Загрузить PDF
Загрузить PDF
На курсах дифференциального исчисления вы наверняка учили правила дифференцирования основных функций, в том числе правило дифференцирования степенной функции. Однако если функция содержит квадратный или другой корень, например , может показаться, что данное правило не подходит. Тем не менее достаточно переписать ее в степенном виде, чтобы получить очевидный ответ. Если функция содержит несколько корней, такую подстановку можно делать сколько угодно раз и использовать правило дифференцирования сложной функции.
-
1
Вспомните правило дифференцирования степенной функции. Обычно это правило учат в самом начале курса дифференциального исчисления. Оно гласит, что производная переменной , возведенной в степень , равна:[1]
-
2
-
3
Примените правило дифференцирования степенной функции. Если под корнем стоит переменная x, , производная берется следующим образом:[3]
-
4
Упростите результат. На этом этапе необходимо вспомнить, что при отрицательной степени следует найти число, обратное данному числу в той же положительной степени. Степень означает, что квадратный корень следует поставить в знаменателе дроби.[4]
Реклама
-
1
Вспомните правило дифференцирования сложных функций. Это правило применяется в тех случаях, когда необходимо продифференцировать функцию, аргументом которой выступает другая функция. Согласно данному правилу, комбинация двух функций, и , дифференцируется следующим образом:[5]
-
2
Определите функции. При использовании правила дифференцирования сложных функций первым делом следует выявить комбинацию функций. В случае квадратного корня в роли внешней функции выступает взятие корня, а внутренней функцией является то, что стоит под знаком корня.[6]
-
3
Найдите производные обеих функций. Чтобы применить правило дифференцирования сложных функций к квадратному корню, сначала следует найти производную квадратного корня:[7]
-
4
Реклама
-
1
Запомните простое правило дифференцирования любых квадратных корней. Если необходимо найти производную квадратного корня, под которым стоит переменная или функция, используйте следующее правило. Результат всегда будет представлять собой производную подкоренного выражения, поделенную на удвоенный первоначальный квадратный корень. Это можно записать следующим образом:[9]
-
2
Найдите производную подкоренного выражения. Как следует из названия, подкоренное выражение стоит под знаком квадратного корня. Чтобы применить данное правило, найдем производную этого выражения. Рассмотрим следующие примеры:[10]
-
3
Запишите производную подкоренного выражения в числителе дроби. Производная корня представляет собой дробь, в числителе которой стоит производная подкоренного выражения. Для приведенных выше функций получаем следующие выражения:[11]
-
4
Запишите знаменатель в виде удвоенного первоначального квадратного корня. Согласно данному правилу, в знаменателе следует написать удвоенный квадратный корень. Для приведенных выше функций получаем следующие знаменатели:[12]
-
5
Скомбинируем числитель и знаменатель и получим искомую производную. Запишите полную дробь, и у вас получится производная первоначальной функции:[13]
Реклама
Об этой статье
Эту страницу просматривали 52 258 раз.
Была ли эта статья полезной?
Содержание:
- Формула
- Примеры вычисления производной корня
Формула
$$(sqrt{x})^{prime}=frac{1}{2 sqrt{x}}$$
Производная от корня равна единице, деленной на два таких же корня.
Если под корнем находится сложная функция $u=u(x)$, то производная
от корня этой функции будет равна: единице, деленной на два таких же корня и умноженной на производную подкоренного выражения, то есть
$$(sqrt{u})^{prime}=frac{1}{2 sqrt{u}} cdot u^{prime}$$
Примеры вычисления производной корня
Пример
Задание. Найти производную функции $y(x)=2 sqrt{x}$
Решение. Искомая производная равна:
$$y^{prime}(x)=(2 sqrt{x})^{prime}$$
Согласно правилам дифференцирования, вынесем константу 2 за знак производной, в итоге будем иметь:
$$y^{prime}(x)=2 cdot(sqrt{x})^{prime}=2 cdot frac{1}{2 sqrt{x}}=frac{1}{sqrt{x}}$$
Ответ. $y^{prime}(x)=frac{1}{sqrt{x}}$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Вычислить производную функции $y(x)=sqrt{2 x}$
Решение. Искомая производная
$$y^{prime}(x)=(sqrt{2 x})$$
Находим как производную сложной функции, то есть вначале находим как производную от корня, а затем умножаем на производную
подкоренного выражения. В результате будем иметь:
$$y^{prime}(x)=(sqrt{2 x})^{prime}=frac{1}{2 sqrt{2 x}} cdot(2 x)^{prime}$$
Константу выносим за знак производной, а
производная независимой переменной равна единице, тогда получаем:
$$y^{prime}(x)=frac{1}{2 sqrt{2 x}} cdot 2 cdot(x)^{prime}=frac{1}{sqrt{2 x}} cdot 1=frac{1}{sqrt{2 x}}$$
Ответ. $y^{prime}(x)==frac{1}{sqrt{2 x}}$
Читать дальше: производная синуса (sinx)’.
Производная корень из Х – формулы и примеры вычислений
Понятие производной
Смысл производной основан на понятии предела функции. Состоит запись выражения из трёх частей, в одной из которых указывается, к чему стремится неизвестное. Оно может достигать как нуля, так и бесконечности. Таким образом, предел представляет собой динамическую величину. Например, пусть имеется некая функция f (x) = (1 + x) 1/x .
При иксе, который равен нулю, функция будет не определена, но можно исследовать, как она будет себя вести при приближении переменной к нулю. Для этого можно взять какое-либо значение икса и, подставив его в уравнение, вычислить функцию. Затем в формулу подставить иное произвольное число, но такое, чтобы оно было меньше предыдущего, то есть приближалось к нулю.
Выполнив несколько таких вычислений, можно увидеть, что значение функции начнёт приближаться к некой величине. Это значение и считается пределом рассматриваемого выражения при иксе, стремящемся к нулю.
Следует рассмотреть другую функцию: f (x) = 1 / x. Подставляя вместо икса различные числа, можно будет отметить, что при уменьшении исходной величины переменной числовое значение в ответе увеличивается, то есть результат функции ничем не ограничивается. Это означает, что при иксе, который стремится к нулю, предел будет равняться бесконечности.
Понятие предела помогает дать определение непрерывности. Функция f (x) непрерывна в точке x = c только тогда, когда знак предела и выражения можно поменять друг с другом местами: lim f (x) = f (lim x) = f с. Используя это свойство, можно определить точки разрыва и непрерывность. Зная определения можно понять, что представляет собой производная.
Пусть имеется линейная функция y = k * x + b, графиком которой будет прямая. При изменении икса на дельту по игреку будет происходить прирост на Δy = k * Δx. Получается, что величина k является скоростью роста функции: k = (f (x + Δx) — f (x)) / Δx. В этом случае график прямой имеет постоянный наклон, поэтому коэффициент k — константа.
Если же функция имеет произвольный вид, например, она состоит из сложного многочлена с дробями и квадратами, то, как вычислить постоянную k, непонятно. Вот тут на помощь и приходит понятие производной. Можно взять отношение дельта-икс на дельта-игрек и посмотреть, какой предел будет у функции: f'(x) = lim (f (x + Δx) — f (x)) / Δx. По сути, это действие и является нахождением производной.
Свойства корня
Находить производные подкоренных выражений невозможно без знания свойств степеней и корней. По определению, корнем квадратным из произвольного числа, которое больше нуля, называется такое неотрицательное число, которое при возведении в квадрат равняется этому числу.
То есть выражение √a = b тождественно равенству: b 2 = a. Например, √16 = 4, так как 4 2 = 16. Таким образом, можно утверждать, что корнем энной степени числа а будет такое выражение, которое при возведении в эту степень будет равняться а. Степень корня указывается в верхнем регистре значка, а основание записывается под знаком корня и называется подкоренным выражением.
Выделяют следующие свойства корней:
- Если подкоренное выражение представляет умножение неотрицательных чисел, то корень квадратный будет равняться произведению корней членов выражения: √ a * b * … * n = √ a * √ b * … * √ n.
- Когда под корнем находится отношение двух положительных чисел, то для решения выражения нужно извлечь корень из числителя и знаменателя, а после выполнить деление: √ a / b = √ a / b = √ a / √ b.
- В случае когда а больше или равняется нулю и при этом n является натуральным, то корень из подкоренного выражения будет равняться а в степени n: √ a 2 n = a n .
- При действительном числе и чётном значении показателей подкоренного выражения будет справедливым равенство: 2*m √ a 2*m = | a |. Если же показатель нечётный, то в ответе действительное число будет всегда положительное.
- При извлечении корня из корня n √ m √ действие можно заменить произведением показателей при неизменном подкоренном выражении.
- Сложение и вычитание корней возможно только в том случае, когда количественные или буквенные значения подкоренных выражений совпадают: n √ m + k √ m = (n + k) √ m.
- Умножить корни с одинаковыми показателями возможно лишь тогда, когда показатель у всех перемножаемых членов одинаков: √ n * √ m = √ n * m.
Для любой степени существует основная формула, по которой может быть найдена производная.
Выглядит она как (x n )’ = n * x n -1 . Эта формула используется и для дифференцирования корней. Кроме этого, для успешного решения задач на нахождение производной квадратного корня из х необходимо знать и свойства степеней.
Нахождение выражения из Х
В общем случае формула производной корня из х равна дроби, в числителе которой стоит единица, а в знаменателе произведение степени корня на корень той же степени в подкоренном выражении, где находится неизвестное, уменьшенное на единицу, в степени. Математически это теорема записывается следующей формулой: ( n √x)’ = 1 / (n * n √ x n -1 ).
Эта формула имеет название первообразной. Она подходит для использования в выражениях любой кратности. В качестве примера можно рассмотреть взятие производной квадратного и кубического корня.
Так, для квадратного степенного уравнения справедливо выражение: (n√x)’ = 1 / 2 * √x. То есть производная квадратного корня х является дробью, делимое которой равняется единице, а делитель состоит из двойки, умножаемой на квадратный корень из неизвестного.
Аналогично можно сформулировать теорему и для нахождения производной кубического корня из x. Для этого случая решением задания на вычисление производной будет дробь, в числителе которой находится единица, а в знаменателе произведение тройки на корень кубический из икса в степени два. Формула для вычисления выглядит следующим образом: ( 3 √x)’ = 1 / (3 3 √x 2 ).
Можно обратить внимание, что, по сути, операция сводится к таким же действиям, как и при возведении дробей в степень, когда делитель равняется тому же показателю.
Иными словами, вычисление производной коренного выражения сводится к использованию формул для нахождения функции дроби.
Для доказательства формул используют следующие рассуждения. Производная переменной под квадратным корнем это то же, что и нахождение функции при возведении многочлена в степень одна вторая: (√x)’ = (х ½ )’. Поэтому можно воспользоваться формулой для расчёта производной неизвестного числа в степени эн. А значит, запись вида (х ½ )’ = ½ х -½ = 1 / (2√х) будет верной.
Формула производной третьей степени доказывается по такому же принципу. Используя правило дифференцирования и переписав кубический корень как тройную степень, можно записать: ( 3 √x)’ = (х 1/3 )’ = 1 / 3 * (x- 2/3 ) = 1 / 3 * ( 3 √х 2 ). Тут следует отметить, что степень -2/3 образовывается путём вычитания единицы из дроби, в числителе которой стоит два, а в знаменателе три.
Примеры заданий
При взятии производной функции f (x) = n √х m необходимо привести корень к степенному виду: f (x)’ = ( n √х m )’ = x m/n .
Так как из производных степени известно, что (x m )’ = m * x m-1 , то и алгоритм решения для нахождения ответа коренного выражения сводится к преобразованию исходного уравнения путём перехода к степени: f (x)’ = ( n √х m )’ = (x m/n )’ = m/n * x ( m/n) -1 = (m/n * n √х m-n ).
Этот подход позволяет не запоминать сложную формулу, что часто и используется на практике.
Для закрепления теории следует решить несколько типовых примеров:
- Определить, чему будет равна производная от корня квадратного, кратного разности три минус икс в квадрате. Запись условия задачи выглядит так: (√ 3 — x 2 )’. Мысленно можно обозначить выражение в скобках буквой S. Получается, что задача будет состоять в поиске производной (√ S)’. Используя знание формулы, можно утверждать, что (√ S)’ = S’ / (2 * √ S). Ту же самую формулу можно будет получить, воспользовавшись преобразованием задания в степенную функцию: (√ S)’ = (S ½ ) ‘ = (½) * S (½ — 1 ) * S’ = S -½ * S’ / 2 = S’ / (2 * √ S). Таким образом, (√ 3 — x 2 )’ = (3 — x 2 )’ / (2 * √ 3 — x 2 ) = – 2* x / 2 * √ 3 — x 2 = – x / √ 3 — x 2 .
- Рассчитать, чему будет равна производная функции 1 / (2 * 3√ x7). Исходное выражение нужно преобразовать так, чтобы неизвестная оказалась в числителе, а затем уже воспользоваться стандартным алгоритмом: (1 / 2 * 3√ x7)’ = 1 / 2 * (x-7/3)’. Теперь нужно взять производную от степенной функции. В итоге получится выражение: 1 / 2 * (-7 / 3) * x (-7/3) — 1 = -(7 / 6) * x-10/3 = (-7 / 6) * (1 / 3√ x10).
- Необходимо найти производную суммы многочленов: p (x) = 3 + 4 √ x+3. По теореме дифференцирования ответ будет равняться сумме производных каждого члена равенства: p (x)’ = (3)’ + (4 √ x+3)’. Первое слагаемое равняется нулю, поэтому останется только найти производную корня. Используя снова правило производной, выражение можно переписать как 4 * (√ x+3)’. На следующем этапе многочлен в скобках нужно представить в виде степенной функции: (√x + 3)’ = 1 / ((2√x + 2)) * (x + 2)’ = 2 * (x +2)’ / √x+2. Так как производная суммы, это то же самое, что сумма производных, то будет верным записать: (4 √ x+2)’ = (2 / √x+2) *(<(x)’ + (2)’>). Производная для двойки равна нулю, поэтому плюсовать её смысла нет. В итоге получится: p (x)’ = (3 + 4 √ x+3)’ = 2/ √x +2 = 2 / √x +2.
Расчёт на онлайн-калькуляторе
Попрактиковавшись в решении различных примеров, найти производную корня простых выражений будет довольно просто. Но если в заданиях будут стоять двойные корни или сама функция будет содержать большой многочлен, могут возникнуть проблемы. Связаны они обычно не с алгоритмом решения, а с трудностью вычисления и преобразования.
Такого рода задачи требуют повышенного внимания и скрупулёзности в расчётах. При этом поиску ответа понадобится уделить довольно много времени. Поэтому для помощи в нахождении производных коренных функций и существуют в интернете математические онлайн-калькуляторы.
Это сервисы, предлагающие бесплатно услуги по автоматическому расчёту производной любой сложности. Воспользоваться ими может каждый желающий, имеющий доступ к интернету. Для нахождения ответа не нужно обладать какими-то особыми знаниями. Всё что требуется от пользователя — ввести в предложенную форму условие и нажать кнопку «Вычислить». Весь процесс расчёта займёт одну-две секунды.
При этом большинство сервисов, кроме предоставления ответа на своих страницах, дает возможность ознакомиться с теоретическим материалом и предлагает рассмотреть решения заданий различной сложности. Поэтому вопроса, каким образом получился тот или иной ответ, возникнуть не должно.
Из различных онлайн-калькуляторов, считающих производные, можно выделить следующие:
- Webmath.
- Kontrolnaya-rabota
- Onlinemschool.
- Сalc.
- Nauchniestati.
Сайты, используемые для вычислений, характеризуются интуитивно понятным интерфейсом, не содержащим нагромождения ненужной информации. На их страницах нет рекламного и вирусного кода.
Примечательно и то, что, выполнив пару вычислений, пользователь научится самостоятельно вычислять производную. А всё дело в том, что особенностью таких ресурсов является возможность обучения. Кроме непосредственно ответа, программа-расчётчик выдаст пошаговое вычисление с комментариями.
Кроме учащихся, онлайн-калькуляторы будут полезны и инженерам. Даже незначительная ошибка, допущенная в расчёте, приведёт к неверному ответу. В то же время при автоматических вычислениях появление ошибки исключено.
Производная корня икс
Формула
Производная от корня равна единице, деленной на два таких же корня.
Если под корнем находится сложная функция $u=u(x)$, то производная от корня этой функции будет равна: единице, деленной на два таких же корня и умноженной на производную подкоренного выражения, то есть
Примеры вычисления производной корня
Задание. Найти производную функции $y(x)=2 sqrt$
Решение. Искомая производная равна:
Согласно правилам дифференцирования, вынесем константу 2 за знак производной, в итоге будем иметь:
Производная степенной функции (степени и корни)
Основные формулы
Производная от x в степени a равна a , умноженному на x в степени a минус один:
(1) .
Производная от корня степени n из x в степени m равна:
(2) .
Вывод формулы производной степенной функции
Случай x > 0
Рассмотрим степенную функцию от переменной x с показателем степени a :
(3) .
Здесь a является произвольным действительным числом. Сначала рассмотрим случай .
Чтобы найти производную функции (3), воспользуемся свойствами степенной функции и преобразуем ее к следующему виду:
.
Вывод формулы производной от корня степени n из x в степени m
Теперь рассмотрим функцию, являющуюся корнем следующего вида:
(4) .
Чтобы найти производную, преобразуем корень к степенной функции:
.
Сравнивая с формулой (3) мы видим, что
.
Тогда
.
На практике нет необходимости запоминать формулу (2). Гораздо удобнее сначала преобразовать корни к степенным функциям, а затем находить их производные, применяя формулу (1) (см. примеры в конце страницы).
Случай x = 0
Если , то степенная функция определена и при значении переменной x = 0 . Найдем производную функции (3) при x = 0 . Для этого воспользуемся определением производной:
.
Подставим x = 0 :
.
При этом под производной мы понимаем правосторонний предел, для которого .
Итак, мы нашли:
.
Отсюда видно, что при , .
При , .
При , .
Этот результат получается и по формуле (1):
(1) .
Поэтому формула (1) справедлива и при x = 0 .
Случай x .
При некоторых значениях постоянной a , она определена и при отрицательных значениях переменной x . А именно, пусть a будет рациональным числом. Тогда его можно представить в виде несократимой дроби:
,
где m и n – целые числа, не имеющие общего делителя.
Если n нечетное, то степенная функция определена и при отрицательных значениях переменной x . Например, при n = 3 и m = 1 мы имеем кубический корень из x :
.
Он определен и при отрицательных значениях переменной x .
Найдем производную степенной функции (3) при и при рациональных значениях постоянной a , для которых она определена. Для этого представим x в следующем виде:
.
Тогда ,
.
Находим производную, вынося постоянную за знак производной и применяя правило дифференцирования сложной функции:
.
Здесь . Но
.
Поскольку , то
.
Тогда
.
То есть формула (1) справедлива и при :
(1) .
Производные высших порядков
Теперь найдем производные высших порядков от степенной функции
(3) .
Производную первого порядка мы уже нашли:
.
Вынося постоянную a за знак производной, находим производную второго порядка:
.
Аналогичным образом находим производные третьего и четвертого порядков:
;
.
Отсюда видно, что производная произвольного n-го порядка имеет следующий вид:
.
Заметим, что если a является натуральным числом, , то n -я производная является постоянной:
.
Тогда все последующие производные равны нулю:
,
при .
Примеры вычисления производных
Пример
Найдите производную функции:
.
Преобразуем корни к степеням:
;
.
Тогда исходная функция приобретает вид:
.
Находим производные степеней:
;
.
Производная постоянной равна нулю:
.
Еще примеры
Найти производные следующих функций, зависящих от переменной x :
Решение > > > Решение > > > Решение > > > Решение > > > Решение > > >
Найти производную шестого порядка следующей функции:
.
Решение > > >
Автор: Олег Одинцов . Опубликовано: 09-04-2017
[spoiler title=”источники:”]
http://www.webmath.ru/poleznoe/formules_10_6.php
http://1cov-edu.ru/mat_analiz/proizvodnaya/funktsii/stepeni-korni/
[/spoiler]
Производная корня
Опубликовано 10.07.2021
Производная корня из x – это формула определения производной функции, выраженной корнем из x или производной корня из выражения относительно x. Все производные смотрите в таблице производных.
Формула производной квадратного корня
Давайте выведем с вами формулу для производной корня для простой функции, опираясь на формулу производной степени :
,
То есть, получается, что формула производной корня: , где
Производная корня любой степени
Аналогично определим производную корня любой степени. Например, пусть нам нужно определить производную кубического корня иначе находим производную корня третьей степени из x.
Производная кубического корня
Определим производную корня кубического: . Запишем этот корень как степень от . Получим .
Находим производную:
или
Примеры нахождения производной корня
Пример 1
Найдите производную функции: при
Решение: находим производную функции: , теперь подставим данное значение . Получим
Пример 2
Найдите производную функции . То есть нам нужно узнать, какова будет производная корня четвертой степени из x.
Решение: представим корень в виде степени. Получим . Теперь легко можно найти производную, зная формулу производной степени.
Таким образом, теперь легко определять производную корня любой степени, просто представляя сам корень в виде степени и зная формулу производной степени.
( 5 оценок, среднее 4.2 из 5 )
Производная: корень из х
Щебетун Виктор
Эксперт по предмету «Математика»
Задать вопрос автору статьи
Найдём производную от функции игрек, равной квадратному корню из икс $y=sqrt{x}$.
Для этого проведём стандартную процедуру вывода формулы производной.
Сначала дадим функции y, равной $f(x)$ в точке x, приращение $Δx$:
$f(x+ Δx)=sqrt{x+ Δx}$.
Теперь рассмотрим, чему равно приращение $y$:
$Δy=f(x+Δx)-f(x)=sqrt{x+ Δx}- sqrt{x}$;
Из этого следует, что:
$frac{Δy}{ Δx}=frac{sqrt{x+ Δx}- sqrt{x}}{Δx}$.
Домножим всё полученное выражение на $(sqrt{x+ Δx}+ sqrt{x})$, в результате чего в числителе получается разность квадратов, равная $(x+ Δx)-x= Δx$, а дробь преображается до следующей формы:
$frac{Δy}{Δx}=frac{1}{sqrt{x+ Δx}+ sqrt{x}}$.
Теперь возьмём предел полученного отношения при $Δx to 0$:
$lim_{ Δx to 0}= frac{Δy}{Δx}=lim_{ Δx to 0}frac{1}{sqrt{x+ Δx}+ sqrt{x}}=frac{1}{sqrt{x}+sqrt{x}}=frac{1}{2sqrt{x}}$.
Таким образом, мы осуществили доказательство того, что производная корня из $x$ равна $frac{1}{2sqrt{x}}$:
$(sqrt{x})’=frac{1}{2 cdot sqrt{x}}$.
Формула для производной от икса под знаком кубического корня выглядит подобным образом:
$(sqrt[3]{x})’=frac{1}{3 cdot sqrt[3]{x^2}}$.
Пример 1
Продифференцируйте следующие функции:
-
$y=sqrt{x} – 9x^2$
-
$y=sqrt{x}-5x^2$.
Решение:
-
$(sqrt{x} – 9x^2)’=frac{1}{2sqrt{x}-18x}$;
-
$(sqrt{x}-5x^2)’=frac{1}{2sqrt{x}-10x}$.
Находи статьи и создавай свой список литературы по ГОСТу
Поиск по теме
Дата последнего обновления статьи: 16.04.2023