Как найти производную сложной функции примеры решения

Производная сложной функции

Формула

Пусть есть функция $ y=f(g(x)) $, тогда производную сложной функции можно найти по формуле:

$$ y’=f'(g(x)) cdot g'(x) $$

Проще говоря, нахождение производной сложной функции выполняется “по цепочке”. Сначала находим производную от внешней функции без изменения её аргумента и умножаем на производную аргумента. Если аргумент в свою очередь тоже является сложной функцией, то снова берем производную ещё и от него.

Рассмотрим на практике примеры решений производных сложных функций.

Примеры решений

Пример 1
Найти производную сложной функции: $ y = sqrt{x^2+1} $
Решение

Пользуемся формулой нахождения производной сложной функции. Сначала находим производную внешней функции без учета внутренней функции, а затем и производную от самой внутренней функции: 

$$ y’=( sqrt{x^2+1} )’= $$

$$ =frac{1}{2sqrt{x^2+1}} cdot (x^2+1)’= $$

$$ =frac{1}{2sqrt{x^2+1}} cdot 2x = frac{x}{sqrt{x^2+1}} $$

Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя!

Ответ
$$ y’=frac{x}{sqrt{x^2+1}} $$
Пример 2
Найти производную сложной функции: $ y = e^{4x+3} $
Решение

Видим экспоненту в задаче, поэтому берем значение производной для неё из таблицы, а затем вычисляем производную от аргумента:

$$ y’=(e^{4x+3})’ = e^{4x+3} cdot (4x+3)’ = $$

$$ = e^{4x+3} cdot 4 = 4e^{4x+3} $$

Ответ
$$ y’ = 4e^{4x+3} $$
Пример 3
Найти производную сложной функции: $ y = arctan x^2 $
Решение

Зная значение производной арктангенса из таблицы, находим производную сложной функции:

$$ y’ = (arctan x^2)’ = frac{1}{1+(x^2)^2} cdot (x^2)’ = $$

$$ = frac{1}{1+(x^2)^2} cdot 2x = frac{2x}{1+x^4} $$

Ответ
$$ y’ = frac{2x}{1+x^4} $$
Пример 4
Найти производную сложной функции: $ y = ln(x^3+2) $
Решение

Перед нами сложная функция, точнее натуральный логарифм от многочлена. Поэтому применим правило. Имеем:

$$ y’ = (ln(x^3+2))’ = frac{1}{x^3+2} cdot (x^3+2)’ = $$

$$ = frac{1}{x^3+2} cdot 3x^2 = frac{3x^2}{x^3+2} $$

Ответ
$$ y’ = frac{3x^2}{x^3+2} $$
Пример 5
Найти производную от сложной функции: $ y = ln(sin^3x+ e^{cos x}) $
Решение

Сложную функцию представляет натуральный логарифм, аргументом которого является сумма двух функций, обе тоже сложные функции. Вспоминаем формулу и приступаем:

$$ y’ = ( ln(sin^3x+e^{cos x}) )’ = $$

$$ =frac{1}{sin^3x+e^{cos x}} cdot (sin^3x+e^{cos x})’ = $$

Производная суммы функций равна сумме производных этих функций:

$$ =frac{1}{sin^3x+e^{cos x}} cdot ( (sin^3x)’+(e^{cos x})’) = $$

Первая функция $ (sin^3x)’ $ – это производная от сложной функции:

$$ (sin^3x)’ = 3sin^2x cdot (sin x)’ = 3sin^2x cos x $$

Вторая функция $ (e^{cos x})’ $ – это производная сложной функции:

$$ (e^{cos x})’ = e^{cos x} cdot (cos x)’ = e^{cos x} cdot (-sin x) $$

Продолжаем нахождение производной исходной функции:

$$ = frac{1}{sin^3x+e^{cos x}} cdot (3sin^2x cos x – e^{cos x} sin x) $$

Ответ

$$ y’ = frac{3sin^2x cos x – e^{cos x} sin x}{sin^3x+e^{cos x}} $$

Простое объяснение принципов решения производных и 10 наглядных примеров. В каждом примере поэтапный ход решения и ответ.

Алгоритм решения производных

Производная функции есть предел отношения приращения этой функции к приращению её аргумента при стремлении последнего к нулю, при условии существования данного предела.

Для вычисления производных вам потребуется таблица производных. Кроме того, существуют формулы для нахождения сложных производных.

Процесс нахождения производный называется дифференцированием.

Таблица простых производных

Формулы сложных производных

(a*u(x)))' = a*f'(x) pm b * g'(x) – производная суммы (разницы).

(u(x) * v(x))' = u'(x) * v(x) + u(x) * v'(x) – производная произведения.

(frac{u(x)}{v(x)})' = frac{u'(x) * v(x) - u(x) * v'(x)}{v^2(x)} – производная частного.

Нужна помощь в написании работы?

Мы – биржа профессиональных авторов (преподавателей и доцентов вузов). Наша система гарантирует сдачу работы к сроку без плагиата. Правки вносим бесплатно.

Цена работы

Примеры решений производных

Задача

Найти производную функции y = cos(3x+1)

Решение

Заданная функция является сложной и её производная равна произведению производной от косинуса на производную от его аргумента:

y' = (cos(3x+1))' = -sin(3x+1)cdot(3x+1)' = -sin(3x+1)cdot(3cdot1+0) = -3sin(3x+1)

Ответ

y' = -3sin(3x+1)

Задание

Найти производную функции y = (x^2-2x+3)^5

Решение

Обозначим y=u^5, где u = x^2-2x+3. Тогда, согласно правила вычисления производной сложной функции, получим:
y' = (u^5)'_u(x^2-2x+3)'_x = 5u^4(2x-1) = 10(x-1)(x^2-2x+3)^4

Ответ

y' = 10(x-1)(x^2-2x+3)^4

Задача

Найти производную функции y = sqrt{x} при x = 4.

Решение

y' = x^{frac{1}{2}} = frac{1}{2}x^{frac{1}{2}-1} = frac{1}{2}x^{-frac{1}{2}} = frac{1}{2sqrt{x}}.
y'(4) = frac{1}{2sqrt{4}} = frac{1}{4}.

Ответ

y'(4) = frac{1}{4}.

Задача

Найти производную функции y = x^3sin x + 3x^2cos x - 6sin x - 6cos x.

Решение

y' = 3x^2sin x + x^3cos x + 6cos x - 3x^2sin x - 6sin x - 6xcos x + 6sin x.
После приведения подобных членов получаем:
y' = x^2cos x.

Ответ

y’=x^3·cos(x)+6·x·cos(x)-6·cos(x)+6·sin(x).

Задача

Найти производную функции y = sqrt{{sin}^2 x + 3{cos}^3 4x}.

Решение

В этом примере квадратный корень извлекается из суммы {sin}^2 x + 3{cos}^3 4x. Поэтому сначала вычисляем производную от квадратного корня, а затем умножаем ее на производную от подкоренного выражения:
y' = frac{1}{2sqrt{{sin}^2 x + 3{cos}^3 4x}}[2sin xcos x + 3cdot3{cos}^2 4xcdot(-sin 4x)cdot4].

Ответ

y' = frac{1}{2sqrt{{sin}^2 x + 3{cos}^3 4x}}[2sin xcos x + 3cdot3{cos}^2 4xcdot(-sin 4x)cdot4].

Задача

Найти производную функции y = frac{3cosec x - 2sin x}{5{cos}^5 x} - frac{16}{5}ctg{2x}.

Решение

Применяя правила дифференцирования дробей, получаем:
(frac{3cosec x - 2sin x}{5{cos}^5 x})' = frac{1}{5}frac{(3cosec x - 2sin x)'{cos}^5 x - ({cos}^5 x)'(3cosec x - 2sin x)}{{cos}^{10} x} =
frac{(-3cosec xctg x - 2cos x)cdot{cos}^5 x - (-5{cos}^4 x)sin x)cdot(3cosec-2sin x)}{{cos}^{10} x}.
Применяя правила дифференцирования котангенса, получаем:
(frac{16}{5}ctg{2x})' = -frac{16}{5}(-frac{1}{{sin}^2 2x}cdot2) = frac{32}{5}frac{1}{{sin}^2 2x}.
Учитывая, что cosec x = frac{1}{sin x} и ctg x = frac{cos x}{sin x}, после упрощения получим:
y' = frac{1}{{sin}^2 xcdot{cos}^6 x}.

Ответ

y' = frac{1}{{sin}^2 xcdot{cos}^6 x}.

Задача

Найти производную функции y = frac{a^2 - x^2}{a^2 + x^2}, a = const.

Решение

Применяя правила дифференцирования дробей, получаем:
y' = frac{(a^2 - x^2)'(a^2 + x^2) - (a^2 + x^2)'(a^2 - x^2)}{(a^2 + x^2)^2} = frac{-2x(a^2 + x^2) - 2x(a^2 - x^2)}{(a^2 + x^2)^2} = -frac{4a^2x}{(a^2 + x^2)^2}.

Ответ

y' = -frac{4a^2x}{(a^2 + x^2)^2}.

Задача

Найти производную функции y = frac{1}{sqrt{1 + x^2}}.

Решение

Применяя правила дифференцирования дробей, получаем:
y' = frac{x'sqrt{1 + x^2} - (sqrt{1 + x^2})'x}{(sqrt{1 + x^2})^2} = frac{1cdotsqrt{1 + x^2} - frac{1}{2sqrt{1 + x^2}}cdot2xcdot x}{1 + x^2} = frac{1}{sqrt{(1 + x^2)^3}}.

Ответ

y' = frac{1}{sqrt{(1 + x^2)^3}}.

Задача

Найти производную функции y = arcsin^2x.

Решение

Дифференцирование можно произвести в два этапа: вначале продифференцировать степень функции арксинус, а затем произвести дифференцирование самого арксинуса, перемножив результаты:
y' = 2arcsin xcdotfrac{1}{sqrt{1 - x^2}}.

Ответ

y' = 2arcsin xcdotfrac{1}{sqrt{1 - x^2}}.

Задача

Найти производную функции y = e^{sqrt{sin x}}.

Решение

По правилам дифференцирования показательной функции с основанием e, производная этой функции равна произведению самой функции на производную функции, являющейся показателем степени:
y' = e^{sqrt{sin x}}cdotfrac{1}{2sqrt{sin x}}cdotcos x.

Ответ

y' = e^{sqrt{sin x}}cdotfrac{1}{2sqrt{sin x}}cdotcos x.

Производная сложной функции.

Все примеры этого раздела опираются на таблицу производных и теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция $u=varphi(x)$ имеет в некоторой точке $x_0$ производную $u_{x}’=varphi'(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=varphi (x_0)$ производную $y_{u}’=f'(u)$. Тогда сложная функция $y=fleft(varphi (x) right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $varphi (x)$:

$$ left( f(varphi (x))right)’=f_{u}’left(varphi (x_0) right)cdot varphi'(x_0) $$

или, в более короткой записи: $y_{x}’=y_{u}’cdot u_{x}’$.

В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y’$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y’$ пишут $y’_x$.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции $y=e^{cos{x}}$.

Решение

Так как $y=e^{cos{x}}$, то, соответственно, $y’=left(e^{cos x}right)’$. Открываем таблицу производных и видим, что формула №6 имеет нужную нам структуру:

$$left(e^uright)’=e^ucdot{u’}$$

Только в нашем случае вместо $u$ стоит $cos{x}$, т.е. $u=cos{x}$. Подставляя в табличную формулу $u=cos{x}$, получим:

Производная

Итак,

$$ y’=left( e^{cos x} right)’=e^{cos x}cdot (cos x)’ tag {1.1}$$

Первая часть работы сделана. Теперь нужно найти производную $(cos{x})’$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10:

$$
left(cos{u}right)’=-sin{u}cdot{u’}
$$

Подставляя $u=x$ в данную формулу, имеем: $(cos{x})’=-sin{x}cdot{x’}$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

$$
y’=left( e^{cos x} right)’=e^{cos x}cdot (cos x)’=
e^{cos x}cdot (-sin xcdot x’) tag {1.2}
$$

Так как $x’=1$, то продолжим равенство (1.2):

$$
y’=left( e^{cos x} right)’=e^{cos x}cdot (cos x)’=
e^{cos x}cdot (-sin xcdot x’)=e^{cos x}cdot (-sin xcdot 1)=-sin xcdot e^{cos x} tag {1.3}
$$

Итак, из равенства (1.3) имеем: $y’=-sin xcdot e^{cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, – как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ: $y’=-sin xcdot e^{cos x}$.

Пример №2

Найти производную функции $y=9arctg^{12}(4ln x)$.

Решение

Нам необходимо вычислить производную $y’=left(9arctg^{12}(4ln x) right)’$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

$$
y’=left(9arctg^{12}(4ln x) right)’=9cdotleft(arctg^{12}(4ln x) right)’ tag {2.1}
$$

Теперь обратимся к выражению $left(arctg^{12}(4ln x) right)’$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $left(left(arctg(4ln x) right)^{12}right)’$. Теперь видно, что необходимо использовать формулу №2, т.е. $left(u^alpha right)’=alphacdot u^{alpha-1}cdot u’$. В эту формулу подставим $u=arctg(4ln x)$ и $alpha=12$:

$$
left(left(arctg(4ln x) right)^{12}right)’
=12cdotleft(arctg(4ln x) right)^{12-1}cdotleft(arctg(4ln x)right)’
=12cdotleft(arctg(4ln x) right)^{11}cdotleft(arctg(4ln x)right)’
$$

Дополняя равенство (2.1) полученным результатом, имеем:

$$
y’=left(9cdot arctg^{12}(4ln x) right)’=9cdotleft(arctg^{12}(4ln x) right)’=
108cdotleft(arctg(4 ln x) right)^{11}cdot (arctg(4ln{x}))’
tag {2.2}
$$

Примечание: показатьскрыть

Теперь нужно найти $(arctg(4ln x))’$. Используем формулу №19 таблицы производных, подставив в неё $u=4ln x$:

$$
(arctg(4ln x))’
=frac{1}{1+(4ln x)^2}cdot (4ln x)’
=frac{1}{1+16ln^2{x}}cdot (4ln x)’
$$

Равенство (2.2) теперь станет таким:

$$
y’=left(9cdot arctg^{12}(4ln x) right)’=9cdotleft(arctg^{12}(4ln x) right)’=\
=108cdotleft(arctg(4ln x) right)^{11}cdot (arctg(4ln x))’
=108cdot left(arctg(4ln x) right)^{11}cdot frac{1}{1+16cdot ln^2 x}cdot (4ln x)’
tag {2.3}
$$

Осталось найти $(4ln x)’$. Вынесем константу (т.е. 4) за знак производной: $(4cdot ln x)’=4cdot (ln x)’$. Для того, чтобы найти $(ln x)’$, используем формулу №8, подставив в нее $u=x$: $(ln x)’=frac{1}{x}cdot x’$. Так как $x’=1$, то получим:

$$(ln x)’=frac{1}{x}cdot x’=frac{1}{x}cdot 1=frac{1}{x}$$

Подставив полученный результат в формулу (2.3), получим:

$$
y’=left(9cdot arctg^{12}(4ln x) right)’=9cdotleft(arctg^{12}(4ln x) right)’=\
=108cdotleft(arctg(4ln x) right)^{11}cdot (arctg(4ln x))’=108cdot left(arctg(4ln x) right)^{11}cdot frac{1}{1+16cdot ln^2 x}cdot (4cdot ln x)’=\

=108cdot left(arctg(4ln x) right)^{11}cdot frac{1}{1+16cdot ln^2 x}cdot 4cdot frac{1}{x}
=frac{432arctg^{11}(4ln x)}{xcdot (1+16cdot ln^2 x)}.
$$

Напомню, что производная сложной функции чаще всего находится в одну строку, – как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ: $y’=frac{432arctg^{11}(4ln x)}{xcdot (1+16cdot ln^2 x)}$.

Пример №3

Найти $y’$ функции $y=sqrt[7]{sin^3(5cdot9^x)}$.

Решение

Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=sqrt[7]{sin^3(5cdot9^x)}=left( sin(5cdot 9^x)right)^{frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=left( sin(5cdot 9^x)right)^{frac{3}{7}}$, то:

$$
y’=left( left( sin(5cdot 9^x)right)^{frac{3}{7}}right)’
tag {3.1}
$$

Используем формулу №2 из таблицы производных, подставив в неё $u=sin(5cdot 9^x)$ и $alpha=frac{3}{7}$:

$$
left( left( sin(5cdot 9^x)right)^{frac{3}{7}}right)’=
frac{3}{7}cdot left( sin(5cdot 9^x)right)^{frac{3}{7}-1} (sin(5cdot 9^x))’=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} (sin(5cdot 9^x))’
$$

Продолжим равенство (3.1), используя полученный результат:

$$
y’=left( left( sin(5cdot 9^x)right)^{frac{3}{7}}right)’=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} (sin(5cdot 9^x))’
tag {3.2}
$$

Теперь нужно найти $(sin(5cdot 9^x))’$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5cdot 9^x$:

$$
(sin(5cdot 9^x))’=cos(5cdot 9^x)cdot(5cdot 9^x)’
$$

Дополнив равенство (3.2) полученным результатом, имеем:

$$
y’=left( left( sin(5cdot 9^x)right)^{frac{3}{7}}right)’=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} (sin(5cdot 9^x))’=\
=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} cos(5cdot 9^x)cdot(5cdot 9^x)’
tag {3.3}
$$

Осталось найти $(5cdot 9^x)’$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5cdot 9^x)’=5cdot (9^x)’$. Для нахождения производной $(9^x)’$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)’=9^xcdot ln9cdot x’$. Так как $x’=1$, то $(9^x)’=9^xcdot ln9cdot x’=9^xcdot ln9$. Теперь можно продолжить равенство (3.3):

$$
y’=left( left( sin(5cdot 9^x)right)^{frac{3}{7}}right)’=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} (sin(5cdot 9^x))’=\
=frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} cos(5cdot 9^x)cdot(5cdot 9^x)’=
frac{3}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}} cos(5cdot 9^x)cdot 5cdot 9^xcdot ln9=\
=frac{15cdot ln 9}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}}cdot cos(5cdot 9^x)cdot 9^x.
$$

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $left( sin(5cdot 9^x)right)^{-frac{4}{7}}$ в виде $frac{1}{left( sin(5cdot 9^x)right)^{frac{4}{7}}}=frac{1}{sqrt[7]{sin^4(5cdot 9^x)}}$. Тогда производная будет записана в такой форме:

$$
y’=frac{15cdot ln 9}{7}cdot left( sin(5cdot 9^x)right)^{-frac{4}{7}}cdot cos(5cdot 9^x)cdot 9^x
=frac{15ln 9}{7}cdot frac{cos (5cdot 9^x)cdot 9^x}{sqrt[7]{sin^4(5cdot 9^x)}}.
$$

Ответ: $y’=frac{15ln 9}{7}cdot frac{cos (5cdot 9^x)cdot 9^x}{sqrt[7]{sin^4(5cdot 9^x)}}$.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

Решение

В формуле №2 таблицы производных записана производная функции $u^alpha$. Подставляя $alpha=-1$ в формулу №2, получим:

$$left(u^{-1}right)’=-1cdot u^{-1-1}cdot u’=-u^{-2}cdot u’tag {4.1}$$

Так как $u^{-1}=frac{1}{u}$ и $u^{-2}=frac{1}{u^2}$, то равенство (4.1) можно переписать так: $left( frac{1}{u} right)’=-frac{1}{u^2}cdot u’$. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $alpha=frac{1}{2}$:

$$left(u^{frac{1}{2}}right)’=frac{1}{2}cdot u^{frac{1}{2}-1}cdot u’=frac{1}{2}u^{-frac{1}{2}}cdot u’tag {4.2}
$$

Так как $u^{frac{1}{2}}=sqrt{u}$ и $u^{-frac{1}{2}}=frac{1}{u^{frac{1}{2}}}=frac{1}{sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:

$$
(sqrt{u})’=frac{1}{2}cdot frac{1}{sqrt{u}}cdot u’=frac{1}{2sqrt{u}}cdot u’
$$

Полученное равенство $(sqrt{u})’=frac{1}{2sqrt{u}}cdot u’$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $alpha$.

Пример №5

Найти $y’$, если $y=arcsin{2^x}$.

Решение

Нахождение производной сложной функции в данном примере запишем без подробных пояснений, которые были даны в предыдущих задачах.

$$
y’
=left(arcsin{2^x}right)’
=frac{1}{sqrt{1-left(2^xright)^2}}cdotleft(2^xright)’
=frac{1}{sqrt{1-2^{2x}}}cdot{2^x}ln{2}
=frac{2^xln{2}}{sqrt{1-2^{2x}}}

$$

Ответ: $y’=frac{2^xln 2}{sqrt{1-2^{2x}}}$.

Пример №6

Найти $y’$, если $y=7lnsin^3{x}$.

Решение

Как и в предыдущем примере, нахождение производной сложной функции рассмотрим без подробностей. Желательно записать производную самостоятельно, лишь сверяясь с указанным ниже решением.

Сразу стоит отметить, что перед нахожденим производной функцию хорошо бы слегка упростить. Так как $lnsin^3{x}=3lnsin{x}$, то $y=21lnsin{x}$.

$$
y’
=left(21lnsin{x}right)’
=21cdotleft(lnsin{x}right)’
=21cdotfrac{1}{sin{x}}cdot(sin{x})’
=frac{21}{sin{x}}cdotcos{x}
=21ctg{x}.
$$

Ответ: $y’=21ctg x$.

Пример №7

Найти $y’$, если $y=frac{9}{tg^4(log_{2}(2cdotcos x))}$.

Решение

Производная

   Раз ты зашел сюда, то уже, наверное, успел увидеть в учебнике эту формулу

((f(g(x)))’=f'(g(x))cdot g'(x))

и сделать вот такое лицо:

лицо когда видишь формулу производной сложной функции

Друг, не переживай! На самом деле все просто до безобразия. Ты обязательно все поймешь. Только одна просьба – прочитай статью не торопясь, старайся понять каждый шаг. Я писал максимально просто и наглядно, но вникнуть в идею всё равно надо. И обязательно реши задания из статьи.

Содержание:

  • Что такое сложная функция?

  • “Распаковка” сложной функции

  • Внутренняя и внешняя функция

  • Производная сложной функции. Примеры

Что такое сложная функция?

Представь, что ты переезжаешь в другую квартиру и поэтому собираешь вещи в большие коробки. Пусть надо собрать какие-нибудь мелкие предметы, например, школьные письменные принадлежности. Если просто скидать их в огромную коробку, то они затеряются среди других вещей. Чтобы этого избежать, ты сначала кладешь их, например, в пакет, который затем укладываешь в большую коробку, после чего ее запечатываешь. Этот “сложнейший” процесс представлен на схеме ниже:

_производная сложной функции.png

Казалось бы, причем здесь математика? Да притом, что сложная функция формируется ТОЧНО ТАКИМ ЖЕ способом! Только «упаковываем» мы не тетради и ручки, а (x), при этом «пакетами» и «коробками» служат разные функции.

Например, возьмем x и «запакуем» его в функцию косинуса:

упаковка косинус икс

В результате получим, ясное дело, (cos⁡x). Это наш «пакет с вещами». А теперь кладем его в «коробку» – запаковываем, например, в кубическую функцию.

упаковка косинус икс в третью степень

Что получится в итоге? Да, верно, будет «пакет с вещами в коробке», то есть «косинус икса в кубе».

как получается сложная функция

Получившаяся конструкция и есть сложная функция. Она отличается от простой тем, что к одному иксу применяется НЕСКОЛЬКО «воздействий» (упаковок) подряд и получается как бы «функция от функции» – «упаковка в упаковке».

В школьном курсе видов этих самых «упаковок» совсем мало, всего четыре :

виды функций

Давай теперь «упакуем» икс сначала в показательную функцию с основанием 7, а потом в тригонометрическую функцию тангенс. Получим:

(x → 7^x → tg⁡(7^x))

А теперь «упакуем» икс два раза в тригонометрические функции, сначала в синус, а потом в котангенс:

(x → sin⁡x → ctg⁡ (sin⁡x ))

Просто, правда?

Напиши теперь сам функции, где икс:
   – сначала «упаковывается» в косинус, а потом в показательную функцию с основанием (3);
   – сначала в пятую степень, а затем в тангенс;
   – сначала в логарифм по основанию (4), затем в степень (-2). 


Ответы на это задание посмотри в конце статьи.

А можем ли мы «упаковать» икс не два, а три раза? Да, без проблем! И четыре, и пять, и двадцать пять раз. Вот, например, функция, в которой икс «упакован» (4) раза:

(y=5^{log_2⁡{sin⁡(x^4 )}})

Но такие формулы в школьной практике не встретятся (студентам повезло больше – у них может быть и посложнее☺).

«Распаковка» сложной функции

Посмотри на предыдущую функцию еще раз. Сможешь ли ты разобраться в последовательности «упаковки»? Во что икс запихнули сначала, во что потом и так далее до самого конца. То есть – какая функция вложена в какую? Возьми листок и запиши, как ты считаешь. Можно сделать это цепочкой со стрелками как мы писали выше или любым другим способом.

Сделал?

Теперь правильный ответ: сначала икс «упаковали» в (4)-ую степень, потом результат упаковали в синус, его в свою очередь поместили в логарифм по основанию (2), и в конце концов всю эту конструкцию засунули в степень пятерки.

То есть разматывать последовательность надо В ОБРАТНОМ ПОРЯДКЕ. И тут подсказка как это делать проще: сразу смотри на икс – от него и надо плясать. Давай разберем несколько примеров.

Например, вот такая функция: (y=tg⁡(log_2⁡x )). Смотрим на икс – что с ним происходит сначала? Берется логарифм от него. А потом? Берется тангенс от результата. Вот и последовательность будет такая же:

(x → log_2⁡x → tg⁡(log_2⁡x ))

Еще пример: (y=cos⁡{(x^3 )}). Анализируем – сначала икс возвели в куб, а потом от результата взяли косинус. Значит, последовательность будет: (x → x^3 → cos⁡{(x^3 )}). Обрати внимание, функция вроде бы похожа на самую первую (там, где с картинками). Но это совсем другая функция: здесь в кубе икс (то есть (cos⁡{(x·x·x)})), а там в кубе косинус (x) (то есть, (cos⁡x·cos⁡x·cos⁡x)). Эта разница возникает из-за разных последовательностей «упаковки».

Последний пример (с важной информацией в нем): (y=sin⁡{(2x+5)}). Понятно, что здесь сначала сделали арифметические действия с иксом, потом от результата взяли синус: (x → 2x+5 → sin⁡{(2x+5)}). И это важный момент: несмотря на то, что арифметические действия функциями сами по себе не являются, здесь они тоже выступают как способ «упаковки». Давай немного углубимся в эту тонкость.

Как я уже говорил выше, в простых функциях икс «упаковывается» один раз, а в сложных – два и более. При этом любая комбинация простых функций (то есть их сумма, разность, умножение или деление) – тоже простая функция. Например, (x^7) – простая функция и (ctg x) – тоже. Значит и все их комбинации являются простыми функциями:

(x^7+ ctg x) – простая,
(x^7· ctg x) – простая,
(frac{x^7}{ctg x}) – простая и т.д.

Однако если к такой комбинации применить еще одну функцию – будет уже сложная функция, так как «упаковок» станет две. Смотри схему:

как получается сложная функция

Хорошо, давай теперь сам. Напиши последовательность «заворачивания» функций:

   (y=cos{⁡(sin⁡x)})


   (y=5^{x^7})


   (y=arctg⁡{11^x})


   (y=log_2⁡(1+x))


Ответы опять в конце статьи.

Внутренняя и внешняя функции

Зачем же нам нужно разбираться во вложенности функций? Что нам это дает? Дело в том, что без такого анализа мы не сможем надежно находить производные разобранных выше функций.

И для того, чтобы двигаться дальше, нам будут нужны еще два понятия: внутренняя и внешняя функции. Это очень простая вещь, более того, на самом деле мы их уже разобрали выше: если вспомнить нашу аналогию в самом начале, то внутренняя функция – это «пакет», а внешняя – это «коробка». Т.е. то, во что икс «заворачивают» сначала – это внутренняя функция, а то, во что «заворачивают» внутреннюю – уже внешняя. Ну, понятно почему – она ж снаружи, значит внешняя.

Вот в этом примере: (y=tg⁡(log_2⁡x )), функция (log_2⁡x) – внутренняя, а тангенс – внешняя.

А в этом: (y=cos⁡{(x^3+2x+1)}),   (x^3+2x+1) – внутренняя,  а косинус – внешняя.

Выполни последнюю практику анализа сложных функций, и перейдем, наконец, к тому, ради чего всё затевалось – будем находить производные сложных функций:

Заполни пропуски в таблице:

задание на определение сложной функции

Производная сложной функции

Браво нам, мы всё ж таки добрались до «босса» этой темы – собственно, производной сложной функции, а конкретно, до той самой ужасной формулы из начала статьи.☺

((f(g(x)))’=f'(g(x))cdot g'(x))

Формула эта читается так:

Производная сложной функции равна произведению производной внешней функции по неизменной внутренней на производную внутренней функции.

И сразу смотри схему разбора “по словам” чтобы понимать, что к чему относится:

как брать производную сложной функции

Надеюсь, термины «производная» и «произведение» затруднений не вызывают. «Сложную функцию» – мы уже разобрали. Загвоздка в «производной внешней функции по неизменной внутренней». Что это такое?

Ответ: это обычная производная внешней функции, при которой изменяется только внешняя функция, а внутренняя остается такой же. Все равно непонятно? Хорошо, давай на примере.

Пусть у нас есть функция (y=sin⁡(x^3 )). Понятно, что внутренняя функция здесь (x^3), а внешняя синус . Найдем теперь производную внешней по неизменной внутренней.

Из таблицы производных мы знаем, что производная синуса икс есть косинус икс (табличные значения надо знать наизусть!):      (({sin⁡{x}})’=cos⁡{x}).

Тогда производная внешней функции по неизменной внутренней для нашего случая будет (cos⁡(x^3)). То есть, мы взяли ее как обычную производную синуса, а содержимое синуса (внутреннюю функцию) просто скопировали в полученную производную (косинус), ничего в ней не меняя.

Таким образом, на данный момент имеем:

пример взятия производной сложной функции по формуле

Осталась «производная внутренней функции». Ну, это совсем легко – обычная производная от внутренней функции, при этом внешняя не влияет вообще никак. В нашем примере, производная от (x^3).

((x^3 )’=3x^2)

Все, теперь можем писать ответ:

производная сложной функции синус

Вот так. Давай еще один пример разберем.

Пусть надо найти производную функции (y=(sin⁡x )^3).

Анализируем. Последовательность «заворачивания» у нас такая: (x → sin⁡x → (sin⁡x )^3). Значит, в данном примере внутренняя функция это (sin⁡x), а внешняя возведение в куб.

Производная внешней по внутренней – это производная куба (содержимое куба при этом не меняется). Так как производная от степенной функции, а в нашем случае в куб «завернут» (sin⁡x), то производная внешней будет (3(sin⁡x)^2). То есть, имеем:

синус в кубе взятие производной

Ну, а производная внутренней – это просто производная синуса икс, то есть косинус икс.

В итоге, имеем:

(y’=((sin⁡x )^3 )’=3(sin⁡x )^2·(sin⁡x )’=3(sin⁡x )^2·cos⁡x)

Понятно?
Ладно, ладно, вот еще один пример с разбором. ☺

Пример. Найти производную сложной функции (y=ln(x^2-x)).

Разбираем вложенность функций: (x → x^2-x → ln⁡(x^2-x)).
Внутренняя: (x^2-x).            Внешняя: натуральный логарифм.  
Из таблицы производных знаем:производная натурального логарифма.
То есть производная внешней по внутренней будет: (ln⁡(x^2-x)’=) (frac{1}{x^2-x}).
Производная внутренней: ((x^2-x)’= (x^2)’-(x)’=2x-1).
В итоге, согласно большой и страшной формуле имеем:

(y ‘=(ln⁡(x^2-x) )’=)(frac{1}{x^2-x})(·(2x-1))

Ну и напоследок можно немного «причесать» ответ, чтоб никто не докопался:

(y ‘=(ln⁡(x^2-x))’=)(frac{1}{x^2-x})(·(2x-1)=)(frac{2x-1}{x^2-x})

Готово.

Что, еще примеров желаешь? Легко.

Пример. Найти производную сложной функции (y=sin⁡{(cos⁡x)}).
Вложенность функций: (x → cos⁡x → sin⁡{(cos⁡x)})
Внутренняя: (cos⁡x)    Внешняя:синус
Производная внешней по внутренней: (sin{⁡(cos⁡x )}’=cos⁡{cos⁡x})
Производная внутренней: ((cos⁡x )’= -sin⁡x)
Имеем: (y’=(sin⁡{(cos⁡x)})’=cos⁡{cos⁡x}·(-sin⁡x )=-cos⁡{cos⁡x} ·sin⁡x)

Замечание: Обрати внимание, что заменить запись (cos⁡{cos⁡x}) на (cos^2⁡x) НЕЛЬЗЯ, так как (cos^2⁡x) – это комбинация простых функций (cos^ 2⁡x=cos⁡x·cos⁡x), а (cos⁡{cos⁡x}) – сложная функция: косинус от косинуса икс. Это абсолютно разные функции.

Еще пример с важным замечанием в нем.

Пример. Найти производную сложной функции (y=sqrt{x^6} )
Вложенность функций: (x → x^6 → sqrt{x^6})
Внутренняя: (x^6)      Внешняя: корень
Производная внешней по внутренней: (sqrt{x^6}’=)(frac{1}{2sqrt{x^6}})
Производная внутренней: ((x^6)’= 6x^5)
Имеем: ((sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5)
И теперь упростим ответ. Вспомним свойство корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда (sqrt{x^6}=x^{frac{6}{2}}=x^3). С учетом этого получаем:

(y’=( sqrt{x^6})’=)(frac{1}{2sqrt{x^6}})(·6x^5=)(frac{1}{2x^3})(·6x^5=)(frac{6x^5}{2x^3})(=3x^2)

Всё. А теперь, собственно, важное замечание:

Тот же самый ответ, но значительно меньшими усилиями мы могли бы получить, упростив исходную функцию сразу. Воспользуемся тем же свойством корня: (sqrt[b]{x^a} =x^{frac{a}{b}}). Тогда исходная функция приобретает вид: (y=sqrt{x^6}=x^{frac{6}{2}}=x^3). А производная куба это практически табличное значение! Готов ответ: (y’=(sqrt{x^6})’=(x^3 )’=3x^2). Немножко проще предыдущего решения, правда ☺? Поэтому прежде чем искать производную, посмотрите, можно ли исходную функцию упростить, чтоб решать было проще.

Давай рассмотрим пример, где эта идея нам сильно поможет.

Пример. Найти производную сложной функции (y=ln⁡(x^3)).
Можно, конечно, рассмотреть вложенность функций: (x → x^3 → ln⁡(x^3 )), разобрать на внутреннюю и внешнюю и так далее. Но можно вспомнить свойство логарифма: (log_a⁡{b^c}=c·log_a{⁡b}). И тогда функция получается (y=ln⁡(x^3 )=3ln⁡x). Отлично! Берем производную:

(y’=(ln⁡(x^3 ) )’=(3ln⁡x )’=3(ln⁡x )’=3·)(frac{1}{x}=frac{3}{x})

Вуаля!

Теперь задачка посложнее, для продвинутых. Решим пример с тройной вложенностью!

Пример. Найти производную сложной функции (y=3^{sin⁡(x^4+1)}).
Вложенность функций: (x → x^4+1 → sin⁡(x^4+1) → 3^{sin⁡(x^4+1)})
Внутренняя: (x^4+1)    Средняя: синус     Внешняя: возведение в куб
Сначала производная внешней по средней. Вспоминаем таблицу производных: производная от показательной функции. Значит, в нашем случае будет (3^{sin⁡(x^4+1)}·ln⁡3).
Хорошо, теперь производная средней по внутренней. По таблице: производная синуса. Значит, мы получим, (sin⁡(x^4+1)’=cos⁡(x^4+1)).
И наконец, производная внутренней: ((x^4+1)’=(x^4 )’+(1)’=4x^3).
Отлично. Теперь собираем все вместе, перемножая отдельные производные:

((3^{sin⁡(x^4+1)})’=3^{sin⁡(x^4+1)} ·ln⁡3·cos⁡{(x^4+1)}·4x^3)

Готово. Да, это ответ. ☺

Ну, а что ты хотел, я сразу сказал – пример для продвинутых! А представь, что будет с четырехкратной или пятикратной вложенностью? ☺

Пример: Найти производную сложной функции (y=tg⁡(7^x)).

Разбираем вложенность функций: (x : → :7^x : → :tg⁡(7^x)).
Внутренняя: (7^x)       Внешняя: (tg⁡(7^x)).
Ищем производную самой внешней функции, внутреннюю при этом не трогаем.
Из таблицы производных знаем: производная тангенса.
То есть, в нашем случае производная внешней по внутренней будет:  (frac{1}{cos^2⁡(7^x)}).
Теперь ищем производную внутренней. Этой формулой мы уже пользовались, так что сразу пишем ответ: ((7^x)’=7^x·ln⁡7).
И перемножаем результаты:

(y’=tg⁡(7^x)’=)(frac{1}{cos^2⁡(7^x)}·7^x·ln⁡7)

И “причесываем”:   (y’=(tg⁡(7)^x))’=)(frac{1}{cos^2⁡(7^x )})( ·7^x·ln⁡7=)(frac{ln⁡7·7^x}{cos^2⁡(7^x)}).

Ну, теперь думаю всё понятно? И снова повторю – не пугайся сложных конструкций в ответах и промежуточных вычислениях. Они «на лицо ужасные», но зато добрые (в смысле простые) внутри. ☺ Пойми принцип и делай все последовательно.

Последний пример. Такие задания в разных вариациях весьма часто дают на контрольных и тестах. Он вроде как считается сложным. ☺ Хех, наивные учителя. ☺

Пример: Найти производную сложной функции (y=sqrt[3]{(x^5+2x-5)^2}).

Казалось бы, опять у нас тройная вложенность функций:

(x → x^5+2x-5 → (x^5+2x-5)^2 → sqrt[3]{(x^5+2x-5)^2}).

Но давай снова воспользуемся свойством корня (sqrt[b]{x^a} =x^{frac{a}{b}}) и преобразуем нашу функцию к виду:

(y=sqrt[3]{(x^5+2x-5)^2}=(x^5+2x-5)^{frac{2}{3}})

Вот так. И теперь у нас вложенность двойная: (x → x^5+2x-5 → (x^5+2x-5)^{frac{2}{3}})
При этом функция осталась той же! Удобное свойство, однако. Стоит его запомнить, да? ☺ Ладно, поехали дальше.
Внутренняя функция: (x^5+2x-5).    Внешняя: степенная функция.
Производная внешней по внутренней. По таблице производных общая формула производной степенной функции: производная степенной функции  . Получаем: _производная сложной функции(23).png  . Тогда в нашем случае будет: (frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}).
Производная внутренней: ((x^5+2x-5)’=5x^4+2).
Общий результат: (y ‘=(sqrt[3]{(x^5+2x-5)^2})’=((x^5+2x-5)^{frac{2}{3}} )’=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)).

В принципе, ответ найден. Но здесь можно сильно «причесать» результаты. Это может показаться сложным, но это не так, просто опять нагромождения символов большое и возникает такое ложное ощущение. На всякий случай помни: «не причесанный» ответ – тоже ответ. Поэтому если не поймешь дальнейших преобразований – не критично. Ладно, расческу в руки и вперед.
Вспоминаем свойство отрицательной степени (a^{-n}=)(frac{1}{a^n}). Получаем:

(y ‘=frac{2}{3}(x^5+2x-5)^{-frac{1}{3}}·(5x^4+2)=)(frac{2}{3})(·)(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2))

А теперь применяем свойство корня (sqrt[b]{x^a} =x^{frac{a}{b}}) в обратную сторону. То есть, вот так (x^{frac{a}{b}}=sqrt[b]{x^a}). В результате имеем:

(y’=)(frac{2}{3})(frac{1}{(x^5+2x-5)^{frac{1}{3}}})(·(5x^4+2)=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2))

Ну, и перемножаем дроби.

(y’=)(frac{2}{3})(frac{1}{sqrt[3]{x^5+2x-5}})(·(5x^4+2)=)(frac{2(5x^4+2)}{3sqrt[3]{x^5+2x-5}})(=)(frac{10x^4+4}{3sqrt[3]{x^5+2x-5}})

ВСЁ!!! А теперь сам.

Найти производные функций:

a. (y=ctg⁡(x^7))
b. (y=e^{x^4+5x^3})
c. (y=sqrt{cos⁡x})
d. (y=log_5⁡{5^x})
e. (y=(tg⁡x)^3)
f. (y=sin⁡(ln⁡(x^2)))

Ответы ко всем заданиям (вперемежку).

(y=tg⁡(x^5))

(y=log^{-2}_{4}{⁡x})


(y=3^{cos⁡x})

(x → 1+x → log_2⁡{(1+x)} )

(x → 11^x → arctg⁡(11^x) )


(x → x^7 → 5^{x^7})


(x → sin⁡x → cos⁡(sin⁡x))

ответы

ответы на взятие производной.png

Сошлось? Красавчик!

когда научился брать производные сложной функции

Производная сложной функции. Примеры решений

На данном уроке мы научимся находить производную сложной функции. Урок является логическим продолжением занятия Как найти производную?, на котором мы разобрали простейшие производные, а также познакомились с правилами дифференцирования и некоторыми техническими приемами нахождения производных. Таким образом, если с производными функций у Вас не очень или какие-нибудь моменты данной статьи будут не совсем понятны, то сначала ознакомьтесь с вышеуказанным уроком. Пожалуйста, настройтесь на серьезный лад – материал не из простых, но я все-таки постараюсь изложить его просто и доступно.

На практике с производной сложной функции приходится сталкиваться очень часто, я бы даже сказал, почти всегда, когда Вам даны задания на нахождение производных.

Смотрим в таблицу на правило (№5) дифференцирования сложной функции:

Разбираемся. Прежде всего, обратим внимание на запись . Здесь у нас две функции – и , причем функция , образно говоря, вложена в функцию . Функция такого вида (когда одна функция вложена в другую) и называется сложной функцией.

Функцию я буду называть внешней функцией, а функцию

внутренней (или вложенной) функцией.

! Данные определения не являются теоретическими и не должны фигурировать в чистовом оформлении заданий. Я применяю

неформальные выражения «внешняя функция», «внутренняя» функция только для того, чтобы Вам легче было понять материал.

Для того, чтобы прояснить ситуацию, рассмотрим: Пример 1

Найти производную функции

Под синусом у нас находится не просто буква «икс», а целое выражение , поэтому найти производную сразу по таблице не получится. Также мы замечаем, что здесь невозможно применить первые четыре правила, вроде бы есть разность, но дело в том, что «разрывать на части» синус нельзя:

В данном примере уже из моих объяснений интуитивно понятно, что функция – это сложная функция, причем многочлен является внутренней функцией (вложением), а – внешней функцией.

Первый шаг, который нужно выполнить при нахождении производной сложной функции состоит в том, чтобы разобраться, какая функция является внутренней, а какая – внешней.

В случае простых примеров вроде понятно, что под синус вложен многочлен . А как же быть, если всё не очевидно? Как точно определить, какая функция является внешней, а какая внутренней? Для этого я предлагаю использовать следующий прием, который можно проводить мысленно или на черновике.

Представим, что нам нужно вычислить на калькуляторе значение выражения при (вместо единицы может быть любое число).

Что мы вычислим в первую очередь? В первую очередь нужно будет

выполнить следующее действие: , поэтому многочлен и будет внутренней функцией :

Во вторую очередь нужно будет найти , поэтому синус – будет внешней функцией:

После того, как мы РАЗОБРАЛИСЬ с внутренней и внешней функциями самое время применить правило дифференцирования сложной функции .

Начинаем решать. Из урока Как найти производную? мы помним, что оформление решения любой производной всегда начинается так – заключаем выражение в скобки и ставим справа вверху штрих:

Сначала находим производную внешней функции (синуса), смотрим на таблицу производных элементарных функций и замечаем, что . Все табличные формулы применимы и в том, случае, если «икс» заменить сложным выражением, в данном случае:

Обратите внимание, что внутренняя функция не изменилась, её мы не трогаем.

Ну и совершенно очевидно, что

Результат применения формулы в чистовом оформлении выглядит так:

Далее мы берем производную внутренней функции, она очень простая:

Постоянный множитель обычно выносят в начало выражения:

Готово

Если осталось какое-либо недопонимание, перепишите решение на бумагу и еще раз прочитайте объяснения.

Пример 2

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока). Пример 3

Найти производную функции Как всегда записываем:

Разбираемся, где у нас внешняя функция, а где внутренняя. Для этого пробуем (мысленно или на черновике) вычислить значение

выражения при . Что нужно выполнить в первую очередь? В первую очередь нужно сосчитать чему равно основание:

, значит, многочлен – и есть внутренняя функция:

И, только потом выполняется возведение в степень , следовательно, степенная функция – это внешняя функция:

Согласно формуле , сначала нужно найти производную от внешней функции, в данном случае, от степени. Разыскиваем в таблице нужную формулу: . Повторяем еще раз: любая табличная формула справедлива не только для «икс», но и для сложного выражения. Таким образом, результат применения правила дифференцирования сложной функции

следующий:

Снова подчеркиваю, что когда мы берем производную от внешней функции , внутренняя функция у нас не меняется:

Теперь осталось найти совсем простую производную от внутренней функции и немного «причесать» результат:

Готово.

Пример 4

Найти производную функции

Это пример для самостоятельного решения (ответ в конце урока).

Для закрепления понимания производной сложной функции приведу пример без комментариев, попробуйте самостоятельно разобраться, порассуждать, где внешняя и где внутренняя функция, почему задания решены именно так?

Пример 5

а) Найти производную функции

б) Найти производную функции

Пример 6

Найти производную функции Здесь у нас корень, а для того, чтобы продифференцировать корень,

его нужно представить в виде степени . Таким образом, сначала приводим функцию в надлежащий для дифференцирования вид:

Анализируя функцию, приходим к выводу, что сумма трех слагаемых

– это внутренняя функция, а возведение в степень – внешняя функция. Применяем правило дифференцирования сложной функции :

Степень снова представляем в виде радикала (корня), а для производной внутренней функции применяем простое правило дифференцирования суммы:

Готово. Можно еще в скобках привести выражение к общему знаменателю и записать всё одной дробью. Красиво, конечно, но когда получаются громоздкие длинные производные – лучше этого не делать (легко запутаться, допустить ненужную ошибку, да и преподавателю будет неудобно проверять).

Пример 7

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

Интересно отметить, что иногда вместо правила дифференцирования сложной функции можно использовать правило дифференцирования

частного , но такое решение будет выглядеть как извращение необычно. Вот характерный пример:

Пример 8

Найти производную функции Здесь можно использовать правило дифференцирования частного

, но гораздо выгоднее найти производную через правило дифференцирования сложной функции:

Подготавливаем функцию для дифференцирования – выносим минус за знак производной, а косинус поднимаем в числитель:

Косинус – внутренняя функция, возведение в степень – внешняя функция.

Используем наше правило :

Находим производную внутренней функции, косинус сбрасываем

обратно вниз:

Готово. В рассмотренном примере важно не запутаться в знаках. Кстати, попробуйте решить его с помощью правила , ответы должны совпасть.

Пример 9

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

До сих пор мы рассматривали случаи, когда у нас в сложной функции было только одно вложение. В практических же заданиях часто можно встретить производные, где, как матрешки, одна в другую, вложены сразу 3, а то и 4-5 функций.

Пример 10

Найти производную функции

Разбираемся во вложениях этой функции. Пробуем вычислить выражение с помощью подопытного значения . Как бы мы считали на калькуляторе?

Сначала нужно найти , значит, арксинус – самое глубокое вложение:

Затем этот арксинус единицы следует возвести в квадрат :

И, наконец, семерку возводим в степень :

То есть, в данном примере у нас три разные функции и два вложения, при этом, самой внутренней функцией является арксинус, а самой внешней функцией – показательная функция.

Начинаем решать

Согласно правилу сначала нужно взять производную от внешней функции. Смотрим в таблицу производных и находим производную показательной функции: Единственное отличие – вместо «икс» у нас сложное выражение , что не отменяет справедливость данной формулы. Итак, результат применения правила дифференцирования сложной функции следующий:

Под штрихом у нас снова сложная функция! Но она уже проще. Легко убедиться, что внутренняя функция – арксинус, внешняя функция – степень. Согласно правилу дифференцирования сложной функции

сначала нужно взять производную от степени:

Теперь все просто, находим по таблице производную арксинуса и немного «причесываем» выражение:

Готово.

Пример 11

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

На практике правило дифференцирования сложной функции почти всегда применяется в комбинации с остальными правилами дифференцирования.

Пример 12

Найти производную функции

Сначала используем правило дифференцирования суммы , заодно в первом слагаемом выносим постоянный множитель за знак производной по правилу :

В обоих слагаемых под штрихами у нас находится произведение функций, следовательно, нужно дважды применить правило :

Замечаем, что под некоторыми штрихами у нас находятся сложные функции , . Каламбур, но это простейшие из сложных функций, и при определенном опыте решения производных Вы будете легко находить их устно.

А пока запишем подробно, согласно правилу , получаем:

Готово.

! Обратите внимание на приоритет (порядок) применения правил: правило дифференцирования сложной функции применяется в последнюю очередь.

Пример 13

Найти производную функции Это пример для самостоятельного решения (ответ в конце урока).

Пожалуй, хватит на сегодня. Хочется еще привести пример с дробью и сложной функцией, но такой пример принципиально ничем не отличается от двух последних заданий, единственное отличие –

вместо правила применяем правило .

Для закрепления темы рекомендую статью Сложные производные. Логарифмическая производная. Помимо рассмотрения дополнительных примеров, есть и новый материал! После изучения третьего урока вы будете очень уверенно себя чувствовать в ходе дальнейшего изучения математического анализа. Если задания покажутся слишком трудными (у всех разный уровень подготовки), то сначала посетите страницу Простейшие типовые задачи с производной, там рассмотрено ещё порядка 15-ти производных.

Желаю успехов!

Ответы:

Пример 2:

Пример 4: Указание: перед дифференцированием необходимо перенести степень наверх, сменив у показателя знак .

Пример 7:

Пример 9:

Пример 11:

Пример 13:

Сложные производные. Логарифмическая производная. Производная степеннопоказательной функции

Продолжаем повышать свою технику дифференцирования. На данном уроке мы закрепим пройденный материал, рассмотрим более сложные производные, а также познакомимся с новыми приемами и хитростями нахождения производной, в частности, с логарифмической производной.

Тем читателям, у кого низкий уровень подготовки, следует обратиться к статье Как найти производную? Примеры решений, которая позволит поднять свои навыки практически с нуля. Далее необходимо внимательно изучить страницу Производная сложной функции, понять и прорешать все приведенные мной примеры. Данный урок логически третий по счету, и после его освоения Вы будете уверенно дифференцировать достаточно сложные функции. Нежелательно придерживаться позиции «Куда еще? Да и так хватит!», поскольку все примеры и приёмы решения взяты из реальных контрольных работ и часто встречаются на практике.

Начнем с повторения. На уроке Производная сложной функции мы рассмотрели ряд примеров с подробными комментариями. В ходе изучения дифференциального исчисления и других разделов математического анализа – дифференцировать придется очень часто, и не всегда бывает удобно (да и не всегда нужно) расписывать примеры очень подробно. Поэтому мы потренируемся в устном нахождении производных. Самым подходящими «кандидатами» для этого являются производные простейших из сложных функций, например:

По правилу дифференцирования сложной функции :

При изучении других тем матана в будущем такая подробная запись чаще всего не требуется, предполагается, что студент умеет находить подобные производные на автопилоте автомате. Представим, что в 3 часа ночи раздался телефонный звонок, и приятный голос спросил:

«Чему равна производная тангенса двух икс?». На это должен последовать почти мгновенный и вежливый ответ: .

Первый пример будет сразу предназначен для самостоятельного решения.

Пример 1

Найти следующие производные устно, в одно действие, например: . Для выполнения задания нужно использовать только

таблицу производных элементарных функций (если она еще не запомнилась). Если возникнут затруднения, рекомендую перечитать урок Производная сложной функции.

, , ,

, , ,

, , ,

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Добавить комментарий