторов. Вектор лежит на оси Ox, значит, согласно свойству умножения вектора на число, его можно представить как какое-то число x умноженное на координатный вектор . , а длина вектора ровно в x раз больше длины . Так же поступим и с векторами и , и получаем разложение вектора по трем координатным векторам:
Коэффициенты этого разложения x, y и z называются координатами вектора в пространстве.
Рассмотрим правила, которые позволяют по координатам данных векторов найти координаты их суммы и разности, а также координаты произведения данного вектора на данное число.
;
1) Сложение:
2) Вычитание:
3) Умножение на число: ,
Вектор, начало которого совпадает с началом координат, называется радиус–вектором. (Рис. 2). Вектор – радиус-вектор, где x, y и z – это коэффициенты разложения этого вектора по координатным векторам , , . В данном случае x – это первая координата точки A на оси Ox, y – координата точки B на оси Oy, z – координата точки C на оси Oz. По рисунку видно, что координаты радиус-вектора одновременно являются координатами точки М.
Рис. 2.
Возьмем точку A(x1;y1;z1) и точку B(x2;y2;z2) (см. рис. 3). Представим вектор как разность векторов и по свойству векторов. Причем, и – радиус-векторы, и их координаты совпадают с координатами концов этих векторов. Тогда мы можем представить координаты вектора как разность соответствующих координат векторов и : . Таким образом, координаты вектора мы можем выразить через координаты конца и начала вектора.
Рис. 3.
Рассмотрим примеры, иллюстрирующие свойства векторов и их выражение через координаты. Возьмем векторы , , . Нас спрашивают вектор . В данном случае найти это значит найти координаты вектора , которые полностью его определяют. Подставляем в выражение вместо векторов соответственно их координаты. Получаем:
Теперь умножаем число 3 на каждую координату в скобках, и то же самое делаем с 2:
У нас получилась сумма трех векторов, складываем их по изученному выше свойству:
Ответ:
Пример №2.
Дано: Треугольная пирамида AOBC (см. рис. 4). Плоскости AOB, AOC и OCB – попарно перпендикулярны. OA=3, OB=7, OC=4; M – сер.AC; N – сер.OC; P – сер. CB.
Найти: ,,,,,,,.
Рис. 4.
Решение: Введем прямоугольную систему координат Oxyz с началом отсчета в точке O. По условию обозначаем точки A, B и C на осях и середины ребер пирамиды – M, P и N. По рисунку находим координаты вершин пирамиды: A(3;0;0), B(0;7;0), C(0;0;4).
Так как координаты вектора – это разность координат его конца и начала, получаем:. Таким же образом находим координаты векторов и . ; .
Чтобы найти координаты вектора , нужно сначала найти координаты точек M и N. По рисунку видно, что точка N имеет координаты, так как она лежит на оси аппликат. Рассмотрим . MN – средняя линия, . Значит координата точки M по оси Oz 2. Теперь проведем из точки M перпендикуляр к оси Ox, координата 1,5. Точка M лежит в плоскости Oxz, значит по оси Oy координата 0. Получаем M(1,5;0;2). Теперь зная координаты точек M и N, считаем их разность: .
Теперь найдем координаты точки P. Опустим перпендикуляр на плоскость Oxy, получаем значение 3,5 по оси ординат. И проведя перпендикуляр к оси Oz, получаем значение 2 по оси аппликат. Точка P имеет координаты (0;3,5;2). Зная координаты нужных точек, найдем координаты оставшихся векторов.
;
.
Вектора и – радиус-векторы, значит, их координаты равны координатам концов этих векторов: , .
ИСТОЧНИК
http://interneturok.ru/ru/school/geometry/11-klass/bmetod-koordinat-v-prostranstveb/pryamougolnaya-sistema-koordinat-v-prostranstve?seconds=0&chapter_id=218
http://interneturok.ru/ru/school/geometry/11-klass/bmetod-koordinat-v-prostranstveb/koordinaty-vektora-2
http://www.youtube.com/watch?v=I1ls2_8OC7o
http://900igr.net/fotografii/geometrija/Prjamougolnaja-sistema-koordinat/006-Nachalo-koordinat.html
http://www.yaklass.ru/materiali?mode=lsntheme&themeid=101
http://900igr.net/fotografii/geometrija/Prjamougolnaja-sistema-koordinat-v-prostranstve/Prjamougolnaja-sistema-koordinat-v-prostranstve.html
1 / 1 / 0 Регистрация: 24.04.2013 Сообщений: 51 |
|
1 |
|
07.09.2016, 21:01. Показов 14525. Ответов 3
Даны два вектора a = {2, 5, 14}, b = {14, 5 2}. Найти проекцию вектора a на плоскость Oxy при направлении проектирования, параллельном вектору b.
0 |
1728 / 1020 / 181 Регистрация: 03.06.2012 Сообщений: 1,220 |
|
07.09.2016, 21:25 |
2 |
Сообщение было отмечено cmath как решение РешениеФактически, требуется подобрать такое значение , чтобы вектор удовлетворял условию . Значит,
3 |
1 / 1 / 0 Регистрация: 24.04.2013 Сообщений: 51 |
|
08.09.2016, 21:48 [ТС] |
3 |
splen, не подскажите немного по теории? А то непонятно, как и откуда это условие (“Фактически, требуется…”) взялось.
0 |
1728 / 1020 / 181 Регистрация: 03.06.2012 Сообщений: 1,220 |
|
08.09.2016, 22:58 |
4 |
Сообщение было отмечено cmath как решение Решение Это следует из определения проекции вектора на плоскость. откуда . (на рисунке обозначения немного отличаются, но смысл, думаю, понятен).
3 |
1
Сферические координаты Пусть A – точка в пространстве с заданной системой координат. Ортогональную проекцию точки A на плоскость Oxy обозначим A’, а длину вектора ОA – через r. Угол наклона вектора к плоскости Оxy обозначим ψ, причем будем считать его изменяющимся от -90 o до +90 o. Если точка A расположена в верхнем полупространстве, то угол ψ считается положительным, а если в нижнем, то отрицательным. Угол между вектором и осью Ox обозначим φ. Тройка (r, ψ, φ) называется сферическими координатами точки A в пространстве.
2
Сферические координаты Декартовы координаты (x,y,z) точки в пространстве выражаются через ее сферические координаты по формулам и, наоборот, если заданы декартовы координаты, то по ним можно найти сферические координаты по формулам
3
Сферические координаты Точки на сфере, имеющие одинаковый угол ψ, образуют окружность, которая называется параллелью. Точки, имеющие одинаковый угол φ, образуют полуокружность, называемую меридианом. Дуга большой окружности, соединяющая две точки сферы, является кратчайшим путем на сфере между этими двумя точками. Такой путь называют ортодромией, что в переводе с греческого означает “прямой бег”. Кривая, образующая равные углы с разными меридианами, называется локсодромия, что в переводе с греческого означает “косой бег”.
4
Упражнение 1 Найдите декартовы координаты следующих точек пространства, заданных своими сферическими координатами: (1, 45°, 120°), (2, -30°, -90°), (1, 90°, 60°). Ответ:
5
Упражнение 2 Найдите сферические координаты следующих точек пространства, заданных своими декартовыми координатами: а) A(1, 1, 1); б) B(-1, 0, 1); в) C(0, 0, 2). Ответ: A: B(, 45 о, 180 о ); C(2, 90 о, 0 о ).
6
Упражнение 3 Найдите сферические координаты вершин куба, задаваемого в декартовых координатах системой неравенств Ответ: (0, 0 о, 0 о ); (1, 0 о, 0 о ); (,0 о, 45 о ); (1, 0 о, 90 о ); (1, 90 о, 0 о ); (, 45 о, 0 о ); (,, ), sin =, sin = ; (, 45 о, 90 о ).
7
Упражнение 4 Точка A имеет сферические координаты (r,, ). Найдите сферические координаты точки, симметричной данной, относительно: а) координатных плоскостей; б) осей координат; в) начала координат. Ответ: а) (r, -, ), (r,, 180 о – ), (r,, – ); б) (r, -, – ), (r, -, 180 о – ), (r,, 180 о + ); в) (r, -, 180 о + ).
8
Упражнение 5 Найдите геометрическое место точек пространства, сферические координаты которых удовлетворяют условиям: а) r постоянно; б) постоянно; в) постоянно. Ответ: а) Сфера; б) коническая поверхность; в) полуплоскость.
9
Упражнение 6 Какая фигура в пространстве задается неравенствами: а) 0 r 1, 0 ; б) 0 r 1, 0 ; в) 0 r 1, 0, 0 ? Ответ: а) Полушар; б) полушар; в) четверть шара.
10
Упражнение 7 Найдите расстояние между точками, заданными своими сферическими координатами: A(, 0°, 45°), B(2, 60°, 0°). Ответ: 2.
11
Упражнение 8 Где закончится локсодромия, образующая острый угол с меридианами, при ее продолжении в обе стороны? Ответ: На полюсах.
12
Упражнение 9 Напишите уравнение сферы в сферических координатах Ответ: r = 1.
13
Упражнение 10 Найдите длины дуг локсодромии и ортодромии, соединяющих точки A 1 (R, 45°, 0°), A 2 (R, 45°, 180°) на сфере. Ответ: