Как найти произведение двух смешанных дробей

Умножение дробей онлайн

Чтобы умножить дробь на дробь нужно перемножить их числители и знаменатели, первое произведение записать числителем, а второе знаменателем.

Правила умножения дробей

Произведение двух дробей равно дроби. В числителе которой произведение числителей, а в знаменателе произведение знаменателей.

Как умножать обыкновенные дроби

Для умножения обыкновенных дробей нужно найти произведение числителей и произведение знаменателей. Первое произведение записать числителей а второе знаменателем.

Разберём пример: умножим дроби 1/4 × 1/3. Для этого перемножим числители 1 × 1 = 1 и знаменатели 4 × 3 = 12 в итоге у нас получится дробь 1/12

Как умножать натуральное число на дробь

Чтобы умножить дробь на натуральное число нужно числитель умножить на это число а знаменитель оставить без изменения.

Как умножать 3 и более дробей

При умножении 3 и более дробей мы пользумеся теми же правилами что и при умножении двух дробей.

Разберём пример: умножим правильную дробь 1/4 на натуральное число 5 и на смешанную дробь 3 целые 1/8.

Перед умножением нужно смешанную дробь перевести в неправильную 3 целые 1/8 = 25/8. Затем перемножить числители 1*5*25 = 125 и знаменатели 4*8 = 32. Полученное записать в виде дроби 125/32. При необходимости сократить и перевести в смешанную дробь.

Как умножить смешанную дробь на целое число

Чтобы умножить смешанную дробь на целое число нужно смешанную дробь перевести в неправильную. Затем числитель неправильной дроби умножить на целое число. Знаменатель оставить без изменения.

Разберём пример: умножим смешанную дробь 2 целые 1/4 на целое число 6.

Перед умножением нужно смешанную дробь перевести в неправильную 2 целые 1/4 = 9/4. Затем умножить числитель неправильной дроби на целое число 9*6 = 54 а знаменатель останется без изменения 4. При необходимости сократить и перевести в смешанную дробь.

Как перемножить смешанные дроби

Чтобы перемножить смешанные дроби, нужно их перевести в неправильные. Затем перемножить числители и знаменатели.

Разберём пример: умножим смешанную дробь 1 целая 2/5 на смешанную дробь 2 целые 1/3.

Переведём смешанные дроби в нерпавильные 1 целая 2/5 = 7/5 и 2 целые 1/3 = 7/3. Затем перемножим числители 7*7 = 49 и знаменатели 5*3 = 15. Получится дробь 49/15. При необходимости сократить и перевести в смешанную дробь.

Похожие калькуляторы

Умножение смешанных дробей

Чтобы умножить смешанные дроби, надо записать их в виде неправильных дробей, а затем умножить их числители, а затем их знаменатели.

Пример Умножить смешанные дроби умножение смешанных дробей 5 3/7 на 2 3/4

умножение смешанных дробей 5 3/7 на 2 3/4

Сократим дробь дробь 418/28 с помощью нахождения наибольшего общего делителя числителя и знаменателя и деления полученного числа на числитель и знаменатель, НОД(418,28)=2.

Пример Умножить смешанное число на дробь умножить дробь 10/21 на смешанную дробь 8 4/5

умножить смешанное число 8 4/5 на дробь 10/21.

В результате умножения получили смешанную дробь.

Примеры умножения нескольких дробей

Пример Умножить 3 дроби найти произведения трех дробей 5/6 3/4 и 8/9

найти произведения трех дробей 5/6 3/4 и 8/9.

Пример Найти произведение дробей произведение дроби 4/7 в квадрате на 3/4 в кубе

Первая дробь во 2 степени, вторая дробь в 3 степени, чтобы найти произведение дробей, возведем первую дробь в квадрат, потом возведем вторую дробь в куб и перемножим дроби между собой.

произведение дробей 16/49 на 27/64.

Сократим дробь дробь 418/28 с помощью нахождения наибольшего общего делителя числителя и знаменателя и деления полученного числа на числитель и знаменатель, НОД(432,3136)=16.

Математика

5 класс

Урок № 75

Умножение смешанных дробей

Перечень рассматриваемых вопросов:

– умножение смешанной дроби на натуральное число;

– возведение смешанной дроби в степень;

– умножение смешанных дробей.

Тезаурус

Распределительный закон умножения – чтобы число умножить на сумму чисел, можно это число умножить отдельно на каждое слагаемое и полученные произведения сложить.

Переместительный закон умножения – от перестановки множителей произведение не меняется.

Площадь прямоугольника – произведение длины на ширину.

Порядок убывания – расположение элементов от большего к меньшему.

Порядок возрастания – расположение элементов от меньшего к большему.

Обязательная литература

  1. Никольский С. М. Математика. 5 класс: Учебник для общеобразовательных учреждений. / ФГОС // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 272 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина. — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин. — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

На предыдущих уроках вы научились умножать обыкновенные дроби и записывать смешанные дроби в виде неправильных.

Произведение двух дробей – это дробь, числитель которой равен произведению числителей, а знаменатель – произведению знаменателей этих дробей.

Чтобы записать смешанную дробь неправильной дробью, надо знаменатель дробной части умножить на целую часть, прибавить числитель дробной части и полученное число записать в числитель, а знаменатель оставить прежним.

Этих умений достаточно, чтобы сегодня научиться умножать смешанные дроби.

Правило умножения смешанных дробей звучит так: чтобы умножить смешанные дроби, нужно записать их в виде неправильных дробей и выполнить умножение с обыкновенными дробями.

Результат получился тот же, что и при умножении.

Рассмотрим ещё один случай применения распределительного закона умножения для упрощения вычислений.

Найдём сумму произведения трёх целых четырёх пятых и пяти восьмых с произведением четырёх целых одной пятой и пяти восьмых.

В этих произведениях есть одинаковый множитель – пять восьмых. Его по распределительному закону вынесем за скобки, в которых останется сумма трёх целых четырёх пятых и четырёх целых одной пятой. Найдём значение суммы в скобках. Складываем отдельно целые части – три и четыре – это будет семь, и дробные части – четыре пятых и одну пятую – это будет пять пятых.

Сумму целой и дробной части записываем смешанной дробью – семь целых пять пятых и умножаем на пять восьмых. Так как дробная часть получившейся смешанной дроби – неправильная дробь, равная одному, то смешанную дробь заменяем на восемь целых. Умножаем восемь на пять восьмых – это пять.

Расставим порядок действий. Сначала выполняются действия в скобках. В скобках есть умножение и сложение. Умножение выполняется в первую очередь, затем сложение. Четвёртым действием будет вычитание из числа суммы в скобках. Пятое действие – нахождение частного в знаменателе. Шестое действие – деление числителя исходной дроби на знаменатель. Деление заменяется умножением, а умножать мы научились:

Итак, чтобы умножить смешанные дроби необходимо:

• представить эти смешанные дроби неправильными дробями;

• выполнить умножение неправильных дробей;

• сократить, если возможно;

• представить неправильную дробь, полученную в результате умножения, смешанной дробью.

При возведении смешанной дроби в степень нужно:

• представить эту смешанную дробь неправильной дробью;

• возвести полученную неправильную дробь в нужную степень.

Тренировочные задания

№ 1. Поставьте на места пропусков числа так, чтобы вычисления были верными.

Перед тем как перейти к умножению дробей, вспомним теоретические основы. Итак, дробь — это форма записи числа:

где a — числитель, b — знаменатель.

Дробь называется правильной — если числитель меньше знаменателя (к примеру, 4/5), неправильной — если числитель больше знаменателя (например, 8/7).

Как умножать обыкновенные дроби?

Умножение дробей — это арифметическое действие, в результате которого получается новое число, содержащее произведение заданных чисел. Разберем на конкретных примерах: как находить произведение дробей, как натуральное число умножить на дробь, познакомимся с умножением смешанных дробей.

Многие по аналогии со сложением и вычитанием, считают, что существует какая-то разница между умножением дробей в зависимости от их знаменателей. На самом деле её нет. Сейчас на примерах мы в этом убедимся.

Как умножать дроби с одинаковым знаменателем?

Умножение дробей с одинаковыми знаменателями сводится к умножению и числителей и знаменателей и в общем виде выглядит следующим образом:

Пример 1:

2 5

×

3 5

Решение:

2 5

×

3 5

=

2 ∙ 3 5 ∙ 5

=

6 25

Как умножать дроби с разными знаменателями?

Умножение дробей с разными знаменателями заключается в умножении и числителей и знаменателей. В общем виде выглядит следующим образом:

Пример 2:

5 6

×

4 5

Решение:

5 6

×

4 5

=

5 ∙ 4 6 ∙ 5

=

20 30

=

2 3

Как вы могли заметить, разницы между умножением дробей с разными и одинаковыми знаменателями — нет, а сам алгоритм сводится к умножению обоих компонентов.

Как умножить дробь на целое число?

Чтобы умножить дробь на число необходимо числитель умножить число, а знаменатель оставить без изменения. Т.е.:

Пример 3:

5 ×

3 4

Решение:

5

×

3 4

=

5 ∙ 3 4

=

15 4

=

3

3 4

Таким образом, умножение дроби на целое число, сводится к умножению числителей.

Как умножать смешанные дроби?

Умножение смешанных дробей сводится к переводу их к неправильному виду и дальнейшим действиям согласно вышеописанным алгоритмам. Перевод смешанного числа в неправильную дробь, в общем виде, выглядит следующим образом:

Пример 4:

6

3 5

×

6 4

Решение:

6

3 5

×

6 4

=

6 ∙ 5 + 3 5

×

6 4

=

33 5

×

6 4

=

33 ∙ 6 5 ∙ 4

=

198 20

=

99 10

=

9

9 10

Правила умножения дробей

Резюмируя вышесказанное, выведем общий алгоритм умножения дробей:

  • Если дробь смешанная — приводим её к неправильному виду;
  • Неважно одинаковые или разные знаменатели у дробей — перемножаем и числители и знаменатели;
  • При необходимости сокращаем и приводим к неправильному виду.

Смотрите также:

  • Смотрите также
  • Калькуляторы
  • Последние примеры

Калькулятор умножения дробей

Оцените материал:

Загрузка…

Умножение дробей

Как перемножить две обыкновенные дроби:

Определение: Произведением дробей называется дробь, числитель которой равен произведению числителей исходных дробей, со знаменателем равным произведению знаменателей исходных дробей.
Решим дробь:
По определению: 1 умножаем на 2 и 5 умножаем на 3 и получаем выражение:

Важно: При умножении дробей с разными знаменателями не нужно приводить их к общему знаменателю.

Умножение дроби на натуральное число:

Правило: Чтобы умножить дробь на натуральное число нужно числитель умножить на это число, а знаменатель оставить исходный.
Решим выражение:
Находим ответ:
Из дроби вычисляем целую часть и получаем ответ

Умножение смешанных чисел:

Правило: Чтобы найти произведение смешанных чисел, необходимо:

– преобразовывать смешанные дроби в неправильные;
– перемножить числители и знаменатели дробей;
– сократить дробь;
– если получилась неправильная дробь, то преобразовываем ее в смешанную.

Произведем умножение смешанных дробей:

Алгоритм решения:

Онлайн калькулятор умножения дробей:

Помимо всего вышеперечисленного калькулятор выполняет следующие операции:
-Умножение целого числа на дробь
-Умножение дробей на целое число
-Умножение натуральных дробей

×

Пожалуйста напишите с чем связна такая низкая оценка:

×

Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»

Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»

Добавить комментарий