Как найти проекцию вектора через угол

Преподаватель который помогает студентам и школьникам в учёбе.

Проекция вектора на ось в физике – формулы и определения с примерами

Содержание:

Проекция вектора на ось:

Вы уже знаете, что вектор имеет модуль и направление. При решении задач часто используется понятие проекция вектора на ось. Что такое проекция вектора? Как ее определяют?

Начнем с понятия проекция точки на ось.

Проекция точки — это основание перпендикуляра, опущенного из данной точки на ось.

На рисунке 24 точка Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось в физике - формулы и определения с примерами

Как определяют проекцию вектора на ось

Проекция вектора на ось — это длина отрезка между проекциями начала и конца вектора, взятая со знаком «+» или «-». Знак «+» берут, если угол между вектором и осью острый, а знак «-» — если угол тупой.

На рисунке 25 проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами на ось Ох обозначена через Проекция вектора на ось в физике - формулы и определения с примерами а проекция вектора Проекция вектора на ось в физике - формулы и определения с примерами — через Проекция вектора на ось в физике - формулы и определения с примерами
Проекция вектора на ось в физике - формулы и определения с примерами
Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число положительное, т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а — острый. Проекция Проекция вектора на ось в физике - формулы и определения с примерами — число отрицательное Проекция вектора на ось в физике - формулы и определения с примерами т. к. угол Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, б — тупой.

А если вектор перпендикулярен оси? Тогда его проекция на эту ось равна нулю (рис. 26).

Проекция вектора на ось в физике - формулы и определения с примерами

Проекцию вектора можно выразить через его модуль и угол между вектором и осью.

Рассмотрим треугольник Проекция вектора на ось в физике - формулы и определения с примерами на рисунке 25, а. Его гипотенуза Проекция вектора на ось в физике - формулы и определения с примерами катет Проекция вектора на ось в физике - формулы и определения с примерами а угол между ними равен Проекция вектора на ось в физике - формулы и определения с примерами Следовательно,

Проекция вектора на ось в физике - формулы и определения с примерами

Проекция вектора на ось равна модулю вектора, умноженному на косинус угла между вектором и осью.

Это правило справедливо при любых углах между вектором и осью. Подтвердите это с помощью рисунков 25 и 26.

Обратим внимание на еще одно важное свойство проекций: проекция суммы векторов на ось равна сумме их проекций на эту ось.

Проекция вектора на ось в физике - формулы и определения с примерами

С помощью рисунка 27, а, б убедитесь, что из векторного равенства Проекция вектора на ось в физике - формулы и определения с примерами следует равенство для проекций: Проекция вектора на ось в физике - формулы и определения с примерами Не забывайте о знаках проекций.

Можно ли найти модуль и направление вектора по его проекциям на координатные оси

Проекция вектора на ось в физике - формулы и определения с примерами

Рассмотрим вектор Проекция вектора на ось в физике - формулы и определения с примерами лежащий в плоскости Проекция вектора на ось в физике - формулы и определения с примерами (рис. 28). Его проекции на оси Проекция вектора на ось в физике - формулы и определения с примерами определим из рисунка: Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора из треугольника ACD: Проекция вектора на ось в физике - формулы и определения с примерами Разделив Проекция вектора на ось в физике - формулы и определения с примерами на Проекция вектора на ось в физике - формулы и определения с примерами получим: Проекция вектора на ось в физике - формулы и определения с примерами По значению косинуса находим угол Проекция вектора на ось в физике - формулы и определения с примерами

Таким образом, вектор, лежащий в заданной плоскости, полностью определяется двумя проекциями на оси координат.

Вектор в пространстве определяется тремя проекциями: Проекция вектора на ось в физике - формулы и определения с примерами(рис. 29).
Проекция вектора на ось в физике - формулы и определения с примерами
 

Главные выводы:

  1. Проекция вектора на ось — это длина отрезка, заключенного между проекциями начала и конца вектора на эту ось, взятая со знаком «+» или «-».
  2. Если угол между вектором и осью острый, то его проекция на эту ось положительна, если угол тупой — отрицательна, если прямой — равна нулю.
  3. Проекция вектора на ось равна произведению его модуля на косинус угла между вектором и осью.
  4. Проекция суммы векторов на ось равна сумме их проекций на эту ось.

Пример №1

Проекция вектора на ось в физике - формулы и определения с примерами

1. Определите сумму и разность взаимно перпендикулярных векторов Проекция вектора на ось в физике - формулы и определения с примерами (рис. 30). Найдите модули векторов суммы Проекция вектора на ось в физике - формулы и определения с примерами и разности Проекция вектора на ось в физике - формулы и определения с примерами

Решение

Сумму векторов Проекция вектора на ось в физике - формулы и определения с примерами находим по правилу треугольника (рис. 31, а) или параллелограмма (рис. 31, б). Так как векторы Проекция вектора на ось в физике - формулы и определения с примерами взаимно перпендикулярны, модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим по теореме Пифагора: Проекция вектора на ось в физике - формулы и определения с примерами Разность векторов Проекция вектора на ось в физике - формулы и определения с примерами определим по правилам вычитания векторов (рис. 32, а, б).

Проекция вектора на ось в физике - формулы и определения с примерами

Модуль вектора Проекция вектора на ось в физике - формулы и определения с примерами находим аналогично:

Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Заказать решение задач по физике

Пример №2

Выразите вектор Проекция вектора на ось в физике - формулы и определения с примерами через векторы Проекция вектора на ось в физике - формулы и определения с примерами (рис. 33). Как связаны между собой проекции этих векторов на оси Ох и Оу?

Решение

Проекция вектора на ось в физике - формулы и определения с примерами

По правилу треугольника находим: Проекция вектора на ось в физике - формулы и определения с примерами Отсюда Проекция вектора на ось в физике - формулы и определения с примерами Определив координаты Проекция вектора на ось в физике - формулы и определения с примерами начальных и конечных точек векторов Проекция вектора на ось в физике - формулы и определения с примерами находим проекции этих векторов: Проекция вектора на ось в физике - формулы и определения с примерами Проекция вектора на ось в физике - формулы и определения с примерами

Вычислением убедимся, что проекции векторов связаны теми же равенствами, что и сами векторы: Проекция вектора на ось в физике - формулы и определения с примерами

Ответ: Проекция вектора на ось в физике - формулы и определения с примерами

  • Путь и перемещение
  • Равномерное прямолинейное движение
  • Прямолинейное неравномерное движение 
  • Прямолинейное равноускоренное движение
  • Колебательное движение
  • Физический и математический маятники
  • Пружинные и математические маятники
  • Скалярные и векторные величины и действия над ними
Автор статьи

Анна Кирпиченкова

Эксперт по предмету «Геометрия»

Задать вопрос автору статьи

Для понятия проекции вектора на ось или какой-либо другой вектор существуют понятия ее геометрической проекции и числовой (или алгебраической) проекции. Результатом геометрической проекции будет вектор, а результатом алгебраической – неотрицательное действительное число. Но перед тем, как перейти к этим понятиям вспомним необходимую информацию.

Предварительные сведения

Основное понятие – непосредственно понятие вектора. Для того, чтобы ввести определение геометрического вектора вспомним, что такое отрезок. Введем следующее определение.

Определение 1

Отрезком будем называть часть прямой, которая имеет две границы в виде точек.

Отрезок может иметь 2 направления. Для обозначения направления будем называть одну из границ отрезка его началом, а другую границу – его концом. Направление указывается от его начала к концу отрезка.

Определение 2

Вектором или направленным отрезком будем называть такой отрезок, для которого известно, какая из границ отрезка считается началом, а какая его концом.

Обозначение: Двумя буквами: $overline{AB}$ – (где $A$ его начало, а $B$ – его конец).

Одной маленькой буквой: $overline{a}$ (рис. 1).

а) вектор $overline{a}$. б) вектор $overline{AB}$

Введем еще несколько понятий, связанных с понятием вектора.

Определение 3

Два ненулевых вектора будем называть коллинеарными, если они лежат на одной и той же прямой или на прямых, параллельных друг другу (рис.2).

«Проекция вектора на ось. Как найти проекцию вектора» 👇

Определение 4

Два ненулевых вектора будем называть сонаправленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они будут направлены в одну сторону (рис. 3).

Обозначение: $overline{a}↑↑overline{b}$

Определение 5

Два ненулевых вектора будем называть противоположно направленными, если они удовлетворяют двум условиям:

  1. Эти векторы коллинеарны.
  2. Если они направлены в разные стороны (рис. 4).

Обозначение: $overline{a}↑↓overline{d}$

Определение 6

Длиной вектора $overline{a}$ будем называть длину отрезка $a$.

Обозначение: $|overline{a}|$

Перейдем к определению равенства двух векторов

Определение 7

Два вектора будем называть равными, если они удовлетворяют двух условиям:

  1. Они сонаправлены;
  2. Их длины равны (рис. 5).

Геометрическая проекция

Как мы уже сказали ранее, результатом геометрической проекции будет вектор.

Определение 8

Геометрической проекцией вектора $overline{AB}$ на ось будем называть такой вектор, который получается следующим образом: Точка начала вектора $A$ проецируется на данную ось. Получаем точку $A’$ – начало искомого вектора. Точка конца вектора $B$ проецируется на данную ось. Получаем точку $B’$ – конец искомого вектора. Вектор $overline{A’B’}$ и будет искомым вектором.

Рассмотрим задачу:

Пример 1

Постройте геометрическую проекцию $overline{AB}$ на ось $l$, изображенные на рисунке 6.

Решение.

Проведем из точки $A$ перпендикуляр к оси $l$, получим на ней точку $A’$. Далее проведем из точки $B$ перпендикуляр к оси $l$, получим на ней точку $B’$ (рис. 7).

Полученный на оси $l$ вектор $overline{A’B’}$ и будет искомой геометрической проекцией.

Замечание 1

Заметим, что если угол между вектором и осью острый, то проекция сонаправлена с осью, а если тупой, то проекция противоположно направлена с осью.

Числовая проекция

Как мы уже знаем, результатом алгебраической проекции будет неотрицательное действительное число.

Определение 9

Числовой (алгебраической) проекцией на ось будем называть неотрицательное число, равное длине вектора геометрической проекции.

Рассмотрим это понятие на примере задачи:

Пример 2

Найти числовую проекцию вектора $overline{F} на сонаправленную ему ось $x$, если угол между ними равняется $α$ (рис. 8). (рис. 8).

Решение.

Введем на рисунке следующие обозначения:

Видим, что длина вектора геометрической проекции, равняется длине $XY$. Из определения косинуса получим, что

$XY=|overline{F}|cosα$

где $|overline{F}|$ – длина вектора $overline{F}$. Это и будет искомая алгебраическая проекция на ось.

Другие случаи можете видеть на рисунке 9.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Ось – это направление. Значит, проекция на ось или на направленную прямую считается одним и тем же. Проекция бывает алгебраическая и геометрическая. В геометрическом понимают проекцию вектора на ось как вектор, а алгебраическом – число. То есть применяются понятия проекция вектора на ось и числовая проекция вектора на ось.

Если имеем ось L и ненулевой вектор AB→, то можем построить вектор A1B1⇀, обозначив проекции его точек A1 и B1. 

A1B→1 будет являться проекцией вектора AB→ на L.

Определение 1

Проекцией вектора на ось называют вектор, начало и конец которого являются проекции начала и конца заданного вектора. npLAB→→ принято обозначать проекцию AB→ на L. Для построения проекции на L опускают перпендикуляры на L. 

Проекция вектора на ось и числовая проекция

Пример 1

Пример проекции вектора на ось.

На координатной плоскости Оху задается точка M1 (x1, y1). Необходимо построить проекции на Ох и Оу для изображения радиус-вектора точки M1. Получим координаты векторов (x1, 0) и (0, y1).

Проекция вектора на ось и числовая проекция

Если идет речь о проекции a→ на ненулевой b→ или проекции a→ на направление b→, то имеется в виду проекция a→на ось, с которой совпадает направление b→. Проекция a→ на прямую, определяемая b→, имеет обозначение npb→a→→. Известно, что когда угол междуa→ и b→, можно считать npb→a→→ и b→ сонаправленными. В случае, когда угол тупой, npb→a→→ и b→противоположно направлены. В ситуации перпендикулярностиa→ и b→, причем a→ – нулевой, проекция a→ по направлению b→ является нулевым вектором.

Числовая проекция вектора на ось

Числовая характеристика проекции вектора на ось – числовая проекция вектора на заданную ось.

Определение 2

Числовой проекцией вектора на ось называют число, которое равно произведению длины данного вектора на косинус угла между данным вектором и вектором, который определяет направление оси.

Числовая проекция AB→ на L имеет обозначениеnp LAB→, а a→ на b→ – npb→a→.

Исходя из формулы, получим npb→a→=a→·cosa→, b→^, откуда a→ является длиной вектора a→, a⇀, b→^ – угол между векторами a→ и b→.

Получим формулу вычисления числовой проекции: npb→a→=a→·cosa→, b→^. Она применима при известных длинах a→ и b→ и угле между ними. Формула применима при известных координатах a→ и b→, но имеется ее упрощенный вид.

Пример 2

Узнать числовую проекцию a→ на прямую по направлению b→ при длине a→ равной 8 и углом между ними в 60 градусов. По условию имеем a⇀=8, a⇀, b→^=60°. Значит, подставляем числовые значения в формулу npb⇀a→=a→·cosa→,b→^=8·cos 60°=8·12=4.

Ответ: 4.

При известном cos(a→, b→^)=a⇀, b→a→·b→, имеем a→, b→ как скалярное произведение a→ и b→. Следуя из формулы npb→a→=a→·cosa⇀, b→^, мы можем найти числовую проекцию a→ направленную по вектору b→ и получим npb→a→=a→, b→b→. Формула эквивалента определению, указанному в начале пункта.

Определение 3

Числовой проекцией вектора a→ на ось , совпадающей по направлению с b→, называют отношение скалярного произведения векторовa→ иb→ к длине b→. Формула npb→a→=a→,b→b→ применима для нахождения числовой проекции a→ на прямую, совпадающую по направлению с b→, при известных a→ и b→ координатах.

Пример 3

Задан b→=(-3, 4). Найти числовую проекцию a→=(1, 7) на L.

Решение 

На координатной плоскости npb→a→=a→, b→b→ имеет вид npb→a→=a→, b→b→=ax·bx+ay·bybx2+by2, при a→=(ax, ay)  и b→=bx, by. Чтобы найти числовую проекцию вектора a→ на ось L, нужно: npLa→=npb→a→=a→,b→b→=ax·bx+ay·bybx2+by2=1·(-3)+7·4(-3)2+42=5.

Ответ: 5.

Пример 4

Найти проекцию a→ на L, совпадающей с направлением b→, где имеются a→=-2, 3, 1 и b→=(3, -2, 6). Задано трехмерное пространство.

Решение 

По заданнымa→=ax, ay, az и b→=bx, by, bz вычислим скалярное произведение: a⇀, b→=ax·bx+ay·by+az·bz. Длину b→ найдем по формуле b→=bx2+by2+bz2. Отсюда следует, что формула определения числовой проекции a→ будет: npb→a⇀=a→, b→b→=ax·bx+ay·by+az·bzbx2+by2+bz2.

Подставляем числовые значения: npLa→=npb→a→=(-2)·3+3·(-2)+1·632+(-2)2+62=-649=-67.

Ответ: -67.

Просмотрим связь междуa→ на L и длиной проекции a→ на L. Начертим ось L, добавив a→ и b→ из точки на L, после чего проведем перпендикулярную прямую с конца a→ на L и проведем проекцию на L. Существуют 5 вариаций изображения:

Числовая проекция вектора на ось

Первый случай при a→=npb→a→→ означает a→=npb→a→→, отсюда следует npb→a→=a→·cos(a,→b→^)=a→·cos0°=a→=npb→a→→.

Второй случай подразумевает применение npb→a→⇀=a→·cosa→,b→, значит, npb→a→=a→·cos(a→,b→)^=npb→a→→.

Третий случай объясняет, что при npb→a→→=0→ получаем npb⇀a→=a→·cos(a→,b→^)=a→·cos90°=0, тогда npb→a→→=0 и npb→a→=0=npb→a→→.

Четвертый случай показывает npb→a→→=a→·cos(180°-a→,b→^) = -a→·cos(a →, b→^), следует npb→a→=a→·cos(a→,b→^)=-npb→a→→.

Пятый случай показывает a→=npb→a→→, что означаетa→=npb→a→→, отсюда имеем npb→a→=a→·cosa→,b→^=a→·cos180°=-a→=-npb→a→.

Определение 4

Числовой проекцией вектора a→ на ось L, которая направлена как и b→, имеет значение:

  • длины проекции вектора a→ на  L при условии, если угол между a→ и b→ меньше 90 градусов или равен 0: npb→a→=npb→a→→ с условием 0≤(a→,b→)^<90°;
  • ноля при условии перпендикулярности a→ и b→: npb→a→=0, когда (a→, b→^)=90°;
  • длины проекции a→ на L, умноженной на -1, когда имеется тупой или развернутый угол векторов a→ и b→: npb→a→=-npb→a→→ с условием 90°<a→,b→^≤180°.
Пример 5

Дана длина проекцииa→ на L, равная 2. Найти числовую проекциюa→ при условии, что угол равен 5π6 радиан.

Решение 

Из условия видно, что данный угол является тупым: π2<5π6<π. Тогда можем найти числовую проекцию a→ на L: npLa→=-npLa→→=-2.

Ответ: -2.

Пример 6

Дана плоскость Охyzс длиной вектора a→ равной 63,b→(-2, 1, 2) с углом в 30 градусов. Найти координаты проекции a→ на ось L.

Решение

Для начала вычисляем числовую проекцию вектораa→: npLa→=npb→a→=a→·cos(a→,b→)^=63·cos30°=63·32=9.

По условию угол острый, тогда числовая проекция a→= длине проекции вектора a→: npLa→=npLa→→=9. Данный случай показывает, что векторы npLa→→ и b→ сонаправлены, значит имеется число t, при котором верно равенство: npLa→→=t·b→. Отсюда видим, что npLa→→=t·b→, значит можем найти значение параметра t: t=npLa→→b→=9(-2)2+12+22=99=3.

Тогда npLa→→=3·b→ с координатами проекции вектора a→ на ось L равны b→=(-2,1, 2), где необходимо умножить значения на 3. Имеем npLa→→=(-6, 3, 6). Ответ: (-6, 3, 6).

Необходимо повторить ранее изученную информацию об условии коллинеарности векторов.

Ирина Мальцевская

Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта

В математике существуют два определения:

1) геометрическая проекция вектора — вектор;

2) проекция вектора на ось — число.

Геометрическая проекция вектора — это вектор, который можно получить, если провести перпендикуляры от концов вектора до выбранной оси. Проекция начала вектора соответствует началу геометрической проекции, а проекция конца вектора соответствует концу геометрической проекции.


Ваш браузер не поддерживает HTML5 видео

Для вектора

v→

 геометрическая проекция на оси (t) — это вектор

vt→

.

Для вектора

n→

 геометрическая проекция на оси (y) — это вектор

ny→

.

Проекция вектора на ось — это скалярная величина (число), равная длине геометрической проекции вектора, если направление оси и геометрической проекции совпадают; или число, противоположное длине геометрической проекции вектора, если направления геометрической проекции и оси — противоположные.

векторы-проекция.png

ax=4bx=−3

Если длина вектора

a→

 равна

a→

 и

α

 — это острый угол, созданный вектором и осью (x), то скалярная проекция вектора вычисляется по формуле: 

ax=a→⋅cosα

.

Знак проекции вектора выбирается в зависимости от направления оси.

векторы-проекция-треугольник.png

На рисунке видно, что эту формулу можно получить из соотношения в прямоугольном треугольнике:

cosα=прилежащий катетгипотенуза=ax→a→

.

Обрати внимание!

Если вектор и ось проекций параллельны, то скалярная проекция на этой оси — число, которое равно длине вектора, если направления вектора и оси совпадают, или число, противоположное длине вектора, если направления вектора и оси — противоположные.

Если вектор и ось проекций перпендикулярны, то проекция вектора на этой оси равна (0).

Projekcijas_vekt.png

at=3bt=−5ct=0dt=0

Проекция вектора на ось

Вектор может отбрасывать тень (проекцию) на какую-нибудь ось

На рисунке изображены векторы и их проекции на ось Ox

Рис. 1. Векторы и их проекции на ось Ox

На рисунке 1 изображены векторы ( vec{a} ), ( vec{b} ), ( vec{c} ), ( vec{g} ) и их проекции на ось Ox.

Если:

  • вектор параллелен оси, то «его проекция = его длина», пример для вектора ( vec{g} );
  • вектор перпендикулярен оси, то его проекция равна нулю, пример для вектора ( vec{b} );
  • проекция направлена против оси, то её записывают со знаком «-», пример для вектора ( vec{a} ).
  • чем больше вектор наклоняется к оси, тем больше его проекция на эту ось. Сравните проекции векторов ( vec{c} ) и ( vec{g} ).

Примечание:

Длина вектора – это положительная величина, а проекция вектора может быть отрицательной

Как разложить вектор на проекции

Мы уже находили длину и направление вектора по его координатам.

Теперь решим обратную задачу: пользуясь длиной и направлением вектора, найдем его координаты.

На плоскости (две оси) легко разложить вектор на проекции, если известны:

  • длина вектора и
  • угол между вектором и какой-либо осью (угол обозначается дугой).

Алгоритм действий для разложения вектора на проекции

  1. Проводим прямоугольник так, чтобы вектор стал его диагональю.
  2. Диагональ разделит прямоугольник на треугольники. Эти два треугольника прямоугольные.
  3. Выберем треугольник, в котором угол отмечен дугой.
  4. Дуга одним своим концом всегда касается гипотенузы, а вторым концом – одного из катетов.

Важно! Вектор, который мы раскладываем, всегда является гипотенузой.

На рисунке изображен вектор, угол между вектором и осью, проекции вектора

Рис. 2. Проекции вектора поможет найти угол между вектором и осью

Формулы разложения вектора на проекции

Формулы разложения легко запомнить с помощью фразы:

Гипотенузу умножаем на косинус (угла), получаем катет, который касается (дуги).

На языке математики эта фраза запишется так:

[ |vec{m}| cdot cos(alpha) = m_{x} ]

Катет ( m_{x} ) – это «x» координата вектора.

Если длину вектора умножим на синус, то получим второй катет:

[ |vec{m}| cdot sin(alpha) = m_{y} ]

Катет ( m_{y} ) – это «y» координата вектора.

Обе формулы запишем в виде системы:

[ large boxed {begin{cases}  left|vec{m}right| cdot cos(alpha) = m_{x} \ left|vec{m}right| cdot sin(alpha) = m_{y} end{cases}} ]

Величина ( |vec{m}| ) — это длина вектора ( vec{m} )

Оценка статьи:

Загрузка…

Добавить комментарий