Как найти произведение элементов главной диагонали матрицы

Матрицей называется прямоугольная таблица из чисел с некоторым количеством m строк и с некоторым количеством n столбцов. Числа m и n называются порядками или размерами матрицы.

Матрица порядка m × n записывается в форме:

или (i=1,2. m; j=1,2. n).

Числа aij входящие в состав данной матрицы называются ее элементами. В записи aij первый индекс i означает номер строки, а второй индекс j— номер столбца.

Матрица строка

Матрица размером 1×n, т.е. состоящая из одной строки, называется матрицей-строкой. Например:

Матрица столбец

Матрица размером m×1, т.е. состоящая из одного столбца, называется матрицей-столбцом. Например

Нулевая матрица

Если все элементы матрицы равны нулю,то матрица называется нулевой матрицей . Например

Квадратная матрица

Матрица A порядка m×n называется квадратной матрицей, если количество строк и столбцов совпадают: m=n. Число m=n называется порядком квадратной матрицы. Например:

Главная диагональ матрицы

Элементы расположенные на местах a 11, a 22 . ann образуют главную диагональ матрицы. Например:

В случае m×n -матриц элементы aii ( i= 1,2. min(m,n)) также образуют главную диагональ. Например:

Элементы расположенные на главной диагонали называются главными диагональными элементами или просто диагональными элементами .

Побочная диагональ матрицы

Элементы расположенные на местах a 1n, a 2n-1 . a n1 образуют побочную диагональ матрицы. Например:

Диагональная матрица

Квадратная матрица называется диагональной, если элементы, расположенные вне главной диагонали равны нулю. Пример диагональной матрицы:

Единичная матрица

Квадратную матрицу n-го порядка, у которой на главной диагонали стоят единицы, а все остальные элементы равны нулю, называется единичной матрицей и обозначается через E или E n , где n — порядок матрицы. Единичная матрица порядка 3 имеет следующий вид:

След матрицы

Сумма главных диагональных элементов матрицы A называется следом матрицы и обозначается Sp A или Tr A. Например:

Верхняя треугольная матрица

Квадратная матрица порядка n×n называется верхней треугольной матрицей, если равны нулю все элементы матрицы, расположенные под главной диагональю, т.е. aij=0, при всех i>j . Например:

Нижняя треугольная матрица

Квадратная матрица порядка n×n называется нижней треугольной матрицей, если равны нулю все элементы матрицы, расположенные над главной диагональю, т.е. aij=0, при всех i T ).

Cтолбцы матрицы A образуют пространство столбцов матрицы и обозначаются через R(A).

Ядро или нуль пространство матрицы

Множесто всех решений уравнения Ax=0, где A- mxn-матрица, x— вектор длины n — образует нуль пространство или ядро матрицы A и обозначается через Ker(A) или N(A).

Противоположная матрица

Для любой матрицы A сущеcтвует противоположная матрица -A такая, что A+(-A)=0. Очевидно, что в качестве матрицы -A следует взять матрицу (-1)A, элементы которой отличаются от элементов A знаком.

Кососимметричная (Кососимметрическая) матрица

Кососимметричной называется квадратная матрица, которая отличается от своей транспонированной матрицы множителем −1:

В кососимметричной матрице любые два элемента, расположенные симметрично относительно главной диагонали отличаются друг от друга множителем −1, а диагональные элементы равны нулю.

Пример кососимметрической матрицы:

Разность матриц

Разностью C двух матриц A и B одинакового размера определяется равенством

Для обозначения разности двух матриц используется запись:

Степень матрицы

Пусть квадратная матрица размера n×n. Тогда степень матрицы определяется следующим образом:

где E-единичная матрица.

Из сочетательного свойства умножения следует:

где p,q— произвольные целые неотрицательные числа.

Симметричная (Симметрическая) матрица

Матрица, удовлетворяющая условию A=A T называется симметричной матрицей.

Для симметричных матриц имеет место равенство:

Матрицей размера $m imes n$ называется прямоугольная таблица, содержащая $m cdot n$ чисел, состоящая из $m$ строк и $n$ столбцов.

Обозначение

Таблица берется либо в круглые скобки, либо окружается двумя параллельными вертикальными прямыми.

Если матрица содержит $m$ строк и $n$ столбцов, то матрица называется матрицей размера $m imes n$ или $m imes n$-матрицей. Размер матрицы указывается справа внизу возле ее имени, либо таблицы с обозначением элементов.

Элементы матрицы

Элементы матрицы $A$ обозначаются $a_$, где $i$ — номер строки, в которой находится элемент, а $j$ — номер столбца.

Задание. Чему равен элемент $a_<23>$ матрицы $A=left( egin <1>& <4>& <0> <-1>& <3>& <7>end
ight)$ ?

Решение. Находим элемент, который стоит на пересечении второй строки и третьего столбца:

Таким образом, $a_ <23>= 7$.

Ответ. $a_ <23>= 7$

Строка матрицы называется нулевой, если все ее элементы равны нулю. Если хотя бы один из элементов строки не равен нулю, то строка называется ненулевой.

Замечание. Аналогичное определение и для нулевого и ненулевого столбцов матрицы.

Диагонали

Главной диагональю матрицы называется диагональ, проведённая из левого верхнего угла матрицы в правый нижний.

Побочной диагональю матрицы называется диагональ, проведённая из левого нижнего угла матрицы в правый верхний.

: 1 и 6 — элементы главной диагонали.

: 3 и 4 — элементы побочной диагонали.

Для матрицы элементы 1, 2, -1 образуют главную диагональ; а элементы 3, 2, 2 — побочную.

Санкт-Петербург

Часть IV

ОПОРНЫЕ ЛЕКЦИИ ПО МАТЕМАТИКЕ

Э. Н. ОСИПОВА

КАФЕДРА МАТЕМАТИКИ

ТЕХНОЛОГИИ И ДИЗАЙНА

УНИВЕРСИТЕТ

ГОСУДАРСТВЕННЫЙ

САНКТ-ПЕТЕРБУРГСКИЙ

Российской Федерации

(МЕТОДИЧЕСКОЕ ПОСОБИЕ)

1 . МАТРИЦЫ

1.1. Основные понятия

Матрицей будем называть прямоугольную таблицу чисел, расположенных строками и столбцами; сами числа будем называть элементами матрицы , а число строк и число столбцов образуют размерность матрицы.

Приняты следующие обозначения.

— матрица размерностисодержит 2строки и 3столбца.

матрица-строка (строка), содержит 1 строку.

матрица-столбец (столбец), содержит 1столбец.

— матрица содержит mстрок и nстолбцов.

— означает, что i принимает все натуральные значения от 1 до n.

— элемент матрицы , расположенный на пересечении ее i -ой строки и j-го столбца; iи j называют индексами.

нулевая матрица размерности .

Квадратной матрицей n -го порядка будем называть матрицу, содержащую

n строк и n столбцов.

Элементы , у которых образуют ее главную диагональ,

а если , то они образуют побочную диагональ.

квадратная матрица 4-го порядка.

.

Квадратную матрицу будем называть треугольной, если все элементы, расположенные выше (либо ниже) главной диагонали равны нулю.

.

Квадратную матрицу будем называть диагональной, если все ее элементы, нерасположенные на главной диагонали равны нулю.

— диагональная матрица четвертого порядка.

Диагональную матрицу будем называть единичной, если все элементы главнойдиагонали равны 1.

— единичная матрица пятого порядка.

Элементы двух матриц будем называть соответствующими, если они имеют одинаковые индексы. Строки (столбцы) будем называть соответствующими, если они имеют одинаковый номер.

Транспонированием матрицы будем называть операцию замены всех столбцовсоответствующими строками

(всех строк соответствующими столбцами).

Матрицу будем называть симметрической (симметричной), если при транспонировании она не изменяется.

Из определения следует:

— симметрическая матрица может быть только квадратной;

— ее элементы расположены симметрично относительно главной диагонали.

.

Две матрицы одинаковой размерности будем называть равными , если все их соответствующие элементы равны.

1.2. Действия с матрицами

Суммой двух матриц одинаковой размерности(А + В) будем называтьновую матрицу ( Х )той же размерности , каждый элемент которой равен сумме соответствующих элементов матриц-слагаемых.

Произведением матрицы А на скаляр l ( l× А )будем называтьновую матрицу ( Х )той же размерности, каждый элемент которой равен произведению соответствующего элемента данной матрицы на данный скаляр.

Из последних двух определений следует что разность двух матриц может быть найдена следующим образом:

Скалярным произведением двух строк (или двух столбцов, или строки и столбца), имеющих одинаковое количество элементов, будем называть число, равное сумме произведений всех соответствующих элементов.

Линейной комбинацией строк (столбцов) будем называть сумму произведений этих строк (столбцов) на вещественные числа (скаляры).

Сами числа при этом называют коэффициентами этой линейной комбинации.

Произведением двух матриц будем называть новую матрицу , у которой каждый элемент хijравен скалярному произведению i — ойстроки первого сомножителя на j -й столбец второго сомножителя.

Из определения следуют свойства:

1.2.1. Количество столбцов матрицы-множимого должно быть равно количеству строк матрицы-множителя;

1.2.2. Матрица-произведение имеет столько строк, сколько их у матрицы-множимого и столько столбцов, сколько их у матрицы-множителя.

1.2.3. Умножение матриц не подчиняется переместительному закону.

1.2.4. Квадратные матрицы можно умножать только, если они имеют одинаковый порядок.

1.2.5. Умножение квадратной матрицы на единичную матрицу и слева и справа не изменяет данную матрицу.

;

Две квадратные матрицы будем называть взаимно обратными, если их произведение равно единичной матрице.

Взаимно обратные матрицы обычно обозначают так: АиА -1 .

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Как то на паре, один преподаватель сказал, когда лекция заканчивалась — это был конец пары: “Что-то тут концом пахнет”. 8516 — | 8102 — или читать все.

91.146.8.87 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

BAPCuK

0 / 0 / 0

Регистрация: 04.11.2020

Сообщений: 26

1

12.11.2020, 21:49. Показов 2509. Ответов 1

Метки нет (Все метки)


Студворк — интернет-сервис помощи студентам

Матрицу я уже создал

C#
1
2
3
4
5
6
7
8
9
10
11
12
13
14
Random r = new Random();
            int a = 3, b = 3;
            int[,] M = new int[a, b];
            for (int i = 0; i < a; i++)
            {
                for (int j = 0; j < b; j++)
                {
                    M[i, j] = r.Next(1, 200);
                    Console.Write("{0}t", M[i, j]);
                }
                Console.WriteLine();
 
            }
            Console.WriteLine();



0



ProgItEasy

454 / 278 / 163

Регистрация: 17.04.2019

Сообщений: 1,623

12.11.2020, 22:00

2

Лучший ответ Сообщение было отмечено BAPCuK как решение

Решение

BAPCuK,

C#
1
2
3
4
5
6
int mainDiagonalElementsProduct = 1;
 
for (int i = 0; i < M.GetLength(0); i++)
    mainDiagonalElementsProduct *= M[i, i];
 
Console.WriteLine($"Произведение элементов главной диагонали матрицы: {mainDiagonalElementsProduct}");



2





Профи

(747),
закрыт



13 лет назад

Дополнен 13 лет назад

Задание: Найти произведение элементов главной диагонали матрицы Х, удовлетворяющей уравнению:
| 2 -4 | | -2 6|
|-3 -1 | * Х = | -4 5|

Помогите пожалуйста, как это решить вообще(по подробнее), просто даже не знаю с какой стороны подойти то..с чего начать.

Дополнен 13 лет назад

Задание: Найти произведение элементов главной диагонали матрицы Х, удовлетворяющей уравнению:
| 2 -4 | |-2 6|
|-3 -1 | * Х = | -4 5|

Помогите пожалуйста, как это решить вообще(по подробнее), просто даже не знаю с какой стороны подойти то..с чего начать.

Дополнен 13 лет назад

Не получается написать правильно |-2 6| над | -4 5| являются матрицами

Елена Маслова

Гуру

(2646)


13 лет назад

обозначь элементы матрицы Х как х, у, z,t,

Запиши произведение первой матрицы на Х по определению. Чему это равно возми из второй матрицы.
У тебя получится система из 4 линейных уравнений с 4 неизвестными.
Реши любым способом и найди числа х, у, z,t.
А дальше запиши матрицу Х по найденным числам.

Содержание:

Определители II и III порядка

Определение: Определителем порядка n называется число (выражение), записанное в виде квадратной таблицы, имеющей n строк и n столбцов, которая раскрывается по определенному правилу.

Определитель матрицы - определение и вычисление с примерами решения

Числа Определитель матрицы - определение и вычисление с примерами решения

Определение: Определителем II порядка называется число (выражение), записанное в виде квадратной таблицы размером 2×2, т.е. имеющая 2 строки и 2 столбца.

Определение: Определитель II порядка вычисляется по правилу: из произведения элементов, стоящих на главной диагонали, надо вычесть произведение элементов, стоящих на побочной диагонали: Определитель матрицы - определение и вычисление с примерами решения

Пример:

Определитель матрицы - определение и вычисление с примерами решения

Определение: Определителем III порядка называется число (выражение), записанное в виде квадратной таблицы размером 3×3, то есть имеющей 3 строки и 3 столбца.

Определитель III порядка вычисляется по правилу Саррюса: за определителем выписывают первый и второй столбцы, затем из суммы произведений элементов, стоящих на главной диагонали ей параллельных диагоналях, надо вычесть сумму произведений элементов, стоящих на побочной диагонали и ей параллельных: Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Пример:

Определитель матрицы - определение и вычисление с примерами решения

Определение: Минором Определитель матрицы - определение и вычисление с примерами решения элемента Определитель матрицы - определение и вычисление с примерами решения называется определитель порядка (n-1), который получается из исходного определителя порядка n путем вычеркивания строки i и столбца j, на пересечении которых стоит элемент Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Пример:

Найти миноры элементов Определитель матрицы - определение и вычисление с примерами решенияи Определитель матрицы - определение и вычисление с примерами решенияопределителя из Примера 2. Вычеркивая в определителе строку 1 и столбец 2:Определитель матрицы - определение и вычисление с примерами решения получим минорОпределитель матрицы - определение и вычисление с примерами решения Поступая аналогично со строкой 3 и столбцом 3, получим минор Определитель матрицы - определение и вычисление с примерами решения

Пример:

Найти миноры элементов Определитель матрицы - определение и вычисление с примерами решения и Определитель матрицы - определение и вычисление с примерами решения определителя Определитель матрицы - определение и вычисление с примерами решения Исходя из определения минора Определитель матрицы - определение и вычисление с примерами решения получаем Определитель матрицы - определение и вычисление с примерами решения аналогично найдем минор Определитель матрицы - определение и вычисление с примерами решения

Определение: Алгебраическим дополнением Определитель матрицы - определение и вычисление с примерами решенияэлемента Определитель матрицы - определение и вычисление с примерами решения называется произведение минора этого элемента на Определитель матрицы - определение и вычисление с примерами решения т.е. Определитель матрицы - определение и вычисление с примерами решения

Замечание: Из определения алгебраического дополнения следует, что алгебраическое дополнение совпадает со своим минором, если сумма Определитель матрицы - определение и вычисление с примерами решения является четным числом, и противоположно ему по знаку, если сумма Определитель матрицы - определение и вычисление с примерами решения – нечетное число.

Определение: Транспонированным определителем n-го порядка называется определитель порядка n, полученный из исходного определителя путем замены строк на соответствующие столбцы, а столбцов на соответствующие строки.

Если Определитель матрицы - определение и вычисление с примерами решения

Пример:

Найти определитель, транспонированный к определителюОпределитель матрицы - определение и вычисление с примерами решения Из определения транспонированного определителя Определитель матрицы - определение и вычисление с примерами решения

Свойства определителей

1. Величина транспонированного определителя равна величине исходного определителя. Пусть Определитель матрицы - определение и вычисление с примерами решения Отсюда видно, что Определитель матрицы - определение и вычисление с примерами решения

2. Перестановка местами двух строк (столбцов) изменяет знак определителя на противоположный. Пусть Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Если поменять местами строки (столбцы) четное число раз, то величина и знак определителя не меняется. Нечетная перестановка местами строк (столбцов) не меняет величину определителя, но изменяет его знак на противоположный.

3. Определитель, содержащий две (или более) одинаковых строки (столбца), равен нулю. Если определитель содержит два одинаковых столбца, то Определитель матрицы - определение и вычисление с примерами решения Определитель матрицы - определение и вычисление с примерами решения

4. Для того чтобы умножить определитель на число k, достаточно умножить на это число все элементы какой-либо одной строки (столбца). Обратно: если все элементы какой-либо строки (столбца) имеют общий множитель k, то его можно вынести за знак определителя.

Докажем это свойство: Определитель матрицы - определение и вычисление с примерами решения

5. Если две каких-либо строки (столбца) пропорциональны, то определитель равен нулю.

Пусть в определителе II порядка первая и вторая строки пропорциональны, тогда Определитель матрицы - определение и вычисление с примерами решения

6. Если все элементы какой-либо строки (столбца) равны нулю, то определитель равен нулю.

Пусть в определителе II порядка все элементы первой строки равны нулю, тогда Определитель матрицы - определение и вычисление с примерами решения

7. Если элементы какой-либо строки (или столбца) можно представить в виде двух слагаемых, то сам определитель можно представить в виде суммы двух определителей. Если Определитель матрицы - определение и вычисление с примерами решения Доказать самостоятельно.

8. Если все элементы какой-либо строки (столбца) умножить на вещественное число к и прибавить k соответствующим элементам другой строки (соответственно, столбца), то величина определителя не изменится.

Умножим элементы второго столбца на вещественное число k и прибавим результат умножения к соответствующим элементам первого столбца, получимОпределитель матрицы - определение и вычисление с примерами решения

Второй определитель равен нулю по свойству 5.

Замечание: Данное свойство применяется для обнуления всех элементов какой-либо строки (столбца) за исключением одного (метод обнуления), что существенно снижает трудоемкость вычисления определителей порядка выше 3 (см. также свойство 9.).

9. [Метод раскрытия определителя по элементам какой-либо строки (или столбца); универсальный способ вычисления определителя любого порядка]. Определитель любого порядка равен сумме произведений элементов какой-либо строки (столбца) на их алгебраические дополнения:

Определитель матрицы - определение и вычисление с примерами решения

Пример:

Вычислить определитель Определитель матрицы - определение и вычисление с примерами решения по элементам 3 строки и по элементам 2 столбца.

Решение:

Воспользуемся свойством 9.: раскроем определитель по элементам 3 строки Определитель матрицы - определение и вычисление с примерами решения Вычислим определитель по элементам 2 столбцаОпределитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Из полученных результатов видно, что свойство 9. является универсальным методом вычисления любых определителей по элементам любой строки или столбца.

Используя свойство 8. можно обнулить все элементы какой-либо строки (столбца) за исключением одного (метод обнуления), а затем раскрыть определитель по элементам этой строки, воспользовавшись свойством 9.

Пример:

Вычислить определитель Определитель матрицы - определение и вычисление с примерами решения

Решение:

Обнулим элементы в третьей строке, для чего выполним следующие действия: Определитель матрицы - определение и вычисление с примерами решения (по свойству 4. из третьей строки вынесем множитель 2) Определитель матрицы - определение и вычисление с примерами решенияиспользуя свойство 8., умножим все элементы второго столбца на 1.5 и прибавим к соответствующим элементам третьего столбца, получим) Определитель матрицы - определение и вычисление с примерами решения

(по свойству 4. из третьего столбца вынесем множитель 0,5, тогда множитель перед определителем станет равным 1) Определитель матрицы - определение и вычисление с примерами решения

(раскроем определитель по элементам третьей строки: Определитель матрицы - определение и вычисление с примерами решениявыше из определителя третьего порядка вычеркнута третья строка с нулями и второй столбец, т.е. показан необходимый для дальнейших вычислений минор Определитель матрицы - определение и вычисление с примерами решения Таким образом, метод обнуления позволяет значительно ускорить процесс вычисления любого определителя.

Пример:

Решить уравнение Определитель матрицы - определение и вычисление с примерами решения

Решение:

Вычислим определители второго и третьего порядков согласно вышеописанным правилам:

Определитель матрицы - определение и вычисление с примерами решения

Найденные величины подставим в исходное уравнение

Определитель матрицы - определение и вычисление с примерами решения

Пример:

Решить неравенство Определитель матрицы - определение и вычисление с примерами решения

Решение:

Вычислим определители второго и третьего порядков согласно вышеописанным правилам:Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Найденные величины подставим в исходное неравенство Определитель матрицы - определение и вычисление с примерами решения

Пример:

Вычислить определитель четвертого порядка (аналогично выполнить такие же действия с определителем третьего порядка), преобразовав его так, чтобы три элемента некоторого ряда равнялись нулю, и вычислить полученный определитель по элементам этого ряда: Определитель матрицы - определение и вычисление с примерами решения

Решение:

Во второй строке исходного определителя присутствуют 1 и 0, поэтому обнуление элементов будем производить в этой строке (при обнулении элементов в строке действия производят со столбцами и наоборот): Определитель матрицы - определение и вычисление с примерами решения – строка обнуления; Определитель матрицы - определение и вычисление с примерами решения– столбцы, с которыми производят действия)=Определитель матрицы - определение и вычисление с примерами решения

(по методу обнуления раскроем определитель по элементам 2-ой строки (Определитель матрицы - определение и вычисление с примерами решения – цифры, с которыми производятся действия))Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения (по универсальному методу раскроем определитель по элементам третьей строки)Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Определители

Перестановкой чисел 1, 2,…, n называется любое расположение этих чисел в определенном порядке. В элементарной алгебре доказывается, что число всех перестановок, которые можно образовать из n чисел, равно 12…n = n!. Например, из трех чисел 1, 2, 3 можно образовать 3!=6 перестановок: 123, 132, 312, 321, 231, 213. Говорят, что в данной перестановке числа i и j составляют инверсию (беспорядок), если i>j, но i стоит в этой перестановке раньше j, то есть если большее число стоит левее меньшего.

Перестановка называется четной (или нечетной), если в ней соответственно четно (нечетно) общее число инверсий. Операция, посредством которой от одной перестановки переходят к другой, составленной из тех же n чисел, называется подстановкой n-ой степени.

Подстановка, переводящая одну перестановку в другую, записывается двумя строками в общих скобках, причем числа, занимающие одинаковые места в рассматриваемых перестановках, называются соответствующими и пишутся одно под другим. Например, символ Определитель матрицы - определение и вычисление с примерами решения обозначает подстановку в которой 3 переходит в Определитель матрицы - определение и вычисление с примерами решения

Подстановка называется четной (или нечетной), если общее число инверсий в обеих строках подстановки четно (нечетно). Всякая подстановка n-ой степени может быть записана в виде Определитель матрицы - определение и вычисление с примерами решения т.е. с натуральным расположением чисел в верхней строке.

Пусть нам дана квадратная матрица порядка n Определитель матрицы - определение и вычисление с примерами решения

Рассмотрим все возможные произведения по n элементов этой матрицы, взятых по одному и только по одному из каждой строки и каждого столбца, т.е. произведений вида: Определитель матрицы - определение и вычисление с примерами решения

где индексы Определитель матрицы - определение и вычисление с примерами решения составляют некоторую перестановку из чисел 1, 2,…,n. Число таких произведений равно числу различных перестановок из n символов, т.е. равно n!. Знак произведения (4.4) равен (-1)q где q – число инверсий в перестановке вторых индексов элементов.

Определителем n-го порядка, соответствующим матрице (4.3), называется алгебраическая сумма n! членов вида (4.4). Для записи определителя употребляется символ Определитель матрицы - определение и вычисление с примерами решения (детерминант, или определитель, матрицы А).

Свойства определителей:

  1. Определитель не меняется при транспонировании.
  2. Если одна из строк определителя состоит из нулей, то определитель равен нулю.
  3. Если в определителе переставить две строки, определитель поменяет знак.
  4. Определитель, содержащий две одинаковые строки, равен нулю.
  5. Если все элементы некоторой строки определителя умножить на некоторое число Определитель матрицы - определение и вычисление с примерами решения то сам определитель умножится на Определитель матрицы - определение и вычисление с примерами решения
  6. Определитель, содержащий две пропорциональные строки, равен нулю.
  7. Если все элементы i-й строки определителя представлены в виде суммы двух слагаемых Определитель матрицы - определение и вычисление с примерами решения то определитель равен сумме определителей, у которых все строки, кроме i-ой, – такие же, как в заданном определителе, а i-я строка в одном из слагаемых состоит из элементов Определитель матрицы - определение и вычисление с примерами решения в другом – из элементов Определитель матрицы - определение и вычисление с примерами решения
  8. Определитель не меняется, если к элементам одной из его строк прибавляются соответствующие элементы другой строки, умноженные на одно и то же число.

Замечание. Все свойства остаются справедливыми, если вместо строк взять столбцы.

Минором Определитель матрицы - определение и вычисление с примерами решения элемента Определитель матрицы - определение и вычисление с примерами решения определителя d n-го порядка называется определитель порядка n-1, который получается из d вычеркиванием строки и столбца, содержащих данный элемент.

Алгебраическим дополнением элемента Определитель матрицы - определение и вычисление с примерами решения определителя d называется его минор Определитель матрицы - определение и вычисление с примерами решения взятый со знаком Определитель матрицы - определение и вычисление с примерами решения Алгебраическое дополнение элемента Определитель матрицы - определение и вычисление с примерами решения будем обозначать Определитель матрицы - определение и вычисление с примерами решения Таким образом, Определитель матрицы - определение и вычисление с примерами решения

Способы практического вычисления определителей, основанные на том, что определитель порядка n может быть выражен через определители более низких порядков, дает следующая теорема.

  • Заказать решение задач по высшей математике

Теорема (разложение определителя по строке или столбцу).

Определитель равен сумме произведений всех элементов произвольной его строки (или столбца) на их алгебраические дополнения. Иначе говоря, имеет место разложение d по элементам i-й строки Определитель матрицы - определение и вычисление с примерами решения или j- го столбца Определитель матрицы - определение и вычисление с примерами решения

В частности, если все элементы строки (или столбца), кроме одного, равны нулю, то определитель равен этому элементу, умноженному на его алгебраическое дополнение.

Пример:

Не вычисляя определителя Определитель матрицы - определение и вычисление с примерами решения показать, что он равен нулю.

Решение:

Вычтем из второй строки первую, получим определитель Определитель матрицы - определение и вычисление с примерами решения равный исходному. Если из третьей строки также вычесть первую, то получится определитель Определитель матрицы - определение и вычисление с примерами решения в котором две строки пропорциональны.

Такой определитель равен нулю.

Пример:

Вычислить определитель Определитель матрицы - определение и вычисление с примерами решения разложив его по элементам второго столбца.

Решение:

Разложим определитель по элементам второго столбца: Определитель матрицы - определение и вычисление с примерами решения

Пример:

Вычислить определитель Определитель матрицы - определение и вычисление с примерами решения в котором все элементы по одну сторону от главной диагонали равны нулю.

Решение:

Разложим определитель А по первой строке:

Определитель матрицы - определение и вычисление с примерами решения

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим: Определитель матрицы - определение и вычисление с примерами решения

И так далее. После n шагов придем к равенству Определитель матрицы - определение и вычисление с примерами решения

Пример:

Вычислить определитель Определитель матрицы - определение и вычисление с примерами решения

Решение:

Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: Определитель матрицы - определение и вычисление с примерами решения равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

——- в вышмате

Определители. Алгебраические дополнения

Внимание! Понятие определителя вводится только для квадратной матрицы.

Матрица называется квадратной порядка n, если количество ее строк совпадает с количеством столбцов и равно n.

Элементы квадратной матрицы, имеющие одинаковые значения индексов, составляют главную диагональ. Элементы квадратной матрицы порядка n, сумма индексов каждого из которых равна n+1, составляют побочную диагональ.

Определитель матрицы Определитель матрицы - определение и вычисление с примерами решения обозначается одним из следующих символов: Определитель матрицы - определение и вычисление с примерами решения

Внимание! Определитель – это число, характеризующее квадратную мат- рицу.

Определитель матрицы второго порядка равен разности элементов главной и побочной диагоналей соответственно:

Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы третьего порядка равен сумме элементов главной диагонали и элементов, расположенных в вершинах треугольников с основаниями, параллельными главной диагонали, а также разности элементов побочной диагонали и элементов, расположенных в вершинах треугольников с основаниями, параллельными побочной диагонали. Определитель матрицы - определение и вычисление с примерами решения

Схематично это правило изображается так (правило треугольника): Определитель матрицы - определение и вычисление с примерами решения

Например,

Определитель матрицы - определение и вычисление с примерами решения Квадратная матрица называется верхней (нижней) треугольной, если все элементы, стоящие под (над) главной диагональю равны нулю.

Отметим некоторые свойства определителя.

  1. Определитель треугольной матрицы равен произведению элементов главной диагонали.
  2. При транспонировании матрицы ее определитель не изменяется.
  3. От перестановки двух рядов (строк или столбцов) определитель меняет знак.
  4. Общий множитель всех элементов некоторого ряда определителя можно выносить за знак определителя.
  5. Если все элементы какого-нибудь ряда матрицы равны нулю, то определитель равен нулю.
  6. Определитель, содержащий два пропорциональных ряда, равен нулю.
  7. Определитель не изменится, если к элементам какого-либо ряда прибавить соответствующие элементы другого ряда, умноженные на одно и то же число.
  8. Определитель произведения двух матриц одинакового порядка равен произведению определителей этих матриц.

Минором элемента Определитель матрицы - определение и вычисление с примерами решения определителя n-го порядка называется определитель (n-l)-ro порядка, получаемый вычеркиванием i-й строки и j-ro столбца, на пересечении которых стоит этот элемент. Обозначение: Определитель матрицы - определение и вычисление с примерами решения

Алгебраическим дополнением элемента Определитель матрицы - определение и вычисление с примерами решения называется его минор, умноженный на Определитель матрицы - определение и вычисление с примерами решения Обозначение: Определитель матрицы - определение и вычисление с примерами решения

Определитель матрицы - определение и вычисление с примерами решения

Теорема разложения.

Определитель матрицы равен сумме произведений элементов любого ряда на их алгебраические дополнения.

Пример №2

Вычислить определитель, разлагая его по элементам первой строки: Определитель матрицы - определение и вычисление с примерами решения

Решение:

По теореме разложения Определитель матрицы - определение и вычисление с примерами решения

Найдем алгебраические дополнения элементов матрицы А: Определитель матрицы - определение и вычисление с примерами решения

Следовательно,

Определитель матрицы - определение и вычисление с примерами решения

Для вычисления определителя порядка выше третьего удобно пользоваться теоремой разложения (метод понижения порядка) или методом приведения определителя к треугольному виду.

Пример №3

Вычислить определитель, приведя его к треугольному виду:

Определитель матрицы - определение и вычисление с примерами решения

Решение:

Применяя свойство 6 определителей, преобразуем последовательно второй, третий, четвертый столбцы матрицы. Определитель матрицы - определение и вычисление с примерами решения

  1. прибавили ко второму столбцу первый, умноженный на -2;
  2. прибавили к третьему столбцу первый, умноженный на -3;
  3. прибавили к четвертому столбцу первый, умноженный на -4;
  4. применили свойство 1 определителей.
  • Критерий совместности Кронекера-Капелли
  • Формулы Крамера
  • Матричный метод
  • Экстремум функции
  • Пределы в математике
  • Функции многих переменных
  • Уравнения прямых и кривых на плоскости
  • Плоскость и прямая в пространстве
Содержание

Определитель квадратной матрицы первого порядка
Определитель квадратной матрицы второго порядка
Схема вычисления определителя второго порядка
Примеры вычисления определителей второго порядка
Определитель квадратной матрицы третьего порядка
Правило треугольников нахождения определителя третьего порядка
Примеры вычисления определителей третьего порядка

Используя специальное правило каждой квадратной матрице можно поставить в соответствие число, которое будем называть определителем (детерминантом) и обозначать {rm det}, A или |A|, или Delta.

Определитель квадратной матрицы первого порядка

Определителем квадратной матрицы первого порядка A=(a_{11}) называется число

|A|=|a_{11}|=a_{11}.

Заметим, что здесь выражение |a_{11}| означает определитель, хоть внешне очень похоже на запись модуля числа a_{11}. Таким образом, определитель матрицы первого порядка равен единственному элементу этой матрицы, например для матриц

A=(2), B=(pi), C=({}-1) и D=(-10sqrt{2},)

определители

|A|=|2|=2, |B|=|pi|=pi, |C|=|{}-1|={}-1 и |D|=|-10sqrt{2},|=-10sqrt{2},.

Определитель квадратной матрицы второго порядка

Определителем квадратной матрицы второго порядка

A=left(!!begin{array}{cc}a_{11}^{}& a_{12}^{}\[0.5ex]a_{21}^{}&a_{22}^{}end{array}!!right)

называется число

left|Aright|= left|!!begin{array}{cc}a_{11}^{}& a_{12}^{}\[0.5ex]a_{21}^{}&a_{22}^{}end{array}!!right|=a_{11}^{}a_{22}^{}-a_{12}^{}a_{21}.

Таким образом, для того, что вычислить определитель матрицы 2-го порядка нужно умножить элементы главной диагонали матрицы и от полученного произведения вычесть произведение элементов побочной диагонали матрицы. Схема вычисления определителя второго порядка представлена на рис. 1.

Вычисление определителя второго порядка

Рис. 1

Рассмотрим примеры, где требуется вычислить определитель второго порядка. У матриц

A=left(!!begin{array}{cc} 3& -4\[0.5ex] 2&1end{array}!!right),   B=left(!!begin{array}{cc} cosalpha & sinalpha\[0.5ex] -sinalpha&cosalpha end{array}!!right)

определители

left|Aright|=left|!!begin{array}{cc} 3& -4\[0.5ex] 2&1end{array}!!right|=3cdot 1-({}-4)cdot2=3+8=11,

left|Bright|=left(!!begin{array}{cc} cosalpha & sinalpha\[0.5ex] -sinalpha&cosalpha end{array}!!right) =cosalphacosalpha-sinalpha({}-sinalpha)=

=cos^2!alpha+sin^2!alpha=1.

Определитель квадратной матрицы третьего порядка

Определителем квадратной матрицы третьего порядка

A=left(!!begin{array}{ccc}a_{11}^{}& a_{12}^{}&a_{13}^{}\[0.5ex]a_{21}^{}& a_{22}^{}&a_{23}^{}\[0.5ex]a_{31}^{}& a_{32}^{}&a_{33}^{}end{array}!!right)

называется число

left|Aright|=left|!!begin{array}{ccc}a_{11}^{}& a_{12}^{}&a_{13}^{}\[0.5ex]a_{21}^{}& a_{22}^{}&a_{23}^{}\[0.5ex]a_{31}^{}& a_{32}^{}&a_{33}^{}end{array}!!right|=

=a_{11}a_{22}a_{33}+a_{12}a_{23}a_{31}+a_{13}a_{21}a_{32}- (a_{13}a_{22}a_{31}+a_{12}a_{21}a_{33}+ a_{11}a_{23}a_{32}).

Как видим, для того чтобы вычислить определитель матрицы третьего порядка необходимо использовать достаточно сложную для запоминания формулу, однако, заучивать ее вовсе не обязательно. Гораздо легче понять и запомнить схему вычисления определителя третьего порядка (рис. 2) (ее еще называют правилом треугольников). Используя эту схему решаются задачи на вычисление определителей матриц 3×3, и с ее помощью всегда можно восстановить формулу нахождения определителя 3-го порядка.

Схема вычисления определителя третьего порядка

Рис. 2

Как видно из схемы (рис. 2), для того чтобы найти определитель третьего порядка необходимо вычислить 6 чисел, каждое из которых представляет собой произведение трех чисел. Для нахождения первого числа требуется найти произведение элементов главной диагонали, второе и третье числа представляют собой произведения элементов, находящихся в вершинах равнобедренных треугольников (см. рис. 2), чьи основания параллельны главной диагонали матрицы. Аналогично, четвертое число в схеме есть произведение элементов второй (побочной) диагонали матрицы, а пятое и шестое числа находятся как произведения элементов-вершин равнобедренных треугольников с основаниями параллельными второй диагонали матрицы. Затем следует сложить первые три числа и из этой суммы вычесть сумму чисел с номерами 4 — 6.

Рассмотрим пример вычисления определителя матрицы третьего порядка. Определитель

left|!!begin{array}{ccc}2& 3&-1\[0.5ex] 1& 3&{}-1\[0.5ex] 1& {}-3&0}end{array}!!right|= 2cdot3cdot0+3cdot(-1)cdot1+(-1)cdot 1cdot(-3)-

-( (-1)cdot 3cdot 1+3cdot1cdot0+2cdot(-1)cdot(-3)) = 0-3+3-(-3+0+6)= 0-3=-3.

Добавить комментарий