Orion6767 2 / 2 / 1 Регистрация: 26.10.2010 Сообщений: 67 |
||||
1 |
||||
Для каждого столбца матрицы найти произведение его элементов.22.05.2011, 17:11. Показов 13350. Ответов 2 Метки нет (Все метки)
Дана матрица размера M × N. Для каждого столбца матрицы найти произведение его элементов.
Я начал делать но у меня проблема с циклом, он не считает каждый столбец отдельно, что нужно изменить чтобы он считал произведение каждого столбца? Сейчас он умножает найденное произведение с произведением следующего столбца и т.д.
0 |
-comrade- 364 / 365 / 167 Регистрация: 11.06.2010 Сообщений: 703 |
||||
22.05.2011, 17:24 |
2 |
|||
Orion6767, так?
1 |
2 / 2 / 1 Регистрация: 26.10.2010 Сообщений: 67 |
|
22.05.2011, 17:26 [ТС] |
3 |
-comrade-, да) спасибо большое
0 |
Product of array elements
Syntax
Description
example
B
= prod(A
)
returns the product of the array elements of A
.
-
If
A
is a vector, then
prod(A)
returns the product of the
elements. -
If
A
is a nonempty matrix, then
prod(A)
treats the columns of
A
as vectors and returns a row vector of the
products of each column. -
If
A
is an empty 0-by-0 matrix,
prod(A)
returns1
. -
If
A
is a multidimensional array, then
prod(A)
acts along the first
nonsingleton dimension and returns an array of products.
The size ofB
in this dimension reduces to
1
, while the sizes of all other dimensions
remain the same as inA
. -
If
A
is a
table or timetable, thenprod(A)
returns a
one-row table of the products of each variable. (since R2023a)
prod
computes and returns B
as
single
when the input, A
, is
single
. For all other numeric and logical data types,
prod
computes and returns B
as
double
.
example
B
= prod(A
,"all"
)
returns the product of all elements of A
.
example
B
= prod(A
,dim
)
returns the product along dimension dim
. For example, if
A
is a matrix, prod(A,2)
is a column
vector containing the products of each row.
example
B
= prod(A
,vecdim
)
returns the product based on the dimensions specified in the vector
vecdim
. For example, if A
is a matrix,
then prod(A,[1 2])
returns the product of all elements in
A
because every element of a matrix is contained in the
array slice defined by dimensions 1 and 2.
example
B
= prod(___,outtype
)
returns an array in the class specified by outtype
, using any
of the input arguments in the previous syntaxes. outtype
can
be "double"
, "native"
, or
"default"
.
example
B
= prod(___,nanflag
)
specifies whether to include or omit NaN
values in
A
. For example, prod(A,"omitnan")
ignores NaN
values when computing the product. By default,
prod
includes NaN
values.
Examples
collapse all
Product of Elements in Each Column
Create a 3-by-3 array whose elements correspond to their linear indices.
A = 3×3
1 4 7
2 5 8
3 6 9
Find the product of the elements in each column. The length of the first dimension is 1, and the length of the second dimension matches size(A,2)
.
Product of Logical Input
Create an array of logical values.
A = [true false; true true]
A = 2x2 logical array
1 0
1 1
Find the product of the elements in each column.
The output has type double
.
Product of Elements in Each Row
Create a 3-by-3 array whose elements correspond to their linear indices.
A = 3×3
1 4 7
2 5 8
3 6 9
Find the product of the elements in each row and reduce the length of the second dimension to 1. The length of the first dimension matches size(A,1)
, and the length of the second dimension is 1.
Product of Array Page
Create a 3-D array and compute the product over each page of data (rows and columns).
A(:,:,1) = [2 4; -2 1]; A(:,:,2) = [1 2; -5 3]; A(:,:,3) = [4 4; 1 -3]; B1 = prod(A,[1 2])
B1 = B1(:,:,1) = -16 B1(:,:,2) = -30 B1(:,:,3) = -48
To compute the product over all dimensions of an array, you can either specify each dimension in the vector dimension argument, or use the "all"
option.
Single-Precision Input Treated as Double
Create a 3-by-3 array of single-precision values.
A = single([1200 1500 1800; 1300 1600 1900; 1400 1700 2000])
A = 3x3 single matrix
1200 1500 1800
1300 1600 1900
1400 1700 2000
Find the product of the elements in each row by multiplying in double precision.
B = 3×1
109 ×
3.2400
3.9520
4.7600
The output is double precision.
Integer Data Type for Input and Output
Create a 3-by-3 array of 8-bit unsigned integers.
A = uint8([1:3:7;2:3:8;3:3:9])
A = 3x3 uint8 matrix
1 4 7
2 5 8
3 6 9
Find the product of the elements in each column natively in uint8
.
B = 1x3 uint8 row vector
6 120 255
The result is an array of 8-bit unsigned integers.
Product Excluding Missing Values
Create a matrix containing NaN
values.
A = [1.77 -0.005 NaN -2.95; NaN 0.34 NaN 0.19]
A = 2×4
1.7700 -0.0050 NaN -2.9500
NaN 0.3400 NaN 0.1900
Compute the products of the matrix, excluding NaN
values. For matrix column that contain any NaN
value, prod
computes with the non-NaN
elements. For matrix columns that contain all NaN
values, the product is 1.
B = 1×4
1.7700 -0.0017 1.0000 -0.5605
Input Arguments
collapse all
A
— Input array
vector | matrix | multidimensional array | table | timetable
Input array, specified as a vector, matrix, multidimensional array, table, or
timetable.
Data Types: double
| single
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
| logical
| table
| timetable
Complex Number Support: Yes
dim
— Dimension to operate along
positive integer scalar
Dimension
to operate along, specified as a positive integer scalar. If you do not specify the dimension,
then the default is the first array dimension of size greater than 1.
Dimension dim
indicates the dimension whose
length reduces to 1
. The size(B,dim)
is 1
,
while the sizes of all other dimensions remain the same.
Consider a two-dimensional input array, A
.
-
If
dim = 1
, thenprod(A,1)
returns
a row vector containing the product of the elements in each column. -
If
dim = 2
, thenprod(A,2)
returns
a column vector containing the product of the elements in each row.
prod
returns A
when dim
is
greater than ndims(A)
.
Data Types: double
| single
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
vecdim
— Vector of dimensions
vector of positive integers
Vector of dimensions, specified as a vector of positive integers. Each
element represents a dimension of the input array. The lengths of the output
in the specified operating dimensions are 1, while the others remain the
same.
Consider a 2-by-3-by-3 input array, A
. Then
prod(A,[1 2])
returns a 1-by-1-by-3 array whose
elements are the products of each page of A
.
Data Types: double
| single
| int8
| int16
| int32
| int64
| uint8
| uint16
| uint32
| uint64
outtype
— Output class
"default"
(default) | "double"
| "native"
Output class, specified as "default"
,
"double"
, or "native"
, and which
defines the data type of the output, B
.
outtype |
Output data type |
---|---|
"default" |
double , unless the input data type issingle , table , ortimetable . In which case, the outputdata type is single ortable , respectively. |
"double" |
double , unless the input data type istable ortimetable . In which case, the output datatype is table . |
"native" |
Same data type as the input array, A ,unless the input data type is timetable .In which case, the output data type is table . |
nanflag
— Missing value condition
"includemissing"
(default) | "includenan"
| "omitmissing"
| "omitnan"
Missing value condition, specified as one of these values:
-
"includemissing"
or
"includenan"
— Include
NaN
values inA
when
computing the product. If any element in the operating dimension is
NaN
, then the corresponding element in
B
isNaN
.
"includemissing"
and
"includenan"
have the same behavior. -
"omitmissing"
or"omitnan"
— IgnoreNaN
values in
A
, and compute the product over fewer points.
If all elements in the operating dimension are
NaN
, then the corresponding element in
B
is 1."omitmissing"
and
"omitnan"
have the same behavior.
Output Arguments
collapse all
B
— Product array
scalar | vector | matrix | multidimensional array | table
Product array, returned as a scalar, vector, matrix, multidimensional array, or table.
The class of B
is as follows:
-
If the
outtype
argument specifies"default"
or is not
used-
and the input is not
single
,
table
, or
timetable
, then the output is
double
. -
and the input is
single
, then
the output issingle
. -
and the input is
table
or
timetable
, then the output is
table
.
-
-
If the
outtype
argument specifies
"double"
, then the output is
double
regardless of the input data type,
unless the input istable
or
timetable
. -
If the
outtype
argument specifies
"native"
, then the output is the same
data type as the input, unless the input is
timetable
. In which case, the output is
table
.
More About
collapse all
First Nonsingleton Dimension
The first nonsingleton
dimension is the first dimension of an array whose size is not equal
to 1
.
For example:
-
If
X
is a 1-by-n row vector, then
the second dimension is the first nonsingleton dimension ofX
. -
If
X
is a 1-by-0-by-n empty array,
then the second dimension is the first nonsingleton dimension ofX
. -
If
X
is a 1-by-1-by-3 array, then
the third dimension is the first nonsingleton dimension ofX
.
Extended Capabilities
Tall Arrays
Calculate with arrays that have more rows than fit in memory.
This function fully supports tall arrays. For
more information, see Tall Arrays.
C/C++ Code Generation
Generate C and C++ code using MATLAB® Coder™.
Usage notes and limitations:
-
If you supply
dim
, it must be a
constant. -
See Variable-Sizing Restrictions for Code Generation of Toolbox Functions (MATLAB Coder).
GPU Code Generation
Generate CUDA® code for NVIDIA® GPUs using GPU Coder™.
Usage notes and limitations:
-
If you supply
dim
, it must be a constant.
Thread-Based Environment
Run code in the background using MATLAB® backgroundPool
or accelerate code with Parallel Computing Toolbox™ ThreadPool
.
This function fully supports thread-based environments. For
more information, see Run MATLAB Functions in Thread-Based Environment.
GPU Arrays
Accelerate code by running on a graphics processing unit (GPU) using Parallel Computing Toolbox™.
Usage notes and limitations:
-
64-bit integers are not supported with the
"native"
option. -
The order of the products in
prod
operation is not
defined. Therefore, theprod
operation on a GPU array
might not return exactly the same answer as theprod
operation on the corresponding numeric array.
For more information, see Run MATLAB Functions on a GPU (Parallel Computing Toolbox).
Distributed Arrays
Partition large arrays across the combined memory of your cluster using Parallel Computing Toolbox™.
Usage notes and limitations:
-
The order of the products in
prod
operation is not
defined. Therefore, theprod
operation on a distributed
array might not return exactly the same answer as the
prod
operation on the corresponding numeric array.
The difference might be significant whenA
is a signed
integer type and its product is accumulated natively.
For more information, see Run MATLAB Functions with Distributed Arrays (Parallel Computing Toolbox).
Version History
Introduced before R2006a
expand all
R2023a: Specify missing value condition
Include or omit missing values in the input array when computing the product by
using the "includemissing"
or "omitmissing"
options. These options have the same behavior as the "includenan"
and "omitnan"
options, respectively.
R2023a: Perform calculations directly on tables and timetables
The prod
function can calculate on all variables within a table or
timetable without indexing to access those variables. All variables must have data types
that support the calculation. For more information, see Direct Calculations on Tables and Timetables.
R2018b: Operate on multiple dimensions
Operate on multiple dimensions of the input array at a time. Specify a vector of
operating dimensions, or specify the "all"
option to operate on
all array dimensions.
using System; using System.Collections.Generic; using System.Linq; using System.Text; using System.Threading.Tasks; namespace ConsoleApplication9 { class Program { static void Main(string[] args) { uint M, N; Random rnd = new Random(); Console.WriteLine("Введите M"); M = uint.Parse(Console.ReadLine()); Console.WriteLine("Введите N"); N = uint.Parse(Console.ReadLine()); int[,] Matrica = new int[M, N]; int[] proizved = new int[M]; Console.WriteLine("Заполняем матрицу случайными числами"); for (int i = 0; i < M; i++) { for (int j = 0; j < N; j++) { Matrica[i, j] = rnd.Next(2,10); } } for (int i = 0; i < proizved.Length; i++) { proizved[i] = 1; } uint tmp = N; for (int i = 0; i < M; i++) { tmp--; for (int j = 0; j < N; j++) { Console.Write(Matrica[i, j] + " "); } Console.WriteLine(); } for (int i = 0; i < N; i++) { for (int j = 0; j < M; j++) { proizved[i] *= Matrica[j, i]; } Console.WriteLine(); } Console.WriteLine("Произведение элементов каждого столбца: t "); for (int i = 0; i <proizved.Length; i++) { Console.WriteLine("tt" + proizved[i].ToString()); Console.WriteLine(); } } } }
#include <iostream>
#include <windows.h>
#include <ctime>
#include <algorithm>
#include <iomanip>
using namespace std;
int main()
{
SetConsoleCP(1251);
SetConsoleOutputCP(1251);
srand(time(NULL));
system(“color 0A”);
cout << “Введите размеры матрицы “;
size_t n, m;
cin >> n >> m;
auto **a = new int*[n];
for (size_t count = 0u; count < n; ++count)
a[count] = new int[m];
auto get_num = []()
{
auto value = rand() % 5;
cout << setw(5u) << value;
return value;
};
auto get_string = [a, n, m, get_num]()
{
auto str = new int[m];
generate(str, str + m, get_num);
cout << endl;
return str;
};
cout << “Исходная матрица: ” << endl;
generate(a, a + n, get_string);
cout << “Поизведения для столбиков” << endl;
for (size_t u = 0u; u < m; ++u)
{
long long pp = 1;
for (size_t p = 0u; p < n; ++p)
{
pp *= a[p][u] ? a[p][u] : 1;
}
cout << setw(5u) << pp;
}
cout << endl;
system(“pause”);
return 0;
}
Matrix20. Дана матрица размера $$M times N$$. Для каждого столбца матрицы найти произведение его элементов.
Решение:
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 |
program Matrix20; var a:array [1..10,1..10] of integer; Mult,M, N, i, j:Integer; begin Write(‘N: ‘); Readln(N); Write(‘M: ‘); Readln(M); for i:=1 to M do begin writeln(i,‘: ‘); for j:=1 to N do begin Write(j,‘ : ‘); Read(a[i,j]); end; end; For j:=1 to N do begin Mult:=1; for i:=1 to M do Mult:=Mult*a[i,j]; Writeln(j,‘ Proizvedenie:’,Mult); end; end. |
Другие задачи из раздела Matrix можно посмотреть здесь.