$begingroup$
How I can calculate the derivative of $$f(x) = left{ begin{gathered}
{x^2}quad,quad{text{if}}quad x in mathbb{Q} \
{x^3}quad,quad{text{if}}quad x notin mathbb{Q} \
end{gathered} right.$$ at some $xin mathbb{R}$?
asked Aug 11, 2011 at 5:37
$endgroup$
2
$begingroup$
HINT:
The derivative exists if $lim _{y to x} dfrac{f(y) – f(x)}{y – x}$ exists. Of course, a limit must be the same along any Cauchy sequence. So at what points does the derivative even exist? (it does exist somewhere)
answered Aug 11, 2011 at 5:45
davidlowryduda♦davidlowryduda
88.9k11 gold badges160 silver badges305 bronze badges
$endgroup$
3
$begingroup$
The first helpful information to look for is if your function is continuous at any $x$. After all, a function does not have a well-defined derivative where it isn’t continuous.
Then, analyze those points where it is continuous. Does it have a derivative there? A hint is that there is always a rational point in between two real numbers (that aren’t equal) and that there’s always an irrational point in between two real numbers (again, nonequal).
answered Aug 11, 2011 at 5:47
JakeRJakeR
9961 gold badge7 silver badges12 bronze badges
$endgroup$
1
$begingroup$
What makes you think it has a derivative? Doesn’t a function have to be continuous to be differentiable?
answered Aug 11, 2011 at 5:46
Gerry MyersonGerry Myerson
173k12 gold badges203 silver badges367 bronze badges
$endgroup$
3
You must log in to answer this question.
Not the answer you’re looking for? Browse other questions tagged
.
Not the answer you’re looking for? Browse other questions tagged
.
Чтобы найти производную, надо выражение под знаком штриха разобрать на составляющие простые функции и определить, какими действиями (произведение, сумма, частное) связаны эти функции. Далее производные элементарных функций находим в таблице производных, а формулы производных произведения, суммы и частного – в правилах дифференцирования.
Содержание:
Производная функции – это скорость изменения функции в данной точке, производная определяется как предел отношения приращения функции к приращению её аргумента при стремлении приращения аргумента к нулю, если этот предел существует, производную функцию, имеющую конечную производную {в некоторой точке}, называют дифференцируемой {в данной точке}.
Начнём с изучения основ происхождения производной.
До настоящего времени, используя алгебраические правила, изученные нами, мы могли получать статистические данные, соответствующие реальной жизненной ситуации. Однако, во многих случаях, в производстве, медицине, а также в различных областях науки, возникает необходимость получить более динамическую информацию, другими словами, возникает надобность проследить как изменения одной переменной влияет на скорость изменения другой переменной. Например, рекламный менеджер хочет знать, как изменяется прибыль при изменении затрат, врач – динамику изменения структуры печени при увеличении дозы лекарственного препарата и т. д. Рассмотрим следующий пример определения скорости изменения.
Средняя скорость:
На рисунке показаны графики зависимости расстояния от времен при равномерном движении автомобиля по магистральной дороге и неравномерном движении по городу. При равномерном движении, за равные промежутки времени, длина пройденного пути одинакова и на графике движения угловой коэффициент прямой выражает скорость. При неравномерном движении длина пути на одинаковых временных участках может и не быть одинаковой. В этом случае используется значение средней скорости.
Отношение пройденного телом пути к промежутку времени, за которое
этот путь пройден, называется средней скоростью.
Пример 1.
Частица движется прямолинейно но закону Найдите среднюю скорость на промежутке времени: а) [1; 3] , b) [1; 2] ( здесь в метрах, – в секундах).
Решение: а) Средняя скорость на промежутке времени
b) Средняя скорость на промежутке времени
Средняя скорость изменения:
Для произвольной функции на промежутке средняя скорость равна
Это отношение равно углу наклона секущей графика функции, проходящей через точки
Мгновенная скорость:
Исследуем понятие мгновенной скорости на следующем примере.
Пример 2.
В таблице представлены результаты вычислений средней скорости частицы, движущейся прямолинейно по закону для некоторых малых значений за промежуток времени
По таблице можно установить, что при мгновенная скорость приблизительно равна 2 м/сек. Вообще, средняя скорость на интервале времени будет:
Устремляя At к нулю путем сокращения временного интервала найдем мгновенную скорость в предельном состоянии в момент
Таким образом, при прямолинейном движении по закону мгновенная скорость в любой момент времени будет:
По аналогичному правилу, для любой функции мгновенную скорость изменения при находят по формуле:
или
Мгновенная скорость изменения:
Предел выражает мгновенное изменение скорости функции в точке
Теперь пронаблюдаем, как при изменении положения секущей на кривой, средняя скорость превращается в мгновенную скорость. На графике точки показывают изменение положения точки в направлении точки Здесь, уменьшая значения путем приближения к 0, точка меняя положение вдоль кривой, приближается к точке и, наконец, совпадает с ней.
При приближении точки остающейся на кривой, к точке предельное положение секущей (если оно существует), называется касательной к кривой в точке При предел углового коэффициента секущей, т. е. мгновенное изменение скорости функции в точке равен угловому коэффициенту касательной к графику функции в точке
Пример 3.
Найдем скорость свободного падения в момент сек.
Решение: Зависимость между пройденным путем и временем при свободном падении имеет вид: . Здесь ускорение свободного падения и Тогда можно написать Через 2 секунды после начала движения в интервале средняя скорость будет
В момент скорость равна значению предела
Пример 4.
Дана функция Найдите: а) среднюю скорость изменения при b) мгновенную скорость при
Решение: а) При средняя скорость будет:
b) Найдем мгновенную скорость при
Что такое производная функции
Необходимость вычисления мгновенной скорости изменения в расчетах Исаака Ньютона( 1642-1727) и Готфрида Лейбница (1646-1716), привело к формированию основного и мощного правила – дифференциального исчисления. Как результат, появилось понятие “производная”.
Задачи на нахождение мгновенной скорости и углового коэффициента касательной имеют одинаковую суть и приводят к нахождению мгновенного изменения определенной функции. Теперь обобщим эти понятия.
Производная функции подробно с объяснением:
Пусть функция определена на интервале Отметим произвольную точку и дадим аргументу такое приращение что
Тогда функция, соответственно, получит приращение
Определение. Если существует конечный предел отношения приращения функции к приращению аргумента при стремлении приращения аргумента к нулю, то этот предел называется производной функции в точке
Производную функции также можно записать в виде (запись по Лейбницу).
Если функция имеет производную в точке то в этом случае говорят, что функция дифференцируема в данной точке. Если функция дифференцируема в каждой точке интервала то говорят, что она дифференцируема на этом интервале.
Нахождение производной функции называется дифференцированием. Для нахождения производной, согласно определению, необходимо выполнить следующие шаги:
- Находят
- Упрощается разность
- Записывается и упрощается выражение
- Находится предел отношения при
Пример 1.
Найдите производную функции
Решение:
В общем случае Здесь при имеем:
Геометрический смысл производной. Уравнение касательной
Если функция дифференцируема в точке то в точке к графику функции можно провести касательную.
Значение производной функции в точке с абсциссой равно угловому коэффициенту касательной к графику в точке с абциссой
Уравнение прямой, проходящей через точку угловой коэффициент которой равен имеет вид Учитывая, что абсцисса равна ордината равна угловой коэффициент равен уравнение касательной к графику функции в точке с абсциссой имеет вид:
Пример 2.
Для функции найдите:
a) производную;
b) значения и
c) уравнение касательной в точке с абсциссой
Решение: а) По определению производная в точке находится так:
Для функции производной является Как видно, производной квадратичной функции является линейная функция:
b) Так как то
с) Уравнение касательной запишем при помощи формулы уравнения прямой Так как то угловой коэффициент касательной с в точке абсциссой равен Ордината точки на графике с абсциссой равна Запишем данные значения в формулу. Получим уравнение касательной в точке с абсциссой
Согласно выполненным вычислениям можно сказать, что:
Пример 3.
Для функции найдите:
a) производную;
b) и
Решение:
Значит, производная функции является квадратичной функцией:
b) Так как то
Выражение называется дифференциалом функции и обозначается Как видно, дифференциал функции зависит от Так как го для функции получаем, что
Поэтому дифференциал функции обозначается как Дифференциал является главной (основной) частью приращения функции
Точки, в которых функция не имеет производной
Если функция дифференцируема в точке то при имеем т. е в этой точке функция непрерывна. Однако, обратное утверждение, вообще, не верно. Непрерывная функция в некоторых точках может не иметь производную.
Графически производная определяется как угловой коэффициент касательной. Кривая, которая имеет касательные в каждой точке, называется гладкой кривой. На графике могут быть точки, в которых, или невозможно провести касательную, или касательная вертикальна. В таких точках производная не существует. Ниже представлены примеры точек, не имеющих производных.
1) Для функций, график которых имеет вид “V” (функция некоторые кусочно – заданные функции и т. д. ), в точках “преломления” является касательной, но не имеет производной при соответствующих значениях аргумента.
2) Если касательная вертикальна (совпадает или параллельна с осью в точке пересечения касательной с осью абсцисс производная не существует.
Например, касательная к графику функции с абсциссой в точке является вертикальной прямой, и в этой точке функция не имеет производной.
3) В точках разрыва функция не имеет производную.
Пример №1
На рисунке дан график функции При каких значениях аргумента, отмеченных на оси абсцисс, функция не имеет производной?
Решение: функция не имеет производную в точках:
* – точки разрыва функции;
* и – “точки преломления ;
* – касательная вертикальная прямая.
Правила дифференцирования
Используя определение производной, мы нашли производные некоторых степенных функций, например, и
Для нахождения производных используют следующие правила.
Докажем эти правила, используя определение производной.
1. Если то т. е. производная постоянной равна нулю.
Доказательство:
Это видно и но графику постоянной функции. В каждой точке графика угловой коэффициент равен нулю.
2. Если и то Для функции для значений запишем соответствующие биномиальные разложения.
Как видно, в каждом разложении первый член а второй член У каждого члена из желтого треугольника присутствует множитель В упрощенной форме разложение бинома перепишем в виде:
Запишем и упростим отношение, которое показывает изменение мгновенной скорости функции.
Предел данного выражения при условии является производной функции
Значит, для любого натурального числа
В частном случае, при получаем
В общем случае, для функции с любой действительной степенью верно равенство для всех для которых правая часть имеет смысл.
В частном случае:
Пример №2
Найдите производную функций:
Решение:
3. Если дифференцируема, то функция где постоянная,тоже дифференцируема и
т. е. постоянную можно вынести за знак производной.
4. Если функции и дифференцируемы, то их сумма (разность) также дифференцируема и
Доказательство: докажем, что формула верна для
Пример №3
Найдите производную функции
Решение:
Пример №4
Найдите производную
Решение:
Пример №5
а) В каких точках касательные к графику функции параллельны оси абсцисс?
b) Определите координаты точки, в которой угловой коэффициент касательной к графику равен 9.
Решение: а) Если касательная параллельна оси абсцисс, то угловой коэффициент равен нулю.
Точки, в которых угловой коэффициент равен нулю, являются точками, в которых производная равна 0, т. е. Найдем производную функции
Определим точки, в которых производная равна нулю.
Находим значения функции в этих точках:
На графике функции, построенном при помощи графкалькулягора, видно, что в точках (0;0) и (4;32) касательная к графику параллельна оси абсцисс.
b) Найдем точки, в которых угловой коэффициент равен 9:
По графику также видно, что им соответствуют точки (1; 5) и (3; 27).
Более подробное объяснение правил дифференцирования производных:
Пусть f(х) и – функции, имеющие производные. Тогда справедливы следующие правила дифференцирования:
1. Производная суммы равна сумме производных:
(1)
2. Производная разности равна разности производных:
Пример №6
Найдите производную функции:
Решение:
Воспользуемся правилами 1, 2 и 1,3 – пунктами таблицы производных
(см. стр. 27):
Ответ:
3. Постоянный множитель можно выносить за знак производной: , c-постоянная (3)
Пример №7
Найдите производную функции:
Решение:
Воспользуемся правилами 1, 2, 3 и 1, 3 – пунктами таблицы производных:
Ответ:
4. Производная произведения:
(4)
Пример №8
Найдите производную функции:
Решение:
Воспользуемся правилами 1, 3, 4 и 1,3- пунктами таблицы производных:
Ответ:
5. Производная отношения:
здесь (5)
Пример №9
Найдите производную функции:
Решение:
Воспользуемся правилами 1, 3, 5 и 1,3- пунктами таблицы производных:
0твет:
Пример №10
Найдите:
Решение:
1) Для нахождения разностного отношения воспользуемся формулой разности синусов:
Можно показать, что при
Значит,
2)Для нахождения разностного отношения воспользуемся формулой разности косинусов:
Можно доказать, что при
Значит,
3)Воспользовавшись правилом 5 дифференцирования, а также результатами, полученными выше, найдём производную:
Ответ:
Производная произведения
Для нахождения производной функции в виде можно записать функцию в виде многочлена и применить известные нам правила дифференцирования. Однако для функций, заданных в виде произведения, существует более эффективное правило нахождения производной.
Если функции и дифференцируемы, то их произведение также дифференцируемо и
Доказательство: Пусть
Прибавив и отняв в числителе дроби член для членов и дробь можно записать в виде суммы двух дробей.
Пример №11
Найдите производную функции
Решение:
каждый множитель записывается как одна функция
для каждой функции находится производная
применяется правило дифференцирования произведения
принимаются во внимание соответствующие выражения
упрощается
Решение можно проверить, предварительно упростив выражение функции:
Производная частного
Если функции и дифференцируемы и то функция дифференцируема и имеет место равенство:
Доказательство:
В частном случае,
Пример №12
Найдите производную функции
Решение: числитель и знаменатель записываются как отдельные функции
находится производная каждой функции
применяется правило дифференцирования частного
учитываются соответствующие выражения упрощается
Производная сложной функции
Во многих случаях аргумент заданной функции зависит от другой переменной.
Исследование
1) Для функции при задайте сложную функцию и представьте ее в виде многочлена.
2) Найдите производную этой функции и запишите ее в виде
3) Зная, что проверьте справедливость равенства
Цепное правило нахождения производной сложной функции:
Пусть, на определенном интервале задана сложная функция и функция дифференцируема в точке а функция дифференцируема в точке Тогда сложная функция также дифференцируема в точке и для ее производной справедлива формула
На самом деле, так как функция дифференцируема в точке то при получим, что
учитывается, что
Таким образом
Учитывая, что последнее равенство можно записать при помощи записи Лейбница в виде
В частном случае, если то
При получим:
Пример №13
Найдите производную функции
Решение: обозначим и Тогда заданная функция является композицией этих функций, т. е. сложной функцией и
Пример №14
Найдите производную функции
Решение: обозначим тогда и
Так как то получим
Пример №15
Найдите производную функции
Решение: как видно, здесь надо применить как правило дифференцирования сложной функции, так и правило дифференцирования произведения
Пример №16
Прибыль от вклада, вложенного в банк под сложный процент на 10 лет с процентной ставкой вычисляется ежемесячно. Сумму вклада через 10 лет можно рассчитать по формуле:
a) Запишите функцию которая поможет определить увеличении суммы вклада в зависимости от процента.
b) Найдите прибыль при или
Решение:
a)
правило дифференцирования сложной функции
упрощаем
b) прибыль (ежемесячная) через 10 лег при
манат прибыль (ежемесячная ) через 10 лет при
манат
Решение задач при помощи производной
При решении ряда экономических задач используют термин “маржинал”, который отражает скорость изменения экономических показателей. При этом приняты следующие обозначения:
Маржинальные затраты на производство – изменение затрат на производство продукции в заданный момент. Другими словами, это дополнительные затраты на производство (выпуск) каждой дополнительной единицы продукции. Обозначим через затраты на производство товара в количестве единиц, тогда для единицы затраты будут Разность показывает себестоимость го товара. Эта разность показывает прирост затрат и называется маржинальными затратами на производство.
Объем маржинальных затрат равен угловому коэффициенту касательной к графику в точке другими словами, производной функции в точке Т .е. значение производной функции выражает изменение себестоимости го товара. Маржинальные затраты используется для приблизительного определения себестоимости.
Маржинальная выручка. изменение выручки в заданный момент в зависимости от количества проданного товара. Другими словами, показывает выручку от продажи каждой дополнительно произведенной (выпущенной) единицы продукции.
Маржинальная прибыль. изменение (скорость) полученной прибыли в заданный момент в зависимости от количества проданного товара. Другими словами, прибыль полученную от каждой дополнительно произведенной (выпущенной) единицы продукции.
Пример №17
Фирма по производству радиаторов может смоделировать затраты на производство радиаторов функцией а выручку, полученную при продаже радиаторов в количестве штук функцией
а) Чему равна себестоимость каждого следующего радиатора, произведенного после 10? b) Найдите прибыль, полученную от продажи каждого следующего радиатора после 10 штук проданных.
Решение:
– функция, моделирующая затраты. Производная функции дает возможность найти, приблизительно, в любой момент времени (в зависимости от количества произведенной продукции), затраты на производство радиаторов.
a)
Т. е. после производства 10 радиаторов, себестоимость каждого следующего радиатора равна 195 ман.
b) Производная функции позволяет в любой момент (в зависимости от количества) найти выручку от продажи.
Производная второго порядка
Пусть для функции на заданном промежутке существует производная Если функция является дифференцируемой функцией, то ее производная для функции называется производной второго порядка и обозначается как
Известно, что производная показывает мгновенное изменение. Мгновенное изменение пройденного пути в зависимости от времени является скоростью. Отсюда становится ясным физический смысл производной. При прямолинейном движении по закону мгновенная скорость равна производной функции
Скорость также изменяется в зависимости от времени. Изменение скорости выражается новой величиной, называемой ускорением. Вообще, находя производную функции зависимости пройденного пути от времени, находят функцию скорости. Находя производную от функции скорости получаем ускорение. Т. е. получая два раза подряд производную от функции пройденного пути можно найти ускорение:
Из физики известно, что и скорость, и ускорение являются векторными величинами. Если скорость и ускорение имеют одинаковые знаки, то движение ускоренное, если знаки разные, то движение замедленное. Производная второго порядка используется для решения ряда экономических задач, в том числе задач, моделирующих реальные жизненные ситуации. Умение приблизительно определить является ли скорость изменения положительной или отрицательной имеет важное практическое значение.
Пример №18
Найдите производную второго порядка
а) b)
Решение:
a) находим производную первого порядка
находим производную второго порядка
b)
находим производную первого порядка, используя правило дифференцирования сложной функции
находим производную второго порядка
Пример №19
Для функции пройденного пути зависящей от времени время в сек., расстояние в м, исследуйте связь между функциями расстояния, скорости и ускорения.
Решение:
Из графика видно, что угловой коэффициент касательной функции в точках и равен нулю. Т. е. функция производной в соответствующих точках обнуляется.
В интервалах (0; 2) и (6; 8) угловой коэффициент касательной к графику функции положителен и функция также положительна (расположена выше оси ). В интервале (2;6) угловой коэффициент касательной отрицателен и функция также отрицательна (расположена ниже оси
Из графика функции видно, что в угловой коэффициент касательной равен нулю. Эта точка является точкой пересечения графика функции с осью абсцисс.
На интервале [0; 4) угловой коэффициент касательной к графику функции отрицателен, а на интервале (4; 8) угловой коэффициент положителен и функция на интервале [0; 4) принимает отрицательные значения; а на интервале (4; 8) – положительные значения.
Производная показательной функции
Мы уже знакомы со многими задачами реальных жизненных ситуаций, которые можно смоделировать экспоненциальным возрастанием или убыванием. Например, рост населения, увеличение денежного вклада на счету, радиоактивный распад, рост числа бактерий и т. д. В этих ситуациях важно уметь определять скорость прироста в любой момент. Эту скорость можно найти при помощи производной.
Показательная функция дифференцируема в каждой точке числовой оси
1. Производная функции
по определению производной множитель выносим за скобку
множитель не зависит от значит его можно вынести за знак предела.
учитывая, что
2. Производная сложной функции
Если функция дифференцируема, то
В частном случае,
3. Производная функции
по основному свойству логарифма
производная сложной функции
по основному свойству логарифма
4. Производная сложной функции
Если функция дифференцируема, то
Пример №20
Найдите производную функции
Решение:
Пример №21
Найдите производную функции
Решение:
Для функции производная имеет вид Из этого следует, что угловой коэффициент касательной к графику функции в 3 раза больше значения функции в точке с абсциссой
Это показывает, что при экспоненциальном изменении скорость изменения роста пропорциональна величине изменения.
Пример №22
Увеличение денежной суммы при помощи сложного процента.
Пусть в банк вложена сумма в размере под сложный процент при процентной ставке 9% в год.
Количество денег в год можно найти по формуле
a) Какова сумма вклада в конце 3-го года, если первоначально вложили 1000 манат?
b) Какова сумма прироста за 4-ый год, если первоначально вложили 1000 манат?
Решение:
a) При найдем значение
b) При значение производной функции соответствует приросту за 4-ый год. Этот прирост равен При найдем
Производная логарифмической функции
Функция дифференцируема на интервале и
выполним эквивалентную замену
получим производную
производная сложной функции
выполним замену
то есть
Производную функции можно представить геометрически. Проведите касательную в какой-либо точке, начиная слева. На эту касательную поместите линейку и смоделируйте следующие касательные, двигаясь вправо. Каждая следующая касательная изменяется в горизонтальном направлении и угловой коэффициент стремится к нулю.
Если и дифференцируема, то:
В частном случае,
Пример №23
Найдите производную функции: а) b)
Решение:
а)
b)
Производная функции перейдем к основанию получим производную
применим правила дифференцирования
Если и дифференцируема, то:
Пример №24
Найдите производную функции: а) b)
Решение: а)
b)
Исследование. Производная функции
1. В тетради изобразите график функции Отметьте угловой коэффициент касательной к графику в указанных точках.
2. Изобразите новую систему координат и отметьте точки, соответствующие указанным угловым коэффициентам.
3. Соедините полученные точки. Учитывая, что угловой коэффициент равен производной функции в данных точках, сделайте соответствующие выводы по поводу производной данной функции.
4. Такие же действия выполните для функции и сделайте соответствующие выводы.
Производные тригонометрических функций
Тригонометрические функции дифференцируемы в любой точке области определении.
Производная функции
по определению производной
тригонометрические тождества
вынесение общего множителя за скобку
свойство дроби
так как и не зависят от
учитывая
Производная сложной функции
если дифференцируемая функция, то
В частном случае,
Пример №25
Найдите производную функции
Решение: здесь
Производная функции
Найдем производную функции используя тождество
Производная сложной функции
если дифференцируемая функция, то
В частном случае:
Пример №26
Найдите производную функции
Решение: здесь
Производная функции
Найдем производную функции используя тождество
Производная сложной функции
если дифференцируемая функция, то
В частном случае:
Аналогично можно показать, что
В частном случае:
Пример №27
Найдите производную функции
Решение:
= 3cos2x(2x)’+ 4sin3x(3x)’ = 6cos2x + 12sin3x
Пример №28
Найдите производную функции
Решение:
Подробно о производной функции в высшей математике
Пример №29
Р е ш е н и е
По формуле (6.2)
Таким образом, Аналогично
Пример №30
Р е ш е н и е
Таким образом, Аналогично
Определение 6.2. Функция y=f(x) называется дифференцируемой в точке , если ее приращение представляется в виде (6.3)
где А – постоянное число, не зависящее от ∆x; o (∆x) – бесконечно малая функция более высокого порядка малости, чем ∆x, при ∆x→o.
Определение 6.3. Пусть функция y=f(x) дифференцируема в точке .
Дифференциалом функции y=f(x) в точке будем называть линейную относительно ∆x функцию вида
Для функции Поэтому формулу (6.6) можно переписать в виде
Теорема 6.2. Если функция y=f(x) была дифференцируема в точке ,то она непрерывна в этой точке.
Доказательство
Рассмотрим цепочку эквивалентных утверждений:
что и требовалось доказать.
Теорема 6.3. Пусть функции– дифференцируемы,
Тогда:
Доказательство
Докажем, например, формулу (6.9).
что и требовалось доказать.
Из формул (6.8)–(6.10), с учетом (6.7), получим
Пример №31
Р е ш е н и е
Аналогично
Теорема 6.4. Пусть функции дифференцируемы. Тогда и сложная функция дифференцируема и (6.11)
Доказательство
что и требовалось доказать.
П р и м е р 6.4
Найти производную
Р е ш е н и е
Данная функция представляется как композиция функций
Тогда по формуле (6.11)
Найдем дифференциал функции По формуле (6.7)
(6.12)
С другой стороны, с учетом формулы (6.11)
Формулы (6.12) и (6.13) показывают инвариантность (неизменяемость)
формы дифференциала. В формуле (6.12) , в формуле (6.13) d u –
дифференциал функции . Например, для функции
Пример №32
Найти производную функции ,
Р е ш е н и е
Таким образом (6.14)
Пример №33
Р е ш е н и е
По формуле (6.14)
Пример №34
Найти производную функции
Р е ш е н и е
Таким образом, в частности:
Пример №35
Р е ш е н и е
По формуле (6.9)
Определение 6.4. Пусть функция y=f(x) определена на множестве Х со значениями во множестве Y и такова, что если рис. 6.1. Пусть – множество значений функции f . Для такой функции можно определить обратную функцию , определенную на множестве f(X) со значениями во множестве Х по правилу
Если y=f(x) строго монотонна на интервале (a, b), тo f(x) удовлетворяет условиям определения 6.4 и для нее существует обратная , причем если f(x) непрерывна, то также непрерывна; если f(x) дифференцируема и
то также дифференцируема в точке
Пример №36
Для функции , обратная, и тогда по формуле (6.16)
Пример №37
Для функции функция обратная, и тогда по формуле (6.16)
Таким образом, Аналогично
Сводка формул
Таблица производных
Более подробная таблица производных:
Определение 6.5. Пусть функция y=f(x) непрерывна в точке итогда f(x ) имеет в точке бесконечную производную.
Производная функции, заданной параметрически
Рассмотрим плоскость с фиксированной системой координат (O, x, y).
Пусть точка M (x, y) движется по плоскости, и траектория ее движения
(7.1)
где t – время, или где r(t) – радиус-вектор точки М.
Предположим, что для функции x= (x)t существует обратная функция
(например, когда x= (x)t строго монотонна). Тогда (7.1) задается также в виде
Пусть – точка на кривой (7.1), где
Предположим, что x( t) и y(t ) дифференцируемы и
Тогда по формулам (6.11), (6.15)
Таким образом для функции, заданной в виде (7.1), производная
(7.2)
Пример №38
Пример №39
Функция монотонно убывает на промежутке . Для нее обратная: По формуле (7.2)
(7.3)
Кривая в примере – параметрическое задание эллипса (верхней части), заданного уравнением Если из формулы (7.3) исключить t, то получим
что совпадает с производной
Производная функции, заданной неявно
Пусть функция y=f(x) задана неявно в виде (8.1) то есть
Дифференцируем уравнение (8.1) по x, при этом считаем, что y – функция от x, получим уравнение, содержащее . Из полученного уравнения выражаем
Пример №40
Р е ш е н и е
Рассмотренное в примере 8.1 уравнение эллипса определяет в неявном виде две функции:
Если рассмотреть параметрическое уравнение эллипса
то после подстановки x и y в формулу (8.2), получим формулу (7.3)
(см. пример п. 7.1),
Пример №41
Найдем производную степенно-показательной функции где
дифференцируемы и
Р е ш е н и е
Производная, её геометрический и физический смысл
На рисунке 12 изображены кривая, касательная и секущая.
Пусть точка В последовательно принимает положения В1, В2, …., стремясь к точке А по кривой (рисунок 13). Тогда интуитивно ясно, что соответствующие секущие стремятся принять положение касательной к кривой в точке А.
В этом случае очевидно, что угловой коэффициент прямой АВ стремится к угловому коэффициенту касательной.
Пример №42
Найдите угловой коэффициент касательной к графику функции f(х)=x2 в точке А(1; 1) (рисунок 14).
Решение:
Рассмотрим произвольную точку В(х, х2), принадлежащую графику функи f(х)=х2 (рисунок 15).
Угловой коэффициент прямой АВ равен
.
Когда точка В стремится к А по кривой, значение х стремится к 1 при этом .
Значит, угловой коэффициент прямой АВ стремится к угловому коэффициенту касательной:
.
Поэтому, .
Пусть задана функция . Рассмотрим точки А(х, f(х)) ва – принадлежащие графику функции (рисунок 16).
Угловой коэффициент прямой А В равен разностному отношению
.
Когда точка В стремится к А по кривой, значение приращения к стремится к 0. При этом секущая АВ стремится к касательной к графику функции , проведённой в точке А.
Вместе с этим, угловой коэффициент секущей АВ стремится к угловому коэффициенту касательной.
Иначе говоря, при стремлении h к 0, угловой коэффициент касательной к графику функции, проведённой к произвольной точке равен предельному значению .
Отметим, что для каждого х такого, что вышеуказанный предел существует, можно поставить в соответствие единственное значение углового коэффициента касательной, проведённой к графику функции в точке (х, f(х)) (рисунок 17).
Значит, формулаопределяет новую функцию.
Эта функция называется производной функцией (кратко производной) функции .
Определение: Производной функции y=f(x) называется предел: (1) в случае, когда он существует.
Обычно производную функции y=f(x) обозначают через f ‘(x). Операцию нахождения производной называют дифференцированием.
Иногда вместо обозначения используется обозначение .
«Дробный» вид этого обозначения можно объяснить следующим образом.
Если мы введём новые обозначения для приращений, тогда выражение
можно написать в виде (рисунок 18).
Исходя из вышесказанного, можно прийти к следующему выводу: Значение производной функции y=f(x) в точке х0 равно угловому коэффициенту касательной к графику функции, проведённой в точке с абсциссой в этой точке.
В этом и заключается геометрический смысл производной.
Пример №43
Материальная точка движется по прямой в соответствии с законом s=s(t) (здесь s измеряется в метрах, а t в секундах). Найдём скорость v(t) материальной точки в момент времени t.
Решение:
Интуитивно ясно, что искомая мгновенная скорость точки на
малом интервале времени приблизительно равна средней скорости
Когда стремится к нулю, разность между средней
скоростью и мгновенной скоростью тоже стремится к нулю. Значит, мгновенная скорость материальной точки в момент времени t равна
Таким образом, мгновенная скорость материальной точки в момент времени t равна производной функции s(t).
В этом и заключается физический смысл производной. Вообще говоря, производная определяет скорость изменения функции.
Пример №44
Исходя из определения, найдите производные функции.
Решение:
1.Так как , то
2.Так как , то
, значит
3.Так как , то
Ясно, что при , тогда
Согласно формулам сокращённого умножения
Значит,
то,
Отсюда
Значит
5.
Из-за того, что следует Значит
6.
Упростим:
При имеем Отсюда получим
7. Составим разностное отношение:
При имеем Отсюда получим
Ответ:
Напомним, что когда величина х меняет свои значения в пределах от х до х+h, то средняя скорость изменения величины у=f (х) равна разностному отношению
При этом выражение
означает мгновенную скорость изменения величины у=f(х).
Геометрический и физический смысл производной более подробно:
Пусть ( O, x, y) – прямоугольная система координат на плоскости. Рассмотрим график функции y=f(x) (множество точек с координатами Пусть
– точки на графике (рис. 9.1).
Рассмотрим секущую на графике, проходящую через точки , тогда
– угловой коэффициент секущей, и
Определение 9.1. Пусть функция y=f(x) дифференцируема в точке и – ее производная. Касательной к графику функции в точке будем называть прямую, заданную уравнением (9.2)
Из формулы (9.1) видно, что касательная – предельное положение
секущей при
Действительно, секущая задается уравнением (уравнение прямой, проходящей через точку c угловым коэффициентом ). Так как выполняется (9.1), то уравнение в пределе при примет вид (9.2).
Таким образом, – угловой коэффициент касательной к кривой
Определение 9.2. Пусть функция y=f(x) имеет в точке бесконечную
производную (см. определение 6.5). Тогда касательная к графику функции
в точке– вертикальная прямая х=
Определение 9.3. Нормалью к графику функции y=f(x) в точке называется прямая, проходящая через точку и перпендикулярная касательной к графику в этой точке.
Если, то из (9.2) следует, что уравнение нормали имеет вид
. (9.3) (так как угловые коэффициенты перпендикулярных прямых связаны соотношением ).
Пример №45
Написать уравнение касательной и нормали к кривой в точке
.
Решение:
, поэтому точка лежит на кривой;
Тогда по формуле (9.2) – уравнение касательной.
Далее по формуле (9.3)
– уравнение нормали.
Пример №46
Написать уравнения касательных к кривой,
проходящих через точку М.
Решение:
, поэтому точка М не лежит на кривой. По формуле (9.2)
(9.4)
Так как точка М лежит на касательной, то
поэтому касательные к кривой в точках проходят через точку М.
Тогда из (9.4) – уравнения касательных.
Рассмотрим точкина графике функции y=f(x ). Тогда по формуле (6.6) а по формуле (9.2) приращение касательной, когда приращение независимой переменной х равно, поэтому значение равно приращению касательной, рис. 9.3.
Приращение функции y=f(x) отличается от
(см. формулу 6.4), то есть
Пример №47
. Рассмотрим точки
Найти при переходе от
Решение:
В приближенных вычислениях заменяют на и получают формулу
Пример №48
Вычислить приближенно
Решение:
Пусть
Тогда
По формуле (9.6)
Поэтому
Пусть y=f(x) дифференцируема в точке и – ее производная. (9.7)
Числитель дроби – приращение функции f(x). Сама дробь задает приращение функции на единицу приращения независимой переменной х (скорость приращения функции). Поэтому, согласно (9.7), – мгновенная скорость приращения функции. Если тело движется
прямолинейно и х задает время, а f(x) – путь, пройденный телом за время t , то – мгновенная скорость в момент времени .
Пример №49
– путь, пройденный телом на промежутке времени (1;1,1); – средняя скорость движения на этом промежутке; – мгновенная скорость в момент времени =1.
Пусть точка M(x ,y , z) движется в пространстве, и траектория ее движения
(9.8)
где t – время,
или (9.9) где – радиус-вектор точки М.
Концы вектора (9.9) задают траекторию движения (9.8) – годограф
вектор-функции .
Определение 9.4. Производной векторной функции в точкеназывается вектор
Вектор задает мгновенную скорость движения точки при
направлен по касательной к кривой (9.8) в точке
Пример №50
– траектория движения точки,
Найдем
Решение:
Дополнительный справочный материал о производной функции
Понятия приращения аргумента и приращения функции в точке :
Пусть — произвольная точка, лежащая в некоторой окрестности фиксированной точки из области определения функции
Приращение аргумента:
Приращение функции:
Запись непрерывности функции через приращения аргумента и функции:
Функция будет непрерывной в точке тогда и только тогда, когда малому изменению аргумента в точке отвечают малые изменения значении функции, то есть функция непрерывна в точке при
Задачи, приводящие к понятию производной:
I. Мгновенная скорость движения точки по прямой
— координата точки в момент времени
II. Касательная к графику функции
Касательной к графику функции в данной точке называется предельное положение секущей
Когда точка приближается к точке (перемещаясь по графику функции ), то величина угла приближается к величине угла наклона касательной к оси Поскольку
Определение производной:
Производной функции в точке называется предел отношения приращения функции в точке к приращению аргумента, когда приращение аргумента стремится к нулю.
Операция нахождения производной называется дифференцированием.
Производные некоторых элементарных функций:
(с – постоянная);
;
;
;
.
Геометрический смысл производной и уравнение касательной к графику функции :
— угловой коэффициент касательной, — уравнение касательной к графику функции в точке с абсциссой
Значение производной в точке равно тангенсу угла наклона касательной к графику функции в точке с абсциссой и угловому коэффициенту этой касательной.
(Угол отсчитывается от положи тельного направления оси против часовой стрелки.)
Механический смысл производной:
Производная характеризует скорость изменения функции при изменении аргумента
В частности, производная по времени является мерой скорости изменения соответствующей функции.
Производную по времени используют для описания различных физических величин.
Например, мгновенная скорость неравномерного прямолинейного движения — это производная функции, выражающей зависимость пройденного пути от времени
Зависимость между дифференцируемостью и непрерывностью функции:
Если функция дифференцируема в точке то она непрерывна в этой точке.
Если функция дифференцируема на промежутке (то есть в каждой его точке), то она непрерывна на этом промежутке.
Понятия приращения аргумента и приращения функции
Часто пас интересует не значение какой-то величины, а ее приращение. Например, сила упругости пружины пропорциональна удлинению пружины, работа — это изменение энергии и т. д.
Приращение аргумента или функции традиционно обозначают большой буквой греческого алфавита (дельта). Дадим определение приращения аргумента и приращения функции.
Пусть — произвольная точка, лежащая в некоторой окрестности фиксированной точки из области определения функции
Разность называют приращением независимой переменной (или приращением аргумента) в точке и обозначают (читают: «дельта икс»):
Из этого равенства имеем (1) то есть первоначальное значение аргумента получило приращение При значение больше, чем, а при значение меньше, чем (рис. 2.1).
Тогда при переходе аргумента от точки к точке значение функции изменилось на величину Учитывая равенство (1), получаем, что функция изменилась на величину (2) (рис. 2.2), которую называют приращением функции в точке соответствующим приращению аргумента (символ читают: «дельта эф»).
Из равенства (2) получаем
При фиксированном приращение является функцией от приращения
Если функция задается формулой то называют также приращением зависимой переменной у и обозначают через
Например, если то приращение соответствующее приращениюравно
Запись непрерывности функции через приращения аргумента и функции
Напомним, что функцияявляется непрерывной в точке если при то есть Но если то то есть (и наоборот, если , то то есть ). Следовательно, условие эквивалентно условию Аналогично утверждение эквивалентно условию то есть Таким образом, функция будет непрерывной в точке тогда и только тогда, когда при то есть если малым изменениям аргумента в точке соответствуют малые изменения значений функции. Именно вследствие этого свойства графики непрерывных функций изображаются непрерывными (неразрывными) кривыми на каждом из промежутков, которые полностью входят в область определения функции.
Задачи, приводящие к понятию производной
I. Мгновенная скорость движения точки по прямой
Рассмотрим задачу, известную из курса фиизики,— движение материальной точки по прямой. Пусть координата точки в момент времени равна Будем считать, что движение происходит непрерывно (как это мы наблюдаем в реальной жизни). Попробуем по известной зависимости определить скорость, с которой точка движется в момент времени (так называемую мгновенную скорость). Рассмотрим промежуток времени от до (рис. 2.3). Определим среднюю скорость на промежутке как отношение пройденного пути ко времени движения: Для определения мгновенной скорости точки в момент времени сделаем так, как вы делали па уроках физики: возьмем промежуток времени продолжительностью вычислим среднюю скорость на этом промежутке и начнем уменьшать промежуток до нуля (то есть уменьшать отрезок и приближатьк ). Мы заметим, что значение средней скорости при стремлении к нулю будет стремиться к некоторому числу, которое и считается значением скорости в момент времени Иными словами, мгновенной скоростью в момент времени называется предел отношения
Например, рассмотрим свободное падение тела. Из курса физики известно, что в этом случае зависимость пути от времени задается формулой
1) Найдем сначала
2) Найдем среднюю скорость:
3) Выясним, к какому числу стремится отношение при это и будет мгновенная скорость в момент времени
Если а поскольку — величина постоянная, то Последнее число и есть значением мгновенной скорости точки в момент времени Мы получили известную из физики формулу (тогда ). Используя понятие предела, это можно записать так:
II. Касательная к графику функции
Наглядное представление о касательной к кривой можно получить, изготовив кривую из плотного материала (например, из проволоки) и прикладывая к кривой линейку в выбранной точке (рис. 2.4). Если мы изобразим кривую на бумаге, а затем будем вырезать фигуру, ограниченную этой кривой, то ножницы также будут направлены по касательной к кривой.
Попробуем перевести наглядное представление о касательной на более точный язык.
Пусть задана некоторая кривая и точка на ней (рис. 2.5). Возьмем на этой кривой другую точку и проведем прямую через точки и . Эту прямую обычно называют секущей. Начнем приближать точку к точке .
Положение секущей будет изменяться, но при приближении точки к точке оно начнет стабилизироваться.
Касательной к кривой в данной точке называется предельное положение секущей
Чтобы записать это определение с помощью формул, будем считать, что кривая — это график функции а точка , находящаяся на графике, задана координатами ( ). Касательной является некоторая прямая, проходящая через точку (рис. 2.6). Чтобы построить эту прямую, достаточно знать угол наклона касательной* к оси
Пусть точка (через которую проходит секущая ) имеет абсциссу Когда точка перемещаясь по графику функции приближается к точке (это будет при ), величина угла приближается к величине угла наклона касательной к оси
Поскольку то при значение приближается к то есть
Фактически мы пришли к той же задаче, что и при нахождении мгно венной скорости: найти предел отношения выражения вида (где — заданная функция) при Найденное таким образом число называют производной функции в точке
Определение производной в высшей математике
Производной функции в т очке называется предел отношения приращения функции в точке к приращению аргумента, когда приращение аргумента стремится к нулю.
Производную функции в точке обозначают (или ) и читают: «эф штрих в точке ». Коротко определение производной функции можно записать так:
Учитывая определение приращения функции в точке, соответствующего приращению определение производной можно записать также следующим образом:
*Будем рассматривать невертикальную касательную (то есть ).
Функцию, имеющую производную в точке , называют дифференцируемой в этой точке. Если функция имеет производную в каждой точке некоторого промежутка, то говорят, что функция дифференцируема на этом промежутке. Операцию нахождения производной называют дифференцированием.
Для нахождения производной функции согласно определению можно пользоваться такой схемой:
- Найти приращение функции соответствующее приращению аргумента
- Найти отношение
- Выяснить, к какому пределу стремится отношение —
Это и будет производной данной функции.
Производные некоторых элементарных функций
Обоснуем, пользуясь предложенной схемой, формулы:
1. Вычислим производную функции то есть где — постоянная.
2. Вычислим производную функции то есть
3. Вычислим производную функции то есть
Тогда производная функции в произвольной точке равна Таким образом,
4. Вычислим производную функции то есть
5. Вычислим производную функции то есть
Это означает, что (при ). Тогда производная функции в произвольной точке из области определения функции, кроме то есть при ), равна: Следовательно,
Геометрический смысл производной и уравнение касательной к графику функции y=f(x)
Учитывая определение производной функции запишем результаты, полученные при рассмотрении касательной к графику функции (с. 24). Как было обосновано выше, тангенс угла наклона касательной в точке с абсциссой (рис. 2.7) вычисляется по формуле
В то же время тогда
Напомним, что в уравнении прямой угловой коэффициент равен тангенсу угла наклона прямой к оси (угол отсчитывается от положительного направления оси против часовой стрелки). Значит, если — угловой коэффициент касательной, то то есть значение производной в точке равно тангенсу угла наклона касательной к графику функции в точке с абсциссой и равно угловому коэффициенту этой касательной (угол отсчитывается от положительного направления оси против часовой стрелки).
Таким образом, если — уравнение касательной к графику функции в точке с абсциссой (и ординатой ), то . Тогда уравнение касательной можно записать так: Чтобы найти значение учтем, что эта касательная проходит через точку ).
Следовательно, координаты точки удовлетворяют последнему уравнению, то есть Отсюда и уравнение касательной имеет вид Его удобно записать так:
Это уравнение касательной к графику функции в точке с абсциссой
Замечание. Угол который образует невертикальная касательная к графику функции в точке с абсциссой с положительным направлением оси , может быть нулевым, острым или тупым.
Учитывая геометрический смысл производной, получаем, что в случае, когда (то есть ), угол будет острым, а в случае, когда (), угол будет тупым. Если (), то (то есть касательная параллельна оси или совпадает с ней). И наоборот, если касательная к графику функции в точке с абсциссой образует с положительным направлением оси острый угол то если тупой угол, тоа если касательная параллельна оси или совпадает с ней то
Если же касательная образует с осью прямой угол ( = 90°), то функция производной в точке не имеет ( не существует).
Механический смысл производной
Записывая определение производной в точке для функции и сопоставляя полученный результат с понятием мгновенной скорости прямолинейного движения: можно сделать вывод, что производная характеризует скорость изменения функции при изменении аргумента.
В частности, производная по времени является мерой скорости изменения соответствующей функции, что может применяться к разнообразнейшим физическим величинам. Например, мгновенная скорость неравномерного прямолинейного движения является производной функции, выражающей зависимость пройденного пути от времени ускорение неравномерного прямолинейного движения является производной функции, выражающей зависимость скорости о от времени
Если
Связь между дифференцируемостью и непрерывностью функции
Если функция дифференцируема в точке то в этой точке существует ее производная / то есть при значение Для обоснования непрерывности функции достаточно обосновать, что при значение
Действительно, при получаем Из этого следует, что функция непрерывна в точке Таким образом, если функция дифференцируема в точке то она непрерывна в этой точке.
Из этого утверждения можно заключить:
- если функция дифференцируема па промежутке (то есть в каждой его точке), то она непрерывна на этом промежутке.
Отметим, что обратное утверждение неверно. Функция, непрерывная на промежутке, может не иметь производной в некоторых точках этого промежутка.
Например, функция (рис. 2.8) непрерывна при всех значениях но не имеет производной в точке Действительно, если и то Поэтому при отношение — не имеет предела, а значит, и функцияне имеет производной в точке 0.
Замечание. Тот факт, что непрерывная функция не имеет производной в точке , означает, что к графику этой функции в точке с абсциссой нельзя провести касательную (или соответствующая касательная перпендикулярна к оси ). График в этой точке может иметь излом (рис. 2.8), а может иметь значительно более сложный вид*.
Например, к графику непрерывной функции (рис. 2.9) в точке с абсциссой нельзя провести касательную (а значит, эта функция не имеет производной в точке 2). Действительно, по определению касательная — это предельное положение секущей. Если точка будет приближаться к точке по левой части графика, то секущая займет предельное положение Если же точка будет приближаться к точке по правой части графика, то секущая займет предельное положение Но это две разные прямые, следовательно, в точкекасательной к графику данной функции не существует.
Примеры решения задач:
Пример №51
Найдите тангенс угла наклона касательной, проведенной к графику функции в точке с абсциссой к оси если:
*В курсе математического анализа построены примеры функций, которые являются непрерывными, но ни в одной точке не имеют производной.
Решение:
1) По геометрическому смыслу производной Учитывая, что получаем: Следовательно, 2) Поскольку то По геометрическому смыслу производной Следовательно,
Комментарий:
По геометрическому смыслу производной где— угол наклона касательной, проведенной к графику функции в точке с абсциссой к оси Для нахождения достаточно найти производную функции а затем найти значение производной в точке Формулы производных для нахождения производных заданных функций приведены в п. 5 (и обоснованы на с. 22, 23). Далее при решении задач мы будем использовать их как табличные значения.
Пример №52
Используя формулу запишите уравнение касательной к графику функции в точке с абсциссой
Решение:
Если то Тогда Подставляя эти значения в уравнение касательной получаем: То есть — искомое уравнение касательной.
Комментарий:
Уравнение касательной к графику функции в точке с абсциссой в общем виде таково: Чтобы записать это уравнение для заданной функции, необходимо найти значение производную и значение Для выполнения соответствующих вычислений удобно обозначить заданную функцию черези использовать табличное значение производной
Правила вычисления производных
Производные некоторых элементарных функций:
(с — постоянная)
Правила дифференцирования:
Правило: Постоянный множитель можно выносить за знак производной
Пример:
Правило: Производная суммы дифференцируемых функций равна сумме их производных
Пример:
Правило:
Пример:
Правило:
Пример:
Производная сложной функции (функции от функции):
Правило:
Если то есть то
Коротко это можно записать так*:
Пример:
Правила дифференцирования
С учетом определения производной были найдены производные некоторых элементарных функций: (с — постоянная),
Для нахождения производных в более сложных случаях целесообразно помнить правила дифференцирования — специальные правила нахождения производной от суммы, произведения и частного тех функций, для которых мы уже знаем значения производных, и правило нахождения производной сложной функции (функции от функции).
Обоснуем эти правила. Для сокращения записей будем использовать такие обозначения функций и их производных в точке
Правило 1.
Если функции и и и дифференцируемы в точке то их сумма дифференцируема в этой точке, и
Коротко говорят:
- производная суммы равна сумме производных.
Для доказательства обозначим и используем план нахождения по определению производной в точке (с. 22).
1) Приращение функции в точке
2)
*В обозначениях нижний индекс указывает, по какому аргументу берется производная.
3) Выясним, к какому пределу стремится отношение при Поскольку функции и и и дифференцируемы в точке то при Так как предел суммы равен сумме пределов слагаемых, получаем, что при Из этого следует, что то есть Таким образом,
Правило 1 можно расширить на любое конечное количество слагаемых*
Правило 2.
Если функции и дифференцируемы в точке то их произведение дифференцируемо в этой точке
1) Обозначим Сначала запишем приращения функций и в точке