Производная разности
Определение |
Производная разности двух функций равна разности производных каждой из функций: $$ (u-v)’ = (u)’ – (v)’ $$ |
Эта формула также распространяется на количество функций более двух, например:
$$ (u+v+g)’ = (u)’ + (v)’ + (g)’ $$
Пример 1 |
Найти производную разности функций $ y = x^4 – 2x^3 – 6 $ |
Решение |
Производная разности равна разности производных: $$ y’ = (x^4 – 2x^3 – 6)’ = (x^4)’ – (2x^3)’ – (6)’ $$ Производные первого и второго слагаемых следует найти по правилу $ (x^p)’ = px^{p-1} $: $$ (x^4)’ = 4x^{4-1} = 4x^3 $$ $$ (2x^3)’ = 2 cdot 3 x^{3-1} = 6x^2 $$ Производная константы равна нулю: $$ (6)’ = 0 $$ Тогда продолжая решение примера: $$ y’ = (x^4 – 2x^3 – 6)’ = (x^4)’ – (2x^3)’ – (6)’ = $$ $$ = 4x^3 – 6x^2 – 0 = 4x^3 – 6x^2 $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ y’ = 4x^3 – 6x^2 $$ |
Пример 2 |
Найти производную разности двух функций: $ y = sin x – ln 3x – sqrt{2x} $ |
Решение |
Производная от $ sin x $ присутствует в таблице производных: $$ (sin x)’ = cos x $$ Для натурального логарифма есть правило $ (ln x)’ = frac{1}{x} $. Но так как выражение, стоящее под знаком логарифма отличается от $ x $, поэтому нужно ещё дробь домножить на производную от внутренней функции $ 3x $: $$ (ln 3x)’ = frac{1}{3x} cdot (3x)’ = frac{1}{3x} cdot 3 = frac{1}{x} $$ Третья функция является сложной, поэтому сначала находим производную от внешней части, затем от внутренней и перемножаем их: $$ (sqrt{2x})’ = frac{1}{2sqrt{2x}} cdot (2x)’ = frac{1}{2sqrt{2x}} cdot 2 = frac{1}{sqrt{2x}} $$ Подставляем все производные в исходную задачу: $$ y’ = (sin x – ln 3x – sqrt{2x})’ = (sin x)’ – (ln 3x)’ – (sqrt{2x})’ = $$ $$ = cos x – frac{1}{x} – frac{1}{sqrt{2x}} $$ |
Ответ |
$$ y’ = cos x – frac{1}{x} – frac{1}{sqrt{2x}} $$ |
Правила вычисления производных
7 апреля 2011
- Скачать все правила
Если следовать определению, то производная функции в точке — это предел отношения приращения функции Δy к приращению аргумента Δx:
Вроде бы все понятно. Но попробуйте посчитать по этой формуле, скажем, производную функции f(x) = x
2 + (2x + 3) · e
x
· sin x. Если все делать по определению, то через пару страниц вычислений вы просто уснете. Поэтому существуют более простые и эффективные способы.
Для начала заметим, что из всего многообразия функций можно выделить так называемые элементарные функции. Это относительно простые выражения, производные которых давно вычислены и занесены в таблицу. Такие функции достаточно просто запомнить — вместе с их производными.
Производные элементарных функций
Элементарные функции — это все, что перечислено ниже. Производные этих функций надо знать наизусть. Тем более что заучить их совсем несложно — на то они и элементарные.
Итак, производные элементарных функций:
Название | Функция | Производная |
Константа | f(x) = C, C ∈ R | 0 (да-да, ноль!) |
Степень с рациональным показателем |
f(x) = x n |
n · x n − 1 |
Синус | f(x) = sin x | cos x |
Косинус | f(x) = cos x | − sin x (минус синус) |
Тангенс | f(x) = tg x | 1/cos2 x |
Котангенс | f(x) = ctg x | − 1/sin2 x |
Натуральный логарифм | f(x) = ln x | 1/x |
Произвольный логарифм |
f(x) = log a x |
1/(x · ln a) |
Показательная функция |
f(x) = e x |
e x (ничего не изменилось) |
Если элементарную функцию умножить на произвольную постоянную, то производная новой функции тоже легко считается:
(C · f)’ = C · f ’.
В общем, константы можно выносить за знак производной. Например:
(2x
3)’ = 2 · (x
3)’ = 2 · 3x
2 = 6x
2.
Очевидно, элементарные функции можно складывать друг с другом, умножать, делить — и многое другое. Так появятся новые функции, уже не особо элементарные, но тоже дифференцируемые по определенным правилам. Эти правила рассмотрены ниже.
Производная суммы и разности
Пусть даны функции f(x) и g(x), производные которых нам известны. К примеру, можно взять элементарные функции, которые рассмотрены выше. Тогда можно найти производную суммы и разности этих функций:
- (f + g)’ = f ’ + g ’
- (f − g)’ = f ’ − g ’
Итак, производная суммы (разности) двух функций равна сумме (разности) производных. Слагаемых может быть больше. Например, (f + g + h)’ = f ’ + g ’ + h ’.
Строго говоря, в алгебре не существует понятия «вычитание». Есть понятие «отрицательный элемент». Поэтому разность f − g можно переписать как сумму f + (−1) · g, и тогда останется лишь одна формула — производная суммы.
Задача. Найти производные функций: f(x) = x
2 + sin x; g(x) = x
4 + 2x
2 − 3.
Функция f(x) — это сумма двух элементарных функций, поэтому:
f ’(x) = (x
2 + sin x)’ = (x
2)’ + (sin x)’ = 2x + cos x;
Аналогично рассуждаем для функции g(x). Только там уже три слагаемых (с точки зрения алгебры):
g ’(x) = (x
4 + 2x
2 − 3)’ = (x
4 + 2x
2 + (−3))’ = (x
4)’ + (2x
2)’ + (−3)’ = 4x
3 + 4x + 0 = 4x · (x
2 + 1).
Ответ:
f ’(x) = 2x + cos x;
g ’(x) = 4x · (x
2 + 1).
Производная произведения
Математика — наука логичная, поэтому многие считают, что если производная суммы равна сумме производных, то производная произведения strike“>равна произведению производных. А вот фиг вам! Производная произведения считается совсем по другой формуле. А именно:
(f · g) ’ = f ’ · g + f · g ’
Формула несложная, но ее часто забывают. И не только школьники, но и студенты. Результат — неправильно решенные задачи.
Задача. Найти производные функций: f(x) = x
3 · cos x; g(x) = (x
2 + 7x − 7) · e
x
.
Функция f(x) представляет собой произведение двух элементарных функций, поэтому все просто:
f ’(x) = (x
3 · cos x)’ = (x
3)’ · cos x + x
3 · (cos x)’ = 3x
2 · cos x + x
3 · (− sin x) = x
2 · (3cos x − x · sin x)
У функции g(x) первый множитель чуть посложней, но общая схема от этого не меняется. Очевидно, первый множитель функции g(x) представляет собой многочлен, и его производная — это производная суммы. Имеем:
g ’(x) = ((x
2 + 7x − 7) · e
x
)’ = (x
2 + 7x − 7)’ · e
x
+ (x
2 + 7x − 7) · (e
x
)’ = (2x + 7) · e
x
+ (x
2 + 7x − 7) · e
x
= e
x
· (2x + 7 + x
2 + 7x −7) = (x
2 + 9x) · e
x
= x(x + 9) · e
x
.
Ответ:
f ’(x) = x
2 · (3cos x − x · sin x);
g ’(x) = x(x + 9) · e
x
.
Обратите внимание, что на последнем шаге производная раскладывается на множители. Формально этого делать не нужно, однако большинство производных вычисляются не сами по себе, а чтобы исследовать функцию. А значит, дальше производная будет приравниваться к нулю, будут выясняться ее знаки и так далее. Для такого дела лучше иметь выражение, разложенное на множители.
Производная частного
Если есть две функции f(x) и g(x), причем g(x) ≠ 0 на интересующем нас множестве, можно определить новую функцию h(x) = f(x)/g(x). Для такой функции тоже можно найти производную:
Неслабо, да? Откуда взялся минус? Почему g
2? А вот так! Это одна из самых сложных формул — без бутылки не разберешься. Поэтому лучше изучать ее на конкретных примерах.
Задача. Найти производные функций:
В числителе и знаменателе каждой дроби стоят элементарные функции, поэтому все, что нам нужно — это формула производной частного:
По традиции, разложим числитель на множители — это значительно упростит ответ:
Ответ:
Производная сложной функции
Сложная функция — это не обязательно формула длиной в полкилометра. Например, достаточно взять функцию f(x) = sin x и заменить переменную x, скажем, на x
2 + ln x. Получится f(x) = sin (x
2 + ln x) — это и есть сложная функция. У нее тоже есть производная, однако найти ее по правилам, рассмотренным выше, не получится.
Как быть? В таких случаях помогает замена переменной и формула производной сложной функции:
f ’(x) = f ’(t) · t ’, если x заменяется на t(x).
Как правило, с пониманием этой формулы дело обстоит еще более печально, чем с производной частного. Поэтому ее тоже лучше объяснить на конкретных примерах, с подробным описанием каждого шага.
Задача. Найти производные функций: f(x) = e
2x + 3; g(x) = sin (x
2 + ln x)
Заметим, что если в функции f(x) вместо выражения 2x + 3 будет просто x, то получится элементарная функция f(x) = e
x
. Поэтому делаем замену: пусть 2x + 3 = t, f(x) = f(t) = e
t
. Ищем производную сложной функции по формуле:
f ’(x) = f ’(t) · t ’ = (e
t
)’ · t ’ = e
t
· t ’
А теперь — внимание! Выполняем обратную замену: t = 2x + 3. Получим:
f ’(x) = e
t
· t ’ = e
2x + 3 · (2x + 3)’ = e
2x + 3 · 2 = 2 · e
2x + 3
Теперь разберемся с функцией g(x). Очевидно, надо заменить x
2 + ln x = t. Имеем:
g ’(x) = g ’(t) · t ’ = (sin t)’ · t ’ = cos t · t ’
Обратная замена: t = x
2 + ln x. Тогда:
g ’(x) = cos (x
2 + ln x) · (x
2 + ln x)’ = cos (x
2 + ln x) · (2x + 1/x).
Вот и все! Как видно из последнего выражения, вся задача свелась к вычислению производной суммы.
Ответ:
f ’(x) = 2 · e
2x + 3;
g ’(x) = (2x + 1/x) · cos (x
2 + ln x).
Очень часто на своих уроках вместо термина «производная» я использую слово «штрих». Например, штрих от суммы равен сумме штрихов. Так понятнее? Ну, вот и хорошо.
Таким образом, вычисление производной сводится к избавлению от этих самых штрихов по правилам, рассмотренным выше. В качестве последнего примера вернемся к производной степени с рациональным показателем:
(x
n
)’ = n · x
n − 1
Немногие знают, что в роли n вполне может выступать дробное число. Например, корень — это x
0,5. А что, если под корнем будет стоять что-нибудь навороченное? Снова получится сложная функция — такие конструкции любят давать на контрольных работах и экзаменах.
Задача. Найти производную функции:
Для начала перепишем корень в виде степени с рациональным показателем:
f(x) = (x
2 + 8x − 7)0,5.
Теперь делаем замену: пусть x
2 + 8x − 7 = t. Находим производную по формуле:
f ’(x) = f ’(t) · t ’ = (t
0,5)’ · t ’ = 0,5 · t
−0,5 · t ’.
Делаем обратную замену: t = x
2 + 8x − 7. Имеем:
f ’(x) = 0,5 · (x
2 + 8x − 7)−0,5 · (x
2 + 8x − 7)’ = 0,5 · (2x + 8) · (x
2 + 8x − 7)−0,5.
Наконец, возвращаемся к корням:
Ответ:
Смотрите также:
- Вводный урок по вычислению производных степенной функции
- Уравнение касательной к графику функции
- Тест к параграфу «Что такое логарифм» (легкий)
- Комбинаторика в задаче B6: легкий тест
- Задача B2: лекарство и таблетки
- Задача B4 про шерсть и свитер
Содержание:
- Формула
- Примеры вычисления производной разности функций
Формула
$$(u(x)-v(x))^{prime}=u^{prime}(x)-v^{prime}(x)$$
Производная разности равна разности производных.
Примеры вычисления производной разности функций
Пример
Задание. Найти производную функции $y(x)=x-23$
Решение. Так как производная разности равна разности производных, то
$$y^{prime}(x)=(x-23)^{prime}=(x)^{prime}-(23)^{prime}$$
Производная независимой переменной равна единице, а
производная константы – нулю. Тогда имеем:
$$y^{prime}(x)=1-0=1$$
Ответ. $y^{prime}(x)=1$
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Вычислить производную функции $y(x)=3^x-ln x$
Решение. Искомая производная равна:
$y^{prime}(x)=left(3^{x}-ln xright)^{prime}$
Производная от разности равна разности производных, тогда будем иметь:
$$y^{prime}(x)=left(3^{x}right)^{prime}-(ln x)^{prime}=3^{x} ln 3-frac{1}{x}$$
Ответ. $y^{prime}(x)=3^{x} ln 3-frac{1}{x}$
Читать дальше: производная произведения (u*v)’.
Видеоурок: Производная произведения и частного
Лекция: Производные суммы, разности, произведения, частного
Чтобы найти производную суммы некоторых функций или их разности, необходимо просто воспользоваться первой теоремой производных:
Производная суммы или разности некоторой функции равна сумме или разности производных:
(u + v)’ = u’ + v’,
(u – v)’ = u’ – v’.
Если необходимо найти производную произведения или частного, то здесь уже дела обстоят посложнее, поскольку необходимо запомнить две основные формулы:
(u * v)’ = u’ v – v’ u.
То есть производная произведения двух некоторых функций равна сумме произведения производной первой функции на вторую и производной второй функции на первую.
Для нахождения производной частного двух некоторых функций необходимо воспользоваться следующей формулой:
(u / v)’ = (u’ v + v’ u) / v2.
Нахождение
производной функции непосредственно
по определению часто связано с
определенными трудностями. На практике
функции дифференцируют с помощью ряда
правил и формул.
Пусть
функции u=u(х) и ν=ν(х) – две дифференцируемые
в некотором интервале (a;b) функции.
Теорема
20.2 .
Производная суммы (разности) двух функций
равна сумме (разности) производных этих
функций: (u±ν)’=u’±ν’.
Обозначим
у=u±ν. По определению производной и
основным теоремам о пределах получаем:
Теорема
справедлива для любого конечного числа
слагаемых.
Теорема
20.3 .
Производная произведения двух функций
равна произведению производной первого
сомножителя на второй плюс произведение
первого сомножителя на производную
второго: (u•ν)’=u’ν+v’u.
т.
е. (u•ν)’=u’•ν+u•ν‘.
При
доказательстве теоремы использовалась
теорема о связи непрерывности и
дифференцируемости: так как функции
u=u(х) и ν=ν(х) дифференцируемы, то они и
непрерывны, поэтому ∆ν→0 и ∆u→0 при
∆х→0.
Можно
показать, что:
а)
(с•u)’=с•u’, где с = const;
б)
(u•ν•w)’=u’v•w+u•v’•w+u•v•w’.
Теорема
20.4. Производная
частного двух функций
если
ν(х)≠0 равна дроби, числитель которой
есть разность произведений знаменателя
дроби на производную числителя и
числителя дроби на производную
знаменателя, а знаменатель есть квадрат
прежнего знаменателя:
Пусть
у=u/v. Тогда
Следствие
20.1.
Следствие
20.2.
20.5. Производная сложной и обратной функций
Пусть
у=ƒ(и) и u=φ(х), тогда у=ƒ(φ(х)) — сложная
функция с промежуточным аргументом u и
независимым аргументом х.
Теорема
20.5 .
Если функция u=φ(х) имеет производную
u’х в
точке х, а функция у=ƒ(u) имеет производную
у’u в
соответствующей точке u=φ(х), то сложная
функция у=ƒ(φ(х)) имеет производную у’х в
точке х, которая находится по формуле
у’х=у’u-u’х.
По
условию
Отсюда,
по теореме о связи функции, ее предела
и бесконечно малой функции, имеем
∆у=у’u•∆u+α*∆u,
(20.6)
где
α→0 при ∆u→0.
Функция
u=φ(х) имеет производную в точке х:
этому
∆u=u¢ х •∆х+ß•∆х,
где ß→0 при ∆х→0.
Подставив
значение ∆u в равенство (20.6), получим
Δy=y¢ u(u’х•∆х+ß*∆х)+а(u’х•∆х+ß•∆х),
т.е.
∆у=у’u•u’х•∆х+у’u•ß•∆х+u’х•а•∆х+α•ß•∆х.
Разделив
полученное равенство на ∆х и перейдя
к пределу при ∆х→О, получим у’х=у’u*u’х.
Итак,
для нахождения производной сложной
функции надо производную данной функции
по промежуточному аргументу умножыть
на производную промежуточного аргумента
по независимому аргументу.
Это
правило остается в силе, если промежуточных
аргументов несколько. Так, если у=ƒ(u),
u=φ(ν), ν=g(х), то у’х=у’u•u’ν•ν’х.
Пусть у=ƒ(х) и х=φ(у) — взаимно обратные
функции.
Теорема
20.6 .
Если функция у=ƒ(х) строго монотонна на
интервале (a;b) и имеет неравную нулю
производную ƒ'(х) в произвольной точке
этого интервала, то обратная ей функция
х=φ(у) также имеет производную φ'(у) в
соответствующей точке, определяемую
равенством
Рассмотрим
обратную функцию х=φ(у). Дадим аргументу
у приращение ∆у¹ 0. Ему соответствует
приращение ∆х обратной функции, причем
∆х¹ 0 в силу строгой монотонности
функции у=ƒ(х). Поэтому можно записать
Если
∆у→0, то в силу непрерывности обратной
функции приращение ∆х→0. И так как
то
из (20.7) следуют равенства
Таким
образом, производная
обратной функции равна обратной величине
производной данной функции.
Правило
дифференцирования обратной функции
записывают так:
<<
Пример 20.3
Найти
производную функции у=log23tg
x4.
Решение:
Данная функция является сложной. Ее
можно представить в виде цепочки
«простых» функций: у=u3,
где u=Iog2z,
где z=tgq, где q=х4.
По правилу дифференцирования сложной
функции (у’х=y’u•u’z•z’q•q’x)
получаем:
<<
Пример 20.4
Пользуясь
правилом дифференцирования
обратной функции, найти производную
у’х для
функции
Решение:
Обратная функция х=у3+1
имеет производную х’y =3у2.
Следовательно,
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #