Как найти производную системы функции онлайн

Частные производные

Частной производной по x функции z = f(x,y) в точке A(x0,y0) называется предел отношения частного приращения по x функции в точке A к приращению ∆x при стремлении ∆x к нулю.

Частные производные функции z(x,y) находятся по следующим формулам: Частные производные

Вторые частные производные функции z(x,y) находятся по формулам:

Вторые частные производные

Смешанные частные производные функции z(x,y) находятся по формулам: Смешанные частные производные

Назначение сервиса. Сервис используется для нахождения частных производных функции (см. пример). Решение производится в онлайн режиме и оформляется в формате Word.

  • Решение онлайн
  • Видеоинструкция
  • Также решают

Правила ввода функции, заданной в явном виде




Примеры

x2+xyx^2+x*y.

cos2(2x+y)(cos(2*x+y))^2

(x-y)^(2/3)

Правила ввода функции, заданной в неявном виде

  1. Все переменные выражаются через x,y,z


Примеры

x^2/(z+y)

cos2(2x+zy)(cos(2*x+z*y))^2

z+(x-y)^(2/3)

Частные производные используются, например, при нахождении полного дифференциала и экстремумов функции.

Частные производные функции нескольких переменных

Ели одному из аргументов функции z = f(x,y) придать приращение, а другой аргумент не изменять, то функция получит частное приращение по одному из аргументов: Δxz=f(x+Δx,y)-f(x,y) – это частное приращение функции z по аргументу x; Δyz=f(x,y+Δy)-f(x,y) – это частное приращение функции z по аргументу у.

Частной производной функции нескольких переменных по одному из её аргументов называется предел отношения частного приращения функции по этому аргументу к соответствующему приращению аргумента при условии, что приращение аргумента стремится к нулю:

– это частная производная функции z по аргументу x;

– это частная производная функции z по аргументу у.

Чтобы вычислить частную производную ФНП по одному из её аргументов, нужно все другие её аргументы считать постоянными и проводить дифференцирование по правилам дифференцирования функции одного аргумента.

Пример 1. z=2x5+3x2y+y2–4x+5y-1

Пример 2. Найти частные производные функции z = f(x;y) в точке A(x0;y0).



Находим частные производные:





Найдем частные производные в точке А(1;1)





Находим вторые частные производные:



Найдем смешанные частные производные:

Задать свои вопросы или оставить замечания можно внизу страницы в разделе Disqus.
Можно также оставить заявку на помощь в решении своих задач у наших проверенных партнеров (здесь или здесь).

Понятие частной производной применимо только к функциям многих переменных. Рассмотрим функцию двух переменных
z=f(x,y).
Частные производные по переменным

и

записываются в виде
∂z∂x

и
∂z∂y

соответственно. Сами частные производные
∂z∂x

и
∂z∂y

также являются функциями двух переменных:
∂z∂xpx,y

и
∂z∂yqx,y

, поэтому от них тоже можно взять производные:

∂p∂x∂∂x∂z∂x∂2z∂x2

∂q∂y∂∂y∂z∂y∂2z∂y2

∂p∂y∂∂y∂z∂x∂2z∂x∂y

∂q∂x∂∂x∂z∂y∂2z∂y∂x

Производные
∂2z∂x2

и
∂2z∂y2

– являются вторыми частными производными функции

по переменным

и

соответственно. Производные
∂2z∂x∂y

и
∂2z∂y∂x

– называются смешанными производными функции

по переменным
,

и
,

соответственно. При условии, что функция

и её смешанные производные
∂2z∂x∂y

и
∂2z∂y∂x

определены в некоторой окрестности точки
M(x0,y0)
и непрерывны в этой точке, выполняется равенство:

∂2z∂x∂y∂2z∂y∂x

По аналогии, можно ввести производные более высоких порядков, например, запись
∂5z∂x2∂y3

означает, что мы должны продифференцировать функцию

по переменной

два раза, а затем по переменной

три раза, т.е. фактически:

∂5z∂x2∂y3∂3∂y3∂2z∂x2∂∂y∂∂y∂∂y∂∂x∂z∂x

Иногда, для обозначения частных производных некоторой функции
z=f(x,y)
используют запись вида:
fx(x,y)
и
fy(x,y),
указывая переменную по которой происходит дифференцирование. Таким образом можно обозначать и смешанные производные:
fxy(x,y)
и
fyx(x,y)
а также вторые производные и производные более высокого порядка:
fxx(x,y)
и
fxxy”’(x,y)
соответственно. Следующие обозначения эквиваленты:

эквивалентные обозначения частных производных

В нашем онлайн калькуляторе для обозначения частных производных используются символы:

∂z∂x

;

∂z∂y

;

∂5z∂x2∂y3

.
Пример подробного решения, выдаваемого нашим онлайн сервисом, можно посмотреть
здесь.

Определение производной

Определение. Пусть функция ( y = f(x) ) определена в некотором интервале, содержащем внутри себя точку ( x_0 ).
Дадим аргументу приращение ( Delta x ) такое, чтобы не выйти из этого интервала. Найдем соответствующее приращение функции
( Delta y ) (при переходе от точки ( x_0 ) к точке ( x_0 + Delta x ) ) и составим отношение
( frac{Delta y}{Delta x} ). Если существует предел этого отношения при ( Delta x rightarrow 0 ), то
указанный предел называют производной функции ( y=f(x) ) в точке ( x_0 ) и обозначают ( f'(x_0) ).

$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x_0) $$

Для обозначения производной часто используют символ ( y’ ).
Отметим, что ( y’ = f(x) ) – это новая функция, но, естественно, связанная с функцией ( y = f(x) ), определенная во всех точках (x), в которых
существует указанный выше предел. Эту функцию называют так: производная функции ( y = f(x) ).

Геометрический смысл производной состоит в следующем. Если к графику функции ( y = f(x) ) в точке с абсциссой ( x=a ) можно
провести касательную, непараллельную оси (y), то ( f(a) ) выражает угловой коэффициент касательной:
( k = f'(a) )

Поскольку ( k = tg(a) ), то верно равенство ( f'(a) = tg(a) ) .

А теперь истолкуем определение производной с точки зрения приближенных равенств. Пусть функция ( y = f(x) ) имеет
производную в конкретной точке ( x ):
$$ lim_{Delta x to 0} frac{Delta y}{Delta x} = f'(x) $$

Это означает, что около точки (x) выполняется приближенное равенство ( frac{Delta y}{Delta x} approx f'(x) ), т.е.
( Delta y approx f'(x) cdot Delta x ).
Содержательный смысл полученного приближенного равенства заключается в следующем: приращение функции «почти пропорционально»
приращению аргумента, причем коэффициентом пропорциональности является значение производной в заданной точке (x).
Например, для функции ( y = x^2 ) справедливо приближенное равенство ( Delta y approx 2x cdot Delta x ).
Если внимательно проанализировать определение производной, то мы обнаружим, что в нем заложен алгоритм ее нахождения.

Сформулируем его.

Как найти производную функции у = f(x) ?

1. Зафиксировать значение ( x ), найти ( f(x) )
2. Дать аргументу ( x ) приращение ( Delta x ), перейти в новую точку ( x+ Delta x ), найти ( f(x+ Delta x) )
3. Найти приращение функции: ( Delta y = f(x + Delta x) – f(x) )
4. Составить отношение ( frac{Delta y}{Delta x} )
5. Вычислить $$ lim_{Delta x to 0} frac{Delta y}{Delta x} $$
Этот предел и есть производная функции в точке (x).

Если функция (y=f(x)) имеет производную в точке (x), то ее называют дифференцируемой в точке (x). Процедуру нахождения производной
функции (y=f(x)) называют дифференцированием функции (y=f(x)).

Обсудим такой вопрос: как связаны между собой непрерывность и дифференцируемость функции в точке.

Пусть функция (y=f(x)) дифференцируема в точке (x). Тогда к графику функции в точке ( M(x; ; f(x)) ) можно провести касательную,
причем, напомним, угловой коэффициент касательной равен ( f'(x) ). Такой график не может «разрываться» в точке (M), т. е. функция
обязана быть непрерывной в точке (x).

Это были рассуждения «на пальцах». Приведем более строгое рассуждение. Если функция (y=f(x)) дифференцируема в точке (x), то
выполняется приближенное равенство ( Delta y approx f'(x) cdot Delta x ). Если в этом равенстве ( Delta x ) устремить к
нулю, то и ( Delta y ) будет стремиться к нулю, а это и есть условие непрерывности функции в точке.

Итак, если функция дифференцируема в точке х, то она и непрерывна в этой точке.

Обратное утверждение неверно. Например: функция ( y=|x|) непрерывна везде, в частности в точке (x=0), но касательная к графику
функции в «точке стыка» (0; 0) не существует. Если в некоторой точке к графику функции нельзя провести касательную, то в этой
точке не существует производная.

Еще один пример. Функция ( y=sqrt[3]{x} ) непрерывна на всей числовой прямой, в том числе в точке (x=0).
И касательная к графику функции существует в любой точке, в том числе в точке (x=0). Но в этой точке касательная совпадает с осью (y),
т. е. перпендикулярна оси абсцисс, ее уравнение имеет вид (x=0). Углового коэффициента у такой прямой нет, значит, не существует и
( f'(0) )

Итак, мы познакомились с новым свойством функции — дифференцируемостью. А как по графику функции можно сделать вывод о ее
дифференцируемости?

Ответ фактически получен выше. Если в некоторой точке к графику функции можно провести касательную, не перпендикулярную оси
абсцисс, то в этой точке функция дифференцируема. Если в некоторой точке касательная к графику функции не существует или она
перпендикулярна оси абсцисс, то в этой точке функция не дифференцируема.

Правила дифференцирования

Операция нахождения производной называется дифференцированием.
При выполнении этой операции часто приходится работать с частными, суммами, произведениями функций, а также с «функциями функций»,
то есть сложными функциями. Исходя из определения производной, можно вывести правила дифференцирования, облегчающие эту работу.
Если (C) — постоянное число и ( f=f(x), ; g=g(x) ) — некоторые дифференцируемые функции, то справедливы следующие правила дифференцирования:

$$ C’=0 $$

$$ x’=1 $$

$$ ( f+g)’=f’+g’ $$

$$ (fg)’=f’g + fg’ $$

$$ (Cf)’=Cf’ $$

$$ left(frac{f}{g} right) ‘ = frac{f’g-fg’}{g^2} $$

$$ left(frac{C}{g} right) ‘ = -frac{Cg’}{g^2} $$

Производная сложной функции:

$$ f’_x(g(x)) = f’_g cdot g’_x $$

Таблица производных некоторых функций

$$ left( frac{1}{x} right) ‘ = -frac{1}{x^2} $$

$$ ( sqrt{x} ) ‘ = frac{1}{2sqrt{x}} $$

$$ left( x^a right) ‘ = a x^{a-1} $$

$$ left( a^x right) ‘ = a^x cdot ln a $$

$$ left( e^x right) ‘ = e^x $$

$$ ( ln x )’ = frac{1}{x} $$

$$ ( log_a x )’ = frac{1}{xln a} $$

$$ ( sin x )’ = cos x $$

$$ ( cos x )’ = -sin x $$

$$ ( text{tg} x )’ = frac{1}{cos^2 x} $$

$$ ( text{ctg} x )’ = -frac{1}{sin^2 x} $$

$$ ( arcsin x )’ = frac{1}{sqrt{1-x^2}} $$

$$ ( arccos x )’ = frac{-1}{sqrt{1-x^2}} $$

$$ ( text{arctg} x )’ = frac{1}{1+x^2} $$

$$ ( text{arcctg} x )’ = frac{-1}{1+x^2} $$

bold{mathrm{Basic}} bold{alphabetagamma} bold{mathrm{ABGamma}} bold{sincos} bold{gedivrightarrow} bold{overline{x}spacemathbb{C}forall} bold{sumspaceintspaceproduct} bold{begin{pmatrix}square&square\square&squareend{pmatrix}} bold{H_{2}O}
square^{2} x^{square} sqrt{square} nthroot[msquare]{square} frac{msquare}{msquare} log_{msquare} pi theta infty int frac{d}{dx}
ge le cdot div x^{circ} (square) |square| (f:circ:g) f(x) ln e^{square}
left(squareright)^{‘} frac{partial}{partial x} int_{msquare}^{msquare} lim sum sin cos tan cot csc sec
alpha beta gamma delta zeta eta theta iota kappa lambda mu
nu xi pi rho sigma tau upsilon phi chi psi omega
A B Gamma Delta E Z H Theta K Lambda M
N Xi Pi P Sigma T Upsilon Phi X Psi Omega
sin cos tan cot sec csc sinh cosh tanh coth sech
arcsin arccos arctan arccot arcsec arccsc arcsinh arccosh arctanh arccoth arcsech
begin{cases}square\squareend{cases} begin{cases}square\square\squareend{cases} = ne div cdot times < > le ge
(square) [square] ▭:longdivision{▭} times twostack{▭}{▭} + twostack{▭}{▭} – twostack{▭}{▭} square! x^{circ} rightarrow lfloorsquarerfloor lceilsquarerceil
overline{square} vec{square} in forall notin exist mathbb{R} mathbb{C} mathbb{N} mathbb{Z} emptyset
vee wedge neg oplus cap cup square^{c} subset subsete superset supersete
int intint intintint int_{square}^{square} int_{square}^{square}int_{square}^{square} int_{square}^{square}int_{square}^{square}int_{square}^{square} sum prod
lim lim _{xto infty } lim _{xto 0+} lim _{xto 0-} frac{d}{dx} frac{d^2}{dx^2} left(squareright)^{‘} left(squareright)^{”} frac{partial}{partial x}
(2times2) (2times3) (3times3) (3times2) (4times2) (4times3) (4times4) (3times4) (2times4) (5times5)
(1times2) (1times3) (1times4) (1times5) (1times6) (2times1) (3times1) (4times1) (5times1) (6times1) (7times1)
mathrm{Радианы} mathrm{Степени} square! ( ) % mathrm{очистить}
arcsin sin sqrt{square} 7 8 9 div
arccos cos ln 4 5 6 times
arctan tan log 1 2 3
pi e x^{square} 0 . bold{=} +

Подпишитесь, чтобы подтвердить свой ответ

Подписаться

Войдите, чтобы сохранять заметки

Войти

Номер Строки

Примеры

  • frac{d}{dx}(frac{3x+9}{2-x})

  • frac{d^2}{dx^2}(frac{3x+9}{2-x})

  • (sin^2(theta))”

  • производное:от:f(x)=3-4x^2,::x=5

  • неявная:производная:frac{dy}{dx},:(x-y)^2=x+y-1

  • frac{partial}{partial ypartial x}(sin (x^2y^2))

  • frac{partial }{partial x}(sin (x^2y^2))

  • Показать больше

Описание

Поэтапное дифференцирование функций

derivative-calculator

ru

Блог-сообщения, имеющие отношение к Symbolab

  • Advanced Math Solutions – Derivative Calculator, Implicit Differentiation

    We’ve covered methods and rules to differentiate functions of the form y=f(x), where y is explicitly defined as…

    Read More

  • Введите Задачу

    Сохранить в блокнот!

    Войти

    Данный онлайн калькулятор предназначен для решения частных производных первого и второго порядков.
    Частная производная – это производная функции одной переменной, когда значение другой переменной фиксировано. Следовательно, частные производные находятся так же, как и производные функций одной переменной. Частная производная это обобщенное понятие производной, когда в функции содержится несколько переменных.

    Калькулятор поможет найти частные производные функции онлайн.
    Для получения полного хода решения нажимаем в ответе Step-by-step.

    Основные функции

    left(a=operatorname{const} right)

    • x^{a}: x^a

    модуль x: abs(x)

    Производные

    Для того, чтобы найти производную функции f(x)
    нужно написать в строке: f[x], x. Если Вам требуется
    найти производную n-го порядка, то следует написать: f[x], {x, n}. В
    том случае, если Вам требуется найти частную производную функции f(x,y,z,...,t) напишите в окне гаджета: f[x, y, z,…,t], j, где j
    — интересующая Вас переменная. Если нужно найти частную производную по
    некоторой переменной порядка n, то следует ввести: f[x, y, z,…,t], {j,
    n}, где j означает тоже, что и Выше.

    Важно подчеркнуть, что калькулятор выдает пошаговое нахождение
    производной при нажатии на «Show Steps» в правом верхнем углу
    выдаваемого ей ответа.

    Примеры
    • x*E^x, x;
    • x^3*E^x, {x,17};
    • x^3*y^2*Sin[x+y], x;
    • x^3*y^2*Sin[x+y], y,
    • x/(x+y^4), {x,6}.

    Добавить комментарий