Как найти производную функции онлайн с подробным

Определение производной

Определение. Пусть функция ( y = f(x) ) определена в некотором интервале, содержащем внутри себя точку ( x_0 ).
Дадим аргументу приращение ( Delta x ) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
( Delta y ) (при переходе от точки ( x_0 ) к точке ( x_0 + Delta x ) ) и составим отношение
( frac{Delta y}{Delta x} ). Если существует предел этого отношения при ( Delta x rightarrow 0 ), то
указанный предел называют производной функции ( y=f(x) ) в точке ( x_0 ) и обозначают ( f'(x_0) ).

$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ ( y’ ).
Отметим, что ( y’ = f(x) ) – это новая функция, но, естественно, связанная с функцией ( y = f(x) ), определенная во всех точках (x), в которых
существует указанный выше предел. Эту функцию называют так: производная функции ( y = f(x) ).

Геометрический смысл производной состоит в следующем. Если к графику функции ( y = f(x) ) в точке с абсциссой ( x=a ) можно
провести касательную, непараллельную оси (y), то ( f(a) ) выражает угловой коэффициент касательной:
( k = f'(a) )

Поскольку ( k = tg(a) ), то верно равенство ( f'(a) = tg(a) ) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция ( y = f(x) ) имеет
производную в конкретной точке ( x ):
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x) $$

Это означает, что около точки (x) выполняется приближенное равенство ( frac{Delta y}{Delta x} approx f'(x) ), т.е.
( Delta y approx f'(x) cdot Delta x ).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке (x).
Например, для функции ( y = x^2 ) справедливо приближенное равенство ( Delta y approx 2x cdot Delta x ).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение ( x ), найти ( f(x) )
2. Дать аргументу ( x ) приращение ( Delta x ), перейти в новую точку ( x+ Delta x ), найти ( f(x+ Delta x) )
3. Найти приращение функции: ( Delta y = f(x + Delta x) – f(x) )
4. Составить отношение ( frac{Delta y}{Delta x} )
5. Вычислить $$ lim_{Delta x to 0} frac{Delta y}{Delta x} $$
Этот предел и есть производная функции в точке (x).

Если функция (y=f(x)) имеет производную в точке (x), то ее называют дифференцируемой в точке (x). Процедуру нахождения производной
функции (y=f(x)) называют дифференцированием функции (y=f(x)).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция (y=f(x)) дифференцируема в точке (x). Тогда к графику функции в точке ( M(x; ; f(x)) ) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен ( f'(x) ). Такой график не может «разрываться» в точке (M), т. е. функция
обязана быть непрерывной в точке (x).

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция (y=f(x)) дифференцируема в точке (x), то
выполняется приближенное равенство ( Delta y approx f'(x) cdot Delta x ). Если в этом равенстве ( Delta x ) устремить к
нулю, то и ( Delta y ) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция ( y=|x|) непрерывна везде, в частности в точке (x=0), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.

Еще один пример. Функция ( y=sqrt[3]{x} ) непрерывна на всей числовой прямой, в том числе в точке (x=0).
И касательная к графику функции существует в любой точке, в том числе в точке (x=0). Но в этой точке касательная совпадает с осью (y),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид (x=0). Углового коэффициента у такой прямой нет, значит, не существует и
( f'(0) )

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если (C) — постоянное число и ( f=f(x), ; g=g(x) ) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C’=0 $$

$$ x’=1 $$

$$ ( f+g)’=f’+g’ $$

$$ (fg)’=f’g + fg’ $$

$$ (Cf)’=Cf’ $$

$$ left(frac{f}{g} right) ‘ = frac{f’g-fg’}{g^2} $$

$$ left(frac{C}{g} right) ‘ = -frac{Cg’}{g^2} $$

Производная сложной функции:

$$ f’_x(g(x)) = f’_g cdot g’_x $$

Таблица производных некоторых функций

$$ left( frac{1}{x} right) ‘ = -frac{1}{x^2} $$

$$ ( sqrt{x} ) ‘ = frac{1}{2sqrt{x}} $$

$$ left( x^a right) ‘ = a x^{a-1} $$

$$ left( a^x right) ‘ = a^x cdot ln a $$

$$ left( e^x right) ‘ = e^x $$

$$ ( ln x )’ = frac{1}{x} $$

$$ ( log_a x )’ = frac{1}{xln a} $$

$$ ( sin x )’ = cos x $$

$$ ( cos x )’ = -sin x $$

$$ ( text{tg} x )’ = frac{1}{cos^2 x} $$

$$ ( text{ctg} x )’ = -frac{1}{sin^2 x} $$

$$ ( arcsin x )’ = frac{1}{sqrt{1-x^2}} $$

$$ ( arccos x )’ = frac{-1}{sqrt{1-x^2}} $$

$$ ( text{arctg} x )’ = frac{1}{1+x^2} $$

$$ ( text{arcctg} x )’ = frac{-1}{1+x^2} $$

Производная функции

Производной функции y=f(x) в точке x0 называется конечный предел отношения приращения функции в этой точке к приращению аргумента при стремлении последнего к нулю (см. пример).

Если необходимо найти производные функции нескольких переменных z=f(x,y), то можно воспользоваться данным онлайн-калькулятором. Решение оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Правила ввода функции, заданной в явном виде

Примеры

x^2/(x+2)

cos2(2x+π)(cos(2*x+pi))^2

x+(x-1)^(2/3)

Правила ввода функции, заданной в неявном виде

Примеры

x^2/(1+y)

cos2(2x+y)(cos(2*x+y))^2

1+(x-y)^(2/3)

Если функция задана в виде y2-x=cos(y), то ее необходимо записать так: y^2-x-cos(y).

Правила ввода функции, заданной в параметрическом виде

  1. Все переменные выражаются через t

Примеры

t^2/(1+t)

cos2(t)cos(t)^2

1+(t-1)^(2/3)

Правила ввода функции, заданной в параметрическом виде

  1. Все переменные выражаются через t

Примеры

t^2/(1+t)

cos2(t)cos(t)^2

1+(t-1)^(2/3)

Как найти производную, исходяя из ее определения?

Правила нахождения производных

Пример 1. Найти производную функции y=cos4x.

Решение.

Внешней функцией здесь служит степенная функция: cos(x) возводится в четвертую степень. Дифференцируя эту степенную функцию по промежуточному аргументу cos(x), получим

(cos4x)′cos x = 4cos4-1x = 4cos3x

но промежуточный аргумент cos(x) – функция независимой переменной х; поэтому надо полученный результат умножить на производную от cos(x) по независимой переменной х . Таким образом, получим

y′x = (cos4x)′cos x·(cosx)′x = 4·cos3x·(-sin x) = -4·cos3x·sin x

При дифференцировании функций нет необходимости в таких подробных записях. Результат следует писать сразу, представляя последовательно в уме промежуточные аргументы.

Пример 2. Найти производную функции

.

.

В некоторых случаях, если, например, нужно найти производную функции y = (u(x))v(x), или функции, заданной в виде произведения большого числа сомножителей, используется так называемый способ логарифмического дифференцирования.

Пример 3. Найти производную функции

.

Решение.

Применим метод логарифмического дифференцирования. Рассмотрим функцию

Учитывая, что , будем иметь

Но , откуда

.

Пример 4. Найти производную функции y=xex

Решение.

;

.

Прикладное использование производной

Вычисление производной первого и второго порядка используется во многих прикладных задачах. Рассмотрим наиболее распространенные из них.

  1. Нахождение экстремумов функции одной переменной осуществляют приравниванием к нулю производной: f'(x)=0. Этот этап является основным для построения графика функции методом дифференциального исчисления.
  2. Значение производной в точке x0 позволяет находить уравнение касательной к графику функции.
  3. Отношение производных позволяет вычислять пределы по правилу Лопиталя.
  4. В математической статистике плотность распределения f(x) определяют как производную от функции распределения F(x).
  5. При отыскании частного решения линейного дифференциального уравнения требуется вычислять производную в точке.
  6. В методе Ньютона с помощью производной отделяют корни нелинейных уравнений.

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Производная по-шагам

Примеры производных

  • Производные от степенных функций
  • x^7/10
  • (x^2 - 1)/(x^a - 5)
  • Производные от сложных функций
  • sin(ln(x))
  • ln(sin(x))
  • Производные от показательных функций
  • e^(-x^2)
  • Производные от логарифмов
  • 1-log(x-5)
  • ln(a*x) / ln(x^3)
  • Производные от обратных тригонометрических функций
  • arcsin(1-x)
  • arctan(a*x + b)
  • Производная неявной функции
  • e^y/x = x*y + 1
  • Частная производная функции
  • x^2*sin(-y) + y/x
  • x*y*cos(z)

Подробнее про Производная функции.

Указанные выше примеры содержат также:

  • модуль или абсолютное значение: absolute(x) или |x|
  • квадратные корни sqrt(x),
    кубические корни cbrt(x)
  • тригонометрические функции:
    синус sin(x), косинус cos(x), тангенс tan(x), котангенс ctan(x)
  • показательные функции и экспоненты exp(x)
  • обратные тригонометрические функции:
    арксинус asin(x), арккосинус acos(x), арктангенс atan(x),
    арккотангенс acot(x)
  • натуральные логарифмы ln(x),
    десятичные логарифмы log(x)
  • гиперболические функции:
    гиперболический синус sh(x), гиперболический косинус ch(x),
    гиперболический тангенс и котангенс tanh(x), ctanh(x)
  • обратные гиперболические функции:
    гиперболический арксинус asinh(x), гиперболический арккосинус acosh(x),
    гиперболический арктангенс atanh(x), гиперболический арккотангенс acoth(x)
  • другие тригонометрические и гиперболические функции:
    секанс sec(x), косеканс csc(x), арксеканс asec(x),
    арккосеканс acsc(x), гиперболический секанс sech(x),
    гиперболический косеканс csch(x), гиперболический арксеканс asech(x),
    гиперболический арккосеканс acsch(x)
  • функции округления:
    в меньшую сторону floor(x), в большую сторону ceiling(x)
  • знак числа:
    sign(x)
  • для теории вероятности:
    функция ошибок erf(x) (интеграл вероятности),
    функция Лапласа laplace(x)
  • Факториал от x:
    x! или factorial(x)
  • Гамма-функция gamma(x)
  • Функция Ламберта LambertW(x)
  • Тригонометрические интегралы: Si(x),
    Ci(x),
    Shi(x),
    Chi(x)

Правила ввода

Можно делать следующие операции

2*x
– умножение
3/x
– деление
x^2
– возведение в квадрат
x^3
– возведение в куб
x^5
– возведение в степень
x + 7
– сложение
x – 6
– вычитание
Действительные числа
вводить в виде 7.5, не 7,5

Постоянные

pi
– число Пи
e
– основание натурального логарифма
i
– комплексное число
oo
– символ бесконечности

Данный онлайн калькулятор вычисляет производную функции. Программа не только вычисляет ответ, она производит пошаговое решение. Выбирается порядок дифференцирования.
Как пользоваться калькулятором для нахождения производных онлайн:
1. Введите математическое выражение с переменной x, в выражении используйте стандартные операции: + сложение, –
вычитание, / деление, * умножение, ^ – возведение в степень, а также математические функции.
2. Выберите порядок дифференцирования (решения производных от первого до пятого порядка включительно).
3. Нажмите кнопку – Вычислить производную.
4. Через несколько секунд внизу отобразится пошаговое решение производной с подробными комментариями.

При помощи нашего калькулятора вы можете найти производную онлайн как от элементарной функции, так и от сложной, не имеющей решения в аналитическом виде.
Калькулятор поможет найти производную функции онлайн.
Для получения полного хода решения нажимаем в ответе Step-by-step.

Основные функции

left(a=operatorname{const} right)

  • x^{a}: x^a

модуль x: abs(x)

Производные

Для того, чтобы найти производную функции f(x)
нужно написать в строке: f[x], x. Если Вам требуется
найти производную n-го порядка, то следует написать: f[x], {x, n}. В
том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
— интересующая Вас переменная. Если нужно найти частную производную по
некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
n}, где j означает тоже, что и Выше.

Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
производной при нажатии на «Show Steps» в правом верхнем углу
выдаваемого ей ответа.

Примеры
  • x*E^x, x;
  • x^3*E^x, {x,17};
  • x^3*y^2*Sin[x+y], x;
  • x^3*y^2*Sin[x+y], y,
  • x/(x+y^4), {x,6}.

Решение производных

Что такое производная и как её решить

В науке под производной имеют в виду скорость изменения чего-либо, например скорость движения материальной точки. Производная функции — это предел отношения приращения функции к приращению аргумента при стремлении последнего к 0. Чтобы найти производную функции, необходимо ее продифференцировать.

Данный калькулятор решает задачи по вычислению производной как от элементарной, так и от сложной функции. Для решения задачи: введите функцию с переменной х, для которой нужно найти производную и за пару секунд получите результат.

Пример вычисления производной

Предположим перед нами стоит задача вычисления производной, как приведено на нижеследующей картинке:

Решение производных

Комбинация клавиш, которые нам необходимо использовать для вычислений на онлайн-калькуляторе выглядит следующим образом:

Добавить комментарий