Как найти производную функции 2×2 4x 3

Данный онлайн калькулятор вычисляет производную функции. Программа не только вычисляет ответ, она производит пошаговое решение. Выбирается порядок дифференцирования.
Как пользоваться калькулятором для нахождения производных онлайн:
1. Введите математическое выражение с переменной x, в выражении используйте стандартные операции: + сложение, –
вычитание, / деление, * умножение, ^ – возведение в степень, а также математические функции.
2. Выберите порядок дифференцирования (решения производных от первого до пятого порядка включительно).
3. Нажмите кнопку – Вычислить производную.
4. Через несколько секунд внизу отобразится пошаговое решение производной с подробными комментариями.

При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не имеющей решения в аналитическом виде.
Калькулятор поможет найти производную функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

left(a=operatorname{const} right)

  • x^{a}: x^a

модуль x: abs(x)

Производные

Для того, чтобы найти производную функции f(x)
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где j означает тоже, что и Выше.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.

Примеры
  • x*E^x, x;
  • x^3*E^x, {x,17};
  • x^3*y^2*Sin[x+y], x;
  • x^3*y^2*Sin[x+y], y,
  • x/(x+y^4), {x,6}.

Определение производной

Определение. Пусть функция ( y = f(x) ) определена в некотором интервале, содержащем внутри себя точку ( x_0 ).
Дадим аргументу приращение ( Delta x ) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
( Delta y ) (при переходе от точки ( x_0 ) к точке ( x_0 + Delta x ) ) и составим отношение
( frac{Delta y}{Delta x} ). Если существует предел этого отношения при ( Delta x rightarrow 0 ), то
указанный предел называют производной функции ( y=f(x) ) в точке ( x_0 ) и обозначают ( f'(x_0) ).

$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ ( y’ ).
Отметим, что ( y’ = f(x) ) – это новая функция, но, естественно, связанная с функцией ( y = f(x) ), определенная во всех точках (x), в которых
существует указанный выше предел. Эту функцию называют так: производная функции ( y = f(x) ).

Геометрический смысл производной состоит в следующем. Если к графику функции ( y = f(x) ) в точке с абсциссой ( x=a ) можно
провести касательную, непараллельную оси (y), то ( f(a) ) выражает угловой коэффициент касательной:
( k = f'(a) )

Поскольку ( k = tg(a) ), то верно равенство ( f'(a) = tg(a) ) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция ( y = f(x) ) имеет
производную в конкретной точке ( x ):
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x) $$

Это означает, что около точки (x) выполняется приближенное равенство ( frac{Delta y}{Delta x} approx f'(x) ), т.е.
( Delta y approx f'(x) cdot Delta x ).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке (x).
Например, для функции ( y = x^2 ) справедливо приближенное равенство ( Delta y approx 2x cdot Delta x ).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение ( x ), найти ( f(x) )
2. Дать аргументу ( x ) приращение ( Delta x ), перейти в новую точку ( x+ Delta x ), найти ( f(x+ Delta x) )
3. Найти приращение функции: ( Delta y = f(x + Delta x) – f(x) )
4. Составить отношение ( frac{Delta y}{Delta x} )
5. Вычислить $$ lim_{Delta x to 0} frac{Delta y}{Delta x} $$
Этот предел и есть производная функции в точке (x).

Если функция (y=f(x)) имеет производную в точке (x), то ее называют дифференцируемой в точке (x). Процедуру нахождения производной
функции (y=f(x)) называют дифференцированием функции (y=f(x)).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция (y=f(x)) дифференцируема в точке (x). Тогда к графику функции в точке ( M(x; ; f(x)) ) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен ( f'(x) ). Такой график не может «разрываться» в точке (M), т. е. функция
обязана быть непрерывной в точке (x).

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция (y=f(x)) дифференцируема в точке (x), то
выполняется приближенное равенство ( Delta y approx f'(x) cdot Delta x ). Если в этом равенстве ( Delta x ) устремить к
нулю, то и ( Delta y ) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция ( y=|x|) непрерывна везде, в частности в точке (x=0), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.

Еще один пример. Функция ( y=sqrt[3]{x} ) непрерывна на всей числовой прямой, в том числе в точке (x=0).
И касательная к графику функции существует в любой точке, в том числе в точке (x=0). Но в этой точке касательная совпадает с осью (y),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид (x=0). Углового коэффициента у такой прямой нет, значит, не существует и
( f'(0) )

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если (C) — постоянное число и ( f=f(x), ; g=g(x) ) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C’=0 $$

$$ x’=1 $$

$$ ( f+g)’=f’+g’ $$

$$ (fg)’=f’g + fg’ $$

$$ (Cf)’=Cf’ $$

$$ left(frac{f}{g} right) ‘ = frac{f’g-fg’}{g^2} $$

$$ left(frac{C}{g} right) ‘ = -frac{Cg’}{g^2} $$

Производная сложной функции:

$$ f’_x(g(x)) = f’_g cdot g’_x $$

Таблица производных некоторых функций

$$ left( frac{1}{x} right) ‘ = -frac{1}{x^2} $$

$$ ( sqrt{x} ) ‘ = frac{1}{2sqrt{x}} $$

$$ left( x^a right) ‘ = a x^{a-1} $$

$$ left( a^x right) ‘ = a^x cdot ln a $$

$$ left( e^x right) ‘ = e^x $$

$$ ( ln x )’ = frac{1}{x} $$

$$ ( log_a x )’ = frac{1}{xln a} $$

$$ ( sin x )’ = cos x $$

$$ ( cos x )’ = -sin x $$

$$ ( text{tg} x )’ = frac{1}{cos^2 x} $$

$$ ( text{ctg} x )’ = -frac{1}{sin^2 x} $$

$$ ( arcsin x )’ = frac{1}{sqrt{1-x^2}} $$

$$ ( arccos x )’ = frac{-1}{sqrt{1-x^2}} $$

$$ ( text{arctg} x )’ = frac{1}{1+x^2} $$

$$ ( text{arcctg} x )’ = frac{-1}{1+x^2} $$

Калькулятор для решения производных

Данный онлайн калькулятор вычисляет производную функции. Программа не просто даёт ответ, она приводит пошаговое
и подробное решение. Так же можно выбрать порядок дифференцирования с первого по девятый.

Как пользоваться калькулятором для нахождения производных онлайн:

  1. Введите математическое выражение с переменной x, в выражении используйте стандартные
    операции: + сложение, – вычитание, / деление, * умножение, ^ – возведение в степень, а также
    математические функции.
  2. Выберите порядок дифференцирования (от 1 до 9).
  3. Нажмите кнопку – Вычислить производную.
  4. Через несколько секунд внизу отобразится пошаговое решение производной с подробными комментариями.

При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не
имеющей решения в аналитическом виде.
Также внизу страницы вы можете прочитать полные правила ввода данных, ответы на часто задаваемые вопросы и оставить
свой комментарий.

Другие онлайн калькуляторы

  • Таблица
    производных
  • Теория про
    производные
  • Решение
    интегралов
  • Решение
    пределов

Вы поняли, как решать? Нет?

  • Правила
  • Комментарии
  • Ответы на вопросы

Последовательность ввода данных

  • вводите функцию, которую хотите продифференцировать. Вот ссылка на правила
    ввода функций;
  • выбираете порядок дифференцирования (от 1 до 9);
  • нажимаете кнопку – Вычислить производную;
  • смотрите решение, радуетесь, ставите лайки и рассказываете друзьям!

Что можно вводить

Простейшие математические операции: Сумма: + ; Вычитание: – ; Умножение: * ; Деление или дроби: / и
пробел.

Элементарные функции: x^n степень, sqrt(x) квадратный корень, log(a,x) логарифм, ln(x) натуральный
логарифм, exp() экспонента, sin(x) синус, cos(x) косинус, tg(x) тангенс и др.

Десятичные дроби можно вводить только через точку, то есть, пишем 0.7, а не 0,7 – полные правила
ввода функций.

Вопросов пока не поступало =))

Вопросы можете задавать в комментариях, мы обязательно на них ответим!

Калькулятор стоимости

Рассчитайте цену решения ваших задач

Ошибка

Ошибка

Закрыть

Калькулятор
стоимости

Решение контрольной

от 300 рублей
*

* Точная стоимость будет определена после загрузки задания для исполнителя

+Загрузить файл


Файлы doc, pdf, xls, jpg, png не более 5 МБ.

Ошибка

Ошибка

Онлайн калькулятор. Вычисление производных.

Онлайн-калькулятор позволяет решать математические выражения любой сложности с выводом подробного результата решения по шагам. Универсальный калькулятор дробей, упростить выражения, решить уравнения, пределы, интегралы, производные, действия с комплексными числами

Также универсальный калькулятор умеет вычислять производные любого порядка (дифференцирование).

Онлайн калькулятор производных



Перенос?

f”left(log left(frac{1-x^2}{1+x^2}right)right)

$$textbf{Вычисление производной 2-го порядка:} newline f”(x) = {{2xleft(-{{2x}over{x^2+1}}-{{2xleft(1-x^2right)}over{left(x^2+1right)^2}}right)}over{1-x^2}}+{{2xleft(x^2+1right)left(-{{2x}over{x^2+1}}-{{2xleft(1-x^2right)}over{left(x^2+1right)^2}}right)}over{left(1-x^2right)^2}}+{{left(x^2+1right)left(-{{2}over{x^2+1}}+{{8x^2}over{left(x^2+1right)^2}}-{{2left(1-x^2right)}over{left(x^2+1right)^2}}+{{8x^2left(1-x^2right)}over{left(x^2+1right)^3}}right)}over{1-x^2}} =newline -{{4left(3x^4+1right)}over{left(x-1right)^2left(x+1right)^2left(x^2+1right)^2}} =newline -{{12x^4+4}over{x^8-2x^4+1}}$$

Пояснения к калькулятору

  1. Для решения математического выражения необходимо набрать его в поле ввода с помощью предложенной виртуальной клавиатуры и нажать кнопку .
  2. Управлять курсором можно кликами в нужное местоположение в поле ввода или с помощью клавиш со стрелками и .
  3. – удалить в поле ввода символ слева от курсора.
  4. C – очистить поле ввода.
  5. При использовании скобок ( ) в выражении в целях упрощения может производится автоматическое закрытие, ранее открытых скобок.
  6. Для того чтобы ввести смешанное число или дробь необходимо нажать кнопку ½, ввести сначала значение числителя, затем нажать кнопку со стрелкой вправо и внести значение знаменателя дроби. Для ввода целой части смешанного числа необходимо установить курсор перед дробью с помощью клавиши и ввести число.
  7. Ввод числа в n-ой степени и квадратного корня прозводится кнопками ab и соответственно. Завершить ввод значения в степени или в корне можно клавишей .

Вычисление производных

Математический калькулятор может дифференцировать функции (нахождение производной) произвольного порядка в точке “x”. Ввод производной в поле калькулятора осуществляется вызовом групповой кнопки f(x) и далее:
f'(x) – производная первого порядка;
f”(x) – производная второго порядка;
f”'(x) – производная третьего порядка.
fn(x) – производная любого n-о порядка.


Производная по-шагам

Примеры производных

  • Производные от степенных функций
  • x^7/10
  • (x^2 - 1)/(x^a - 5)
  • Производные от сложных функций
  • sin(ln(x))
  • ln(sin(x))
  • Производные от показательных функций
  • e^(-x^2)
  • Производные от логарифмов
  • 1-log(x-5)
  • ln(a*x) / ln(x^3)
  • Производные от обратных тригонометрических функций
  • arcsin(1-x)
  • arctan(a*x + b)
  • Производная неявной функции
  • e^y/x = x*y + 1
  • Частная производная функции
  • x^2*sin(-y) + y/x
  • x*y*cos(z)

Подробнее про Производная функции.

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Добавить комментарий