Определение кинематических характеристик движения с помощью графиков
- Подробности
- Обновлено 13.08.2018 21:14
- Просмотров: 912
«Физика – 10 класс»
Чем отличается равномерное движение от равноускоренного?
Чем отличается график пути при равноускоренном движении от графика пути при равномерном движении?
Что называется проекцией вектора на какую-либо ось?
В случае равномерного прямолинейного движения можно определить скорость по графику зависимости координаты от времени.
Проекция скорости численно равна тангенсу угла наклона прямой x(t) к оси абсцисс. При этом, чем больше скорость, тем больше угол наклона.
Прямолинейное равноускоренное движение.
На рисунке 1.33 изображены графики зависимости проекции ускорения от времени для трёх разных значений ускорения при прямолинейном равноускоренном движении точки. Они представляют собой прямые линии, параллельные оси абсцисс: ах = const. Графики 1 и 2 соответствуют движению, когда вектор ускорения направлен вдоль оси ОХ, график 3 — когда вектор ускорения направлен в противоположную оси ОХ сторону.
При равноускоренном движении проекция скорости зависит от времени линейно: υx = υ0x + axt. На рисунке 1.34 представлены графики этой зависимости для указанных трёх случаев. При этом начальная скорость точки одинакова. Проанализируем этот график.
Проекция ускорения Из графика видно, что, чем больше ускорение точки, тем больше угол наклона прямой к оси t и соответственно больше тангенс угла наклона, который определяет значение ускорения.
За один и тот же промежуток времени при разных ускорениях скорость изменяется на разные значения.
При положительном значении проекции ускорения за один и тот же промежуток времени проекция скорости в случае 2 увеличивается в 2 раза быстрее, чем в случае 1. При отрицательном значении проекции ускорения на ось ОХ проекция скорости по модулю изменяется на то же значение, что и в случае 1, но скорость уменьшается.
Для случаев 1 и 3 графики зависимости модуля скорости от времени будут совпадать (рис. 1.35).
Используя график зависимости скорости от времени (рис. 1.36), найдём изменение координаты точки. Это изменение численно равно площади заштрихованной трапеции, в данном случае изменение координаты за 4 с Δx = 16 м.
Мы нашли изменение координаты. Если необходимо найти координату точки, то к найденному числу нужно прибавить её начальное значение. Пусть в начальный момент времени х0 = 2 м, тогда значение координаты точки в заданный момент времени, равный 4 с, равно 18 м. В данном случае модуль перемещения равен пути, пройденному точкой, или изменению её координаты, т. е. 16 м.
Если движение равнозамедленное, то точка в течение выбранного интервала времени может остановиться и начать двигаться в направлении, противоположном начальному. На рисунке 1.37 показана зависимость проекции скорости от времени для такого движения. Мы видим, что в момент времени, равный 2 с, направление скорости изменяется. Изменение координаты будет численно равно алгебраической сумме площадей заштрихованных треугольников.
Вычисляя эти площади, мы видим, что изменение координаты равно -6 м, это означает, что в направлении, противоположном оси ОХ, точка прошла большее расстояние, чем по направлению этой оси.
Площадь над осью t берём со знаком «плюс», а площадь под осью t, где проекция скорости отрицательна, — со знаком «минус».
Если в начальный момент времени скорость некоторой точки была равна 2 м/с, то координата её в момент времени, равный 6 с, равна -4 м. Модуль перемещения точки в данном случае также равен 6 м — модулю изменения координаты. Однако путь, пройденный этой точкой, равен 10 м — сумме площадей заштрихованных треугольников, показанных на рисунке 1.38.
Изобразим на графике зависимость координаты х точки от времени. Согласно одной из формул (1.14) кривая зависимости координаты от времени — x(t) — парабола.
Если движение точки происходит со скоростью, график зависимости которой от времени изображён на рисунке 1.36, то ветви параболы направлены вверх, так как ах > 0 (рис. 1.39). По этому графику мы можем определить координату точки, а также скорость в любой момент времени. Так, в момент времени, равный 4 с, координата точки равна 18 м.
Для начального момента времени, проводя касательную к кривой в точке А, определяем тангенс угла наклона α1, который численно равен начальной скорости, т. е. 2 м/с.
Для определения скорости в точке В проведём касательную к параболе в этой точке и определим тангенс угла α2. Он равен 6, следовательно, скорость равна 6 м/с.
График зависимости пути от времени — такая же парабола, но проведённая из начала координат (рис. 1.40). Мы видим, что путь непрерывно увеличивается со временем, движение происходит в одну сторону.
Если движение точки происходит со скоростью, график зависимости проекции которой от времени изображён на рисунке 1.37, то ветви параболы направлены вниз, так как аx < 0 (рис. 1.41). При этом моменту времени, равному 2 с, соответствует вершина параболы. Касательная в точке В параллельна оси t, угол наклона касательной к этой оси равен нулю, и скорость также равна нулю. До этого момента времени тангенс угла наклона касательной уменьшался, но был положителен, движение точки происходило в направлении оси ОХ.
Начиная с момента времени t = 2 с, тангенс угла наклона становится отрицательным, а его модуль увеличивается, это означает, что движение точки происходит в направлении, противоположном начальному, при этом модуль скорости движения увеличивается.
Модуль перемещения равен модулю разности координат точки в конечный и начальный моменты времени и равен 6 м.
График зависимости пройденного точкой пути от времени, показанный на рисунке 1.42 отличается от графика зависимости перемещения от времени (см. рис. 1.41).
Как бы ни была направлена скорость, путь, пройденный точкой, непрерывно увеличивается.
Выведем зависимость координаты точки от проекции скорости. Скорость υx = υ0x + axt, отсюда
В случае x0 = 0, ах > 0 и υx > υ0x график зависимости координаты от скорости представляет собой параболу (рис. 1.43).
При этом, чем больше ускорение, тем ветвь параболы будет менее крутой. Это легко объяснить, так как, чем больше ускорение, тем меньше расстояние, которое должна пройти точка, чтобы скорость увеличилась на то же значение, что и при движении с меньшим ускорением.
В случае ах < 0 и υ0x > 0 проекция скорости будет уменьшаться. Перепишем уравнение (1.17) в виде где а = |аx|. График этой зависимостимости — парабола с ветвями, направленными вниз (рис. 1.44).
Ускоренное движение.
По графикам зависимости проекции скорости от времени можно определить координату и проекцию ускорения точки в любой момент времени при любом типе движения.
Пусть проекция скорости точки зависит от времени так, как показано на рисунке 1.45. Очевидно, что в промежутке времени от 0 до t3 движение точки вдоль оси X происходило с переменным ускорением. Начиная с момента времени, равного t3, движение равномерное с постоянной скоростью υDx. По графику мы видим, что ускорение, с которым двигалась точка, непрерывно уменьшалось (сравните угол наклона касательной в точках В и С).
Изменение координаты х точки за время t1 численно равно площади криволинейной трапеции OABt1, за время t2 — площади OACt2 и т. д. Как видим по графику зависимости проекции скорости от времени можно определить изменение координаты тела за любой промежуток времени.
По графику зависимости координаты от времени можно определить значение скорости в любой момент времени, вычисляя тангенс угла наклона касательной к кривой в точке, соответствующей данному моменту времени. Из рисунка 1.46 следует, что в момент времени t1 проекция скорости положительна. В промежутке времени от t2 до t3 скорость равна нулю, тело неподвижно. В момент времени t4 скорость также равна нулю (касательная к кривой в точке D параллельна оси абсцисс). Затем проекция скорости становится отрицательной, направление движения точки изменяется на противоположное.
Если известен график зависимости проекции скорости от времени, можно определить ускорение точки, а также, зная начальное положение, определить координату тела в любой момент времени, т. е. решить основную задачу кинематики. По графику зависимости координаты от времени можно определить одну из самых важных кинематических характеристик движения — скорость. Кроме этого, по указанным графикам можно определить тип движения вдоль выбранной оси: равномерное, с постоянным ускорением или движение с переменным ускорением.
Источник: «Физика – 10 класс», 2014, учебник Мякишев, Буховцев, Сотский
Кинематика – Физика, учебник для 10 класса – Класс!ная физика
Физика и познание мира —
Что такое механика —
Механическое движение. Система отсчёта —
Способы описания движения —
Траектория. Путь. Перемещение —
Равномерное прямолинейное движение. Скорость. Уравнение движения —
Примеры решения задач по теме «Равномерное прямолинейное движение» —
Сложение скоростей —
Примеры решения задач по теме «Сложение скоростей» —
Мгновенная и средняя скорости —
Ускорение —
Движение с постоянным ускорением —
Определение кинематических характеристик движения с помощью графиков —
Примеры решения задач по теме «Движение с постоянным ускорением» —
Движение с постоянным ускорением свободного падения —
Примеры решения задач по теме «Движение с постоянным ускорением свободного падения» —
Равномерное движение точки по окружности —
Кинематика абсолютно твёрдого тела. Поступательное и вращательное движение —
Кинематика абсолютно твёрдого тела. Угловая скорость. Связь между линейной и угловой скоростями —
Примеры решения задач по теме «Кинематика твёрдого тела»
Содержание материала
- Как найти ускорение по графику формула?
- Видео
- Равноускоренное движение в направлении оси, скорость увеличивается
- Равноускоренное движение против оси
- Как составить уравнение скорости по графику?
- График отрицательной скорости для отрицательного ускорения
- Графики равноускоренного движения
Как найти ускорение по графику формула?
График ускорения — графическое представление уравнения ускорения тела а = а(t). График а(t) служит для описания движение тела. На этом графике представлено равноУскоренное движение. Как будут выглядеть графики, придуманные вами, можно увидеть здесь.
Видео
Равноускоренное движение в направлении оси, скорость увеличивается
Следующий набор графиков – это случай, когда тело движется вдоль оси Ox с возрастающей скоростью (рис. 4). То есть, мы рассматриваем равноускоренное движение.
Рис.4. Тело движется равноускорено – рис. а) по направлению оси Ox. Изменение координаты от времени x(t) описывается правой ветвью параболы – рис. б), график v(t) скорости изображен наклонной возрастающей прямой – рис. в), а график неизменного ускорения a(t) – рис. г) изображается горизонтальной прямой, лежащей выше оси времени
Координата «x» теперь изменяется не по линейному, а по квадратичному закону. На графике квадратичное изменение выглядит, как ветвь параболы (рис. 4б). Тело движется по оси и скорость его растет. Такое движение описывается правой ветвью параболы, направленной вверх.
Уравнение, которое описывает квадратичное изменение координаты, выглядит так:
[ x = frac{a}{2}cdot t^{2} + v_{0} cdot t + x_{0} ]
Скорость, так же, растет (рис. 4в). Рост скорости описан наклонной прямой линией – то есть, линейной зависимостью:
[ v = v_{0} + a cdot t ]
Ускорение есть (рис. 4г) и оно не меняется:
[ a = const ]
Скорость и ускорение сонаправлены с осью Ox, поэтому их проекции на ось положительны, а их графики лежат выше оси времени.
Примечания:
1). Координата «x» будет изменяться:
- по линейному закону, когда скорость не меняется — остается одной и той же.
- по квадратичному закону, когда скорость будет изменяться (расти, или убывать).
2). Линейный закон – это уравнение первой степени, на графике – наклонная прямая линия.
3). Квадратичный закон – это уравнение второй степени, на графике — парабола.
4). Когда скорость увеличивается, для графика координаты x(t) выбираем правую ветвь параболы, а когда скорость уменьшается – то левую ветвь.
Равноускоренное движение против оси
Если тело будет увеличивать свою скорость, двигаясь в направлении, противоположном оси (рис. 5а), то ветвь параболы, описывающая изменение координаты тела, будет направлена вниз (рис. 5б).
Скорость направлена против оси и увеличивается в отрицательную область. Такое изменение скорости изображаем прямой, направленной вниз (рис. 5в).
Рис.5. Тело движется равноускорено противоположно оси Ox – рис. а). Координата меняется параболически – рис. б), ветвь правая, так как скорость растет. Скорость — рис. в), и ускорение — рис. г), направлены против оси Ox, их графики лежат ниже оси времени
Примечание: Чтобы скорость увеличивалась (по модулю), нужно, чтобы векторы скорости и ускорения были сонаправленными (ссылка).
Так как скорость увеличивается, то векторы скорости и ускорения сонаправлены. Но при этом, они направлены против оси, поэтому проекции векторов (vec{v}) и (vec{a}) на ось Ox будут отрицательными. Значит, графики скорости и ускорения будут лежать ниже горизонтальной оси времени.
Ускорение (рис. 5г) не изменяется, поэтому изображается горизонтальной прямой. Но эта прямая будет лежать ниже горизонтальной оси времени, так как ускорение имеет отрицательную проекцию на ось Ox.
Как составить уравнение скорости по графику?
График скорости График скорости — графическое представление уравнения скорости тела v = v(t). График v(t) служит для описания движение тела. На этом графике представлено равноУскоренное движение.
График отрицательной скорости для отрицательного ускорения
Когда объект удаляется от точки назначения по отрицательной оси, смещение объекта принимается как отрицательное по отрицательной оси Y. Если положение объекта отклоняется от направления его движения, то считается, что смещение объекта происходит в отрицательном направлении.
Выше приведен график зависимости скорости от времени для отрицательного ускорения. Видно, что скорость со временем уменьшается, наклон графика оказывается отрицательным, а значит, и ускорение отрицательное.
Графики равноускоренного движения
Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график a(t) — прямая линия, параллельная оси времени.
Зависимость скорости от времени. При равномерном движении путь изменяется, согласно линейной зависимости . В координатах . Графиком является наклонная линия.
Правило определения пути по графику v(t): Путь тела — это площадь треугольника (или трапеции) под графиком скорости.
Правило определения ускорения по графику v(t): Ускорение тела — это тангенс угла наклона графика к оси времени. Если тело замедляет движение, ускорение отрицательное, угол графика тупой, поэтому находим тангенс смежного угла.
Зависимость пути от времени. При равноускоренном движении путь изменяется, согласно квадратной зависимости . В координатах зависимость имеет вид . Графиком является ветка параболы.
График движения при . График движения при
График движения при . График движения при
Теги
3.1. Равнопеременное движение по прямой.
3.1.1. Равнопеременное движение по прямой — движение по прямой с постоянным по модулю и направлению ускорением:
3.1.2. Ускорение () — физическая векторная величина, показывающая, на сколько изменится скорость за 1 с.
В векторном виде:
где — начальная скорость тела, — скорость тела в момент времени t.
В проекции на ось Ox:
где — проекция начальной скорости на ось Ox, — проекция скорости тела на ось Ox в момент времени t.
Знаки проекций зависят от направления векторов и оси Ox.
3.1.3. График проекции ускорения от времени.
При равнопеременном движении ускорение постоянно, поэтому будет представлять собой прямые линии, параллельные оси времени (см. рис.):
Значение ускорения: чем дальше от оси времени лежит прямая, тем больше модуль ускорения
3.1.4. Скорость при равнопеременном движении.
В векторном виде:
В проекции на ось Ox:
Для равноускоренного движения:
Для равнозамедленного движения:
3.1.5. График проекции скорости в зависимости от времени.
График проекции скорости от времени — прямая линия.
Направление движения: если график (или часть его) находятся над осью времени, то тело движется в положительном направлении оси Ox.
Значение ускорения: чем больше тангенс угла наклона (чем круче поднимается вверх или опускает вниз), тем больше модуль ускорения; где — изменение скорости за время
Пересечение с осью времени: если график пересекает ось времени, то до точки пересечения тело тормозило (равнозамедленное движение), а после точки пересечения начало разгоняться в противоположную сторону (равноускоренное движение).
3.1.6. Геометрический смысл площади под графиком в осях
Площадь под графиком, когда на оси Oy отложена скорость, а на оси Ox — время — это путь, пройденный телом.
На рис. 3.5 нарисован случай равноускоренного движения. Путь в данном случае будет равен площади трапеции:
(3.9)
3.1.7. Формулы для расчета пути
Равноускоренное движение
|
Равнозамедленное движение |
---|---|
(3.10) | (3.12) |
(3.11) | (3.13) |
(3.14) |
Все формулы, представленные в таблице, работают только при сохранении направления движения, то есть до пересечения прямой с осью времени на графике зависимости проекции скорости от времени.
Если же пересечение произошло, то движение проще разбить на два этапа:
до пересечения (торможение):
После пересечения (разгон, движение в обратную сторону)
В формулах выше — время от начала движения до пересечения с осью времени (время до остановки), — путь, который прошло тело от начала движения до пересечения с осью времени, — время, прошедшее с момента пересечения оси времени до данного момента t, — путь, который прошло тело в обратном направлении за время, прошедшее с момента пересечения оси времени до данного момента t, — модуль вектора перемещения за все время движения, L — путь, пройденный телом за все время движения.
3.1.8. Перемещение за -ую секунду.
За время тело пройдет путь:
За время тело пройдет путь:
Тогда за -ый промежуток тело пройдет путь:
За промежуток можно принимать любой отрезок времени. Чаще всего с.
Если то
Тогда за 1-ую секунду тело проходит путь:
За 2-ую секунду:
За 3-ю секунду:
и т. д.
Если внимательно посмотрим, то увидим, что и т. д.
Таким образом, приходим к формуле:
Словами: пути, проходимые телом за последовательные промежутки времени соотносятся между собой как ряд нечетных чисел, и это не зависит от того, с каким ускорением движется тело. Подчеркнем, что это соотношение справедливо при
3.1.9. Уравнение координаты тела при равнопеременном движении
Уравнение координаты
Знаки проекций начальной скорости и ускорения зависят от взаимного расположения соответствующих векторов и оси Ox.
Для решения задач к уравнению необходимо добавлять уравнение изменения проекции скорости на ось:
3.2. Графики кинематических величин при прямолинейном движении
3.3. Свободное падение тела
Под свободным падением подразумевается следующая физическая модель:
1) Падение происходит под действием силы тяжести:
2) Сопротивление воздуха отсутствует (в задачах иногда пишут «сопротивлением воздуха пренебречь»);
3) Все тела, независимо от массы падают с одинаковым ускорением (иногда добавляют — «независимо от формы тела», но мы рассматриваем движение только материальной точки, поэтому форма тела уже не учитывается);
4) Ускорение свободного падения направлено строго вниз и на поверхности Земли равно (в задачах часто принимаем для удобства подсчетов);
3.3.1. Уравнения движения в проекции на ось Oy
В отличии от движения по горизонтальной прямой, когда далеко не всех задач происходит смена направления движения, при свободном падении лучше всего сразу пользоваться уравнениями, записанными в проекциях на ось Oy.
Уравнение координаты тела:
Уравнение проекции скорости:
Как правило, в задачах удобно выбрать ось Oy следующим образом:
Ось Oy направлена вертикально вверх;
Начало координат совпадает с уровнем Земли или самой нижней точкой траектории.
При таком выборе уравнения и перепишутся в следующем виде:
3.4. Движение в плоскости Oxy.
Мы рассмотрели движение тела с ускорением вдоль прямой. Однако этим равнопеременное движение не ограничивается. Например, тело, брошенное под углом к горизонту. В таких задачах необходимо учитывать движение сразу по двум осям:
Или в векторном виде:
И изменение проекции скорости на обе оси:
3.5. Применение понятия производной и интеграла
Мы не будем приводить здесь подробное определение производной и интеграла. Для решения задач нам понадобятся лишь небольшой набор формул.
Производная:
где A, B и то есть постоянные величины.
Интеграл:
Теперь посмотрим, как понятие производной и интеграла применимо к физическим величинам. В математике производная обозначается «’», в физике производная по времени обозначается «∙» над функцией.
Скорость:
то есть скорость является производной от радиус-вектора.
Для проекции скорости:
Ускорение:
то есть ускорение является производной от скорости.
Для проекции ускорения:
Таким образом, если известен закон движения то легко можем найти и скорость и ускорение тела.
Теперь воспользуемся понятием интеграла.
Скорость:
то есть, скорость можно найти как интеграл по времени от ускорения.
Радиус-вектор:
то есть, радиус-вектор можно найти, взяв интеграл от функции скорости.
Таким образом, если известна функция то легко можем найти и скорость, и закон движения тела.
Константы в формулах определяются из начальных условий — значения и в момент времени
3.6. Треугольник скоростей и треугольник перемещений
3.6.1. Треугольник скоростей
В векторном виде при постоянном ускорении закон изменения скорости имеет вид (3.5):
Эта формула означает, что вектор равен векторной сумме векторов и Векторную сумму всегда можно изобразить на рисунке (см. рис.).
В каждой задаче, в зависимости от условий, треугольник скоростей будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.
3.6.2. Треугольник перемещений
В векторном виде закон движения при постоянном ускорении имеет вид:
При решении задачи можно выбирать систему отсчета наиболее удобным образом, поэтому не теряя общности, можем выбрать систему отсчета так, что то есть начало системы координат помещаем в точку, где в начальный момент находится тело. Тогда
то есть вектор равен векторной сумме векторов и Изобразим на рисунке (см. рис.).
Как и в предыдущем случае в зависимости от условий треугольник перемещений будет иметь свой вид. Такое представление позволяет использовать при решении геометрические соображения, что часто упрощает решение задачи.
- Равноускоренное прямолинейное движение — движение по прямой линии с постоянным ускорением (a=const).
- Ускорение — векторная физическая величина, показывающая изменение скорости тела за 1 с. Обозначается как a.
- Единица измерения ускорения — метр в секунду в квадрате (м/с2).
- Акселерометр — прибор для измерения ускорения.
Формула ускорения
Ускорение тела равно отношению изменения вектора скорости ко времени, в течение которого это изменение произошло:
v — скорость тела в данный момент времени, v0 — скорость тела в начальный момент времени, t — время, в течение которого изменялась скорость
Пример №1. Состав тронулся с места и через 20 секунд достиг скорости 36 км/ч. Найти ускорение его разгона.
Сначала согласуем единицы измерения. Для этого переведем скорость в м/с: умножим километры на 1000 и поделим на 3600 (столько секунд содержится в 1 часе). Получим 10 м/с.
Начальная скорость состава равно 0 м/с, так как изначально он стоял на месте. Имея все данные, можем подставить их в формулу и найти ускорение:
Проекция ускорения
Проекция ускорения на ось ОХ
vx — проекция скорости тела в данный момент времени, v0x — проекция скорости в начальный момент времени, t — время, в течение которого изменялась скорость
Знак проекции ускорения зависит от того, в какую сторону направлен вектор ускорения относительно оси ОХ:
- Если вектор ускорения направлен в сторону оси ОХ, то его проекция положительна.
- Если вектор ускорения направлен в сторону, противоположную направлению оси ОХ, его проекция отрицательная.
При решении задач на тему равноускоренного прямолинейного движения проекции величин можно записывать без нижнего индекса, так как при движении по прямой тело изменяет положение относительно только одной оси (ОХ). Их обязательно нужно записывать, когда движение описывается относительно двух и более осей.
Направление вектора ускорения
Направление вектора ускорения не всегда совпадает с направлением вектора скорости!
Равноускоренным движением называют такое движение, при котором скорость за одинаковые промежутки времени изменяется на одну и ту же величину. При этом направления векторов скорости и ускорения тела совпадают (а↑↑v).
Равнозамедленное движение — частный случай равноускоренного движения, при котором скорость за одинаковые промежутки времени уменьшается на одну и ту же величину. При этом направления векторов скорости и ускорения тела противоположны друг другу (а↑↓v).
Пример №2. Автомобиль сначала разогнался, а затем затормозил. Во время разгона направления векторов его скорости и ускорения совпадают, так как скорость увеличивается. Но при торможении скорость уменьшается, потому что вектор ускорения изменил свое направление в противоположную сторону.
График ускорения
График ускорения — график зависимости проекции ускорения от времени. Проекция ускорения при равноускоренном прямолинейном движении не изменяется (ax=const). Графиком ускорения при равноускоренном прямолинейном движении является прямая линия, параллельная оси времени.
Зависимость положения графика проекции ускорения относительно оси ОХ от направления вектора ускорения:
- Если график лежит выше оси времени, движение равноускоренное (направление вектора ускорения совпадает с направлением оси ОХ). На рисунке выше тело 1 движется равноускорено.
- Если график лежит ниже оси времени, движение равнозамедленное (вектор ускорения направлен противоположно оси ОХ). На рисунке выше тело 2 движется равнозамедлено.
Если график ускорения лежит на оси времени, движение равномерное, так как ускорение равно 0. Скорость в этом случае — величина постоянная.
Чтобы сравнить модули ускорений по графикам, нужно сравнить степень их удаленности от оси времени независимо от того, лежат они выше или ниже нее. Чем дальше от оси находится график, тем больше его модуль. На рисунке график 2 находится дальше от оси времени по сравнению с графиком один. Поэтому модуль ускорения тела 2 больше модуля ускорения тела 1.
Пример №3. По графику проекции ускорения найти участок, на котором тело двигалось равноускорено. Определить ускорение в момент времени t1 = 1 и t2 = 3 с.
В промежуток времени от 0 до 1 секунды график ускорения рос, с 1 до 2 секунд — не менялся, а с 2 до 4 секунд — опускался. Так как при равноускоренном движении ускорение должно оставаться постоянным, ему соответствует второй участок (с 1 по 2 секунду).
Чтобы найти ускорение в момент времени t, нужно мысленно провести перпендикулярную прямую через точку, соответствующую времени t. От точки пересечения с графиком нужно мысленно провести перпендикуляр к оси проекции ускорения. Значение точки, в которой пересечется перпендикуляр с этой осью, покажет ускорение в момент времени t.
В момент времени t1 = 1с ускорение a = 2 м/с2. В момент времени t2 = 3 ускорение a = 0 м/с2.
Задание EF18774
На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.
Алгоритм решения
- Определить, какому типу движения соответствует график зависимости координаты тела от времени.
- Определить величины, которые характеризуют такое движение.
- Определить характер изменения величин, характеризующих это движение.
- Установить соответствие между графиками А и Б и величинами, характеризующими движение.
Решение
График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:
- перемещение и путь;
- скорость;
- ускорение.
Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.
График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.
График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.
Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.
График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».
График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».
Ответ: 24
pазбирался: Алиса Никитина | обсудить разбор
Задание EF17992
Начальная скорость автомобиля, движущегося прямолинейно и равноускоренно, равна 5 м/с. После прохождения расстояния 40 м его скорость оказалась равной 15 м/c. Чему равно ускорение автомобиля?
Алгоритм решения
- Записать исходные данные.
- Записать формулу, связывающую известные из условия задачи величины.
- Выразить из формулы искомую величину.
- Вычислить искомую величину, подставив в формулу исходные данные.
Решение
Запишем исходные данные:
- Начальная скорость v0 = 5 м/с.
- Конечная скорость v = 15 м/с.
- Пройденный путь s = 40 м.
Формула, которая связывает ускорение тела с пройденным путем:
Так как скорость растет, ускорение положительное, поэтому перед ним в формуле поставим знак «+».
Выразим из формулы ускорение:
Подставим известные данные и вычислим ускорение автомобиля:
Ответ: 2,5
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18202
Внимательно прочитайте текст задания и выберите верный ответ из списка. На рисунке приведён график зависимости проекции скорости тела vx от времени.
Какой из указанных ниже графиков совпадает с графиком зависимости от времени проекции ускорения этого тела ax в интервале времени от 6 с до 10 с?
Алгоритм решения
- Охарактеризовать движение тела на участке графика, обозначенном в условии задачи.
- Вычислить ускорение движение тела на этом участке.
- Выбрать график, который соответствует графику зависимости от времени проекции ускорения тела.
Решение
Согласно графику проекции скорости в интервале времени от 6 с до 10 с тело двигалось равнозамедленно. Это значит, что проекция ускорения на ось ОХ отрицательная. Поэтому ее график должен лежать ниже оси времени, и варианты «а» и «в» заведомо неверны.
Чтобы выбрать между вариантами «б» и «г», нужно вычислить ускорение тела. Для этого возьмем координаты начальной и конечной точек рассматриваемого участка:
- t1 = 6 с. Этой точке соответствует скорость v1 = 0 м/с.
- t2 = 10 с. Этой точке соответствует скорость v2 = –10 м/с.
Используем для вычислений следующую формулу:
Подставим в нее известные данные и сделаем вычисления:
Этому значению соответствует график «г».
Ответ: г
pазбирался: Алиса Никитина | обсудить разбор
Задание EF18027
На графике приведена зависимость проекции скорости тела от времени при прямолинейном движении по оси х. Определите модуль ускорения тела.
Алгоритм решения
- Записать формулу ускорения.
- Записать формулу для вычисления модуля ускорения.
- Выбрать любые 2 точки графика.
- Определить для этих точек значения времени и проекции скорости (получить исходные данные).
- Подставить данные формулу и вычислить ускорение.
Решение
Записываем формулу ускорения:
По условию задачи нужно найти модуль ускорения, поэтому формула примет следующий вид:
Выбираем любые 2 точки графика. Пусть это будут:
- t1 = 1 с. Этой точке соответствует скорость v1 = 15 м/с.
- t2 = 2 с. Этой точке соответствует скорость v2 = 5 м/с.
Подставляем данные формулу и вычисляем модуль ускорения:
Ответ: 10
pазбирался: Алиса Никитина | обсудить разбор
Алиса Никитина | Просмотров: 13.6k
График зависимости проекции скорости от времени
Зависимость проекции скорости от времени является линейной, так как описывается следующим законом:
Из курса математики нам известно похожее уравнение:
Это уравнение прямой, следовательно, график зависимости проекции скорости от времени также будет иметь вид прямой. Нарисуем эту прямую на координатной сетке (рис. 1). Для этого выбираем произвольное значение и строим произвольную прямую.
Рис. 1. График зависимости проекции скорости от времени
Проанализируем полученный график.
Видно, что скорость тела возрастала и в какой-то момент времени была равна . Это говорит о том, что проекция ускорения .
Рассмотрим прямоугольный треугольник (выделенный красным цветом). Длина катета 1 в этом треугольнике равна , а длина катета 2 равна . С помощью этих катетов найдем тангенс угла , то есть тангенс угла наклона построенной прямой:
Нам известно, что отношение изменения скорости ко времени, за которое оно произошло – это ускорение, следовательно:
Проанализируем график на рисунке 2.
Рис. 2. График зависимости проекции скорости от времени
Видно, что скорость тела не менялась и всегда оставалась равной , следовательно, проекция ускорения этого тела равно нулю . Такое движение является равномерным.
Проанализируем график на рисунке 3.
Рис. 3. График зависимости проекции скорости от времени
Видно, что проекция ускорения имеет знак минус . До момента времени модуль скорости уменьшался (тело тормозило), а далее модуль скорости увеличивался (тело разгонялось в противоположную сторону), следовательно, момент времени – это точка поворота (рис. 4).
Рис. 4. Точка поворота
Задача 1
На рисунке 5 представлен график зависимости проекции скорости от времени для движущегося тела. По данному рисунку запишите эту зависимость аналитически.
Рис. 5. Иллюстрация к задаче
Решение
Зависимость является прямой, то есть тело двигалось равноускоренно. Зависимость скорости от времени при равноускоренном движении выглядит следующим образом:
Для того чтобы записать эту зависимость для данного тела, необходимо найти проекцию начальной скорости и проекцию ускорения .
Начальная скорость – это скорость в начальный момент времени, то есть при . На данном графике видно, что начальная скорость равна (цена одного деления на оси проекции скорости ).
Формула для нахождения проекции ускорения:
Начальная скорость нам известна, а определим в произвольный момент времени. В данном случае удобно определить скорость в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась с до определим по графику. Это время равно (цена одного деления на оси времени ).
Подставляем полученные данные в формулу проекции ускорения:
Подставляем значение проекции начальной скорости и ускорения в закон изменения проекции скорости со временем:
Ответ: .
График зависимости проекции перемещения от времени
Зависимость проекции перемещения от времени имеет следующий вид:
Множитель t в этой зависимости стоит как в первой степени, так и во второй. С точки зрения математики такая зависимость называется квадратичной, а график ее – парабола.
Рис. 6. Графики зависимости проекции перемещения от времени
На рисунке 6 изображены параболы.
Ветви параболы 1 направлены вверх, следовательно, коэффициент , то есть проекция ускорения положительная .
Для параболы 2 проекция ускорения также будет положительной . До момента времени тело двигалось в противоположную выбранной оси сторону; – точка поворота.
Ветви параболы 3 направлены вниз, следовательно, проекция ускорения меньше нуля . – точка поворота.
График зависимости координаты от времени
Зависимость координаты от времени имеет следующий вид:
Данная зависимость отличается от уравнения зависимости проекции перемещения от времени только слагаемым . Поэтому график также будет иметь вид параболы, которая сдвинута по оси ординат на величину начальной координаты () (рис. 7).
Рис. 7. Сдвиг графика
На рисунке 8 изображены графики зависимости координаты от времени.
Рис. 8. Графики зависимости координаты от времени
Парабола 1 имеет отрицательную начальную координату. Ветви этой параболы направлены вверх, следовательно, проекция ускорения будет больше нуля, .
У параболы 2 начальная координата больше нуля. Ветви этой параболы направлены вниз, следовательно, проекция ускорения будет меньше нуля, .
Модуль проекции ускорения будет больше во втором случае, так как координата (x) менялась быстрее.
Задача 2
На рисунке 9 представлен график зависимости для равноускоренно движущегося тела. Известно, что начальная координата тела составляла . По этим данным запишите аналитически зависимость , и , а также постройте график зависимости .
Рис. 9. Иллюстрация к задаче
Решение
1. Общий вид закона :
На графике видно, что проекция начальной скорости равна:
Формула для нахождения проекции ускорения:
В данном случае удобно определить скорость в точке пересечения прямой с осью времени. Скорость в этой точке равна нулю . Время, за которое скорость изменилась от начального значения до значения , определим по графику. Это время равно .
Подставляем значение проекции начальной скорости и ускорения в уравнение :
2. Общий вид закона :
Значение проекции начальной скорости и ускорения нам известны, поэтому подставляем их в уравнение:
3. Общий вид закона :
Значение проекции начальной скорости и ускорения, а также начальной координаты нам известны, поэтому подставляем их в уравнение:
4. По имеющейся зависимости построим график.
Для того чтобы построить график параболы, необходимо определить координаты вершины.
Координаты вершины параболы находятся по формулам:
;
Тогда,
Ординату вершины найдем, подставив значение абсциссы () в уравнение зависимости :
Также необходимо найти точки пересечения параболы с осями.
Из условия известна начальная координата. То есть при , . Вторую точку найдем, подставив 0 вместо в уравнение зависимости координаты от времени.
При решении данного квадратного уравнения получаем два корня и . Нам подходит положительный корень , так как мы считаем, что тело начало двигаться в момент времени . – момент времени за 2 с до начала наблюдения.
Следовательно, вторая точка имеет абсциссу , ординату .
По известным точкам строим параболу. Ветви данной параболы направлены вверх, так как в уравнении перед стоит знак плюс (рис. 10).
Рис. 10. Иллюстрация к задаче
Список литературы
- М. М. Балашов, А. И. Гомонова, А. Б. Долицкий. Физика: механика. 10. – М.: Дрофа, 2004.
- А. П. Рымкевич. Физика. Задачник 10-11. – М.: Дрофа, 2006.
- В. А. Касьянов. Физика 10 кл. – М.: Дрофа, 2000.
- А. В. Перышкин, В. В. Крауклис. Курс физики. Т. 1. – М.: Гос. уч.-пед. изд. мин. просвещения РСФСР, 1957.
Дополнительные рекомендованные ссылки на ресурсы сети Интернет
- Интернет-портал «ru.solverbook.com» (Источник)
- Интернет-портал «msk.edu.ua» (Источник)
- Интернет-портал «festival.1september.ru» (Источник)
Домашнее задание
- Задача 57, 58 (стр. 15) – А. П. Рымкевич. Физика. Задачник 10-11
- Нарисуйте график зависимости координаты от времени для прямолинейного движения, удовлетворяющего одновременно двум условиям: а) средняя скорость в промежутке времени от 2 до 6 с равна 5 м/с; б) максимальная скорость в том же промежутке равна 15 м/с.
- По графикам зависимости проекции скорости от времени (рис. 11) определите для каждого тела:
а) проекцию начальной скорости;
б) проекцию скорости через 2 с;
в) проекцию ускорения;
г) уравнение проекции скорости;
д) когда проекция скорости тел будет равна 6 м/с.
Рис. 11. Иллюстрация к задаче