Производная функции по направлению
Как найти?
Постановка задачи
Найти производную функции $ u(x,y,z) $ в точке $ M (x_1,y_1,z_1) $ по направлению вектора $ overline{l} = (l_x,l_y,l_z) $
План решения
Если для функции $ u(x,y,z) $ существует производная в точке $ M(x_1,y_1,z_1) $, то значит в этой точке существует производная по любому направлению $ overline{l} $ и находится по формуле:
$$ frac{partial u}{partial l} = frac{partial u}{partial x} bigg |_M cdot cos alpha + frac{partial u}{partial y} bigg |_M cdot cos beta + frac{partial u}{partial z} bigg |_M cdot cos gamma $$
- Находим частные производные первого порядка:
$$ frac{partial u}{partial x}; frac{partial u}{partial y}; frac{partial u}{partial z} $$ - Вычисляем полученные производные в точке $ M(x_1,y_1,z_1) $:
$$ frac{partial u}{partial x} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial y} bigg |_{M(x_1,y_1,z_1)}; frac{partial u}{partial z} bigg |_{M(x_1,y_1,z_1)} $$ - Получаем направляющие косинусы по формулам:
$$ cos alpha = frac{l_x}{|overline{l}|}; cos beta = frac{l_y}{|overline{l}|}; cos gamma = frac{l_z}{|overline{l}|} $$ - Подставляем все полученные данные в формулу и записываем ответ
Примеры решений
Пример 1 |
Найти производную функции $ u = x+ln(z^2+y^2) $ в точке $ M (2,1,1) $ по направлению вектора $ overline{l} = (-2,1,-1) $ |
Решение |
Находим частные производные первого порядка и вычисляем их начение в точке $ M $: $$ frac{partial u}{partial x} = 1; frac{partial u}{partial x} bigg |_{M(2,1,1)} = 1 $$ $$ frac{partial u}{partial y} = frac{2y}{z^2+y^2}; frac{partial u}{partial y} bigg |_{M(2,1,1)}=1 $$ $$ frac{partial u}{partial z} = frac{2z}{z^2+y^2}; frac{partial u}{partial z} bigg |_{M(2,1,1)} = 1 $$ Вычисляем направляющие косинусы: $$ cos alpha = frac{-2}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{-2}{sqrt{6}} $$ $$ cos beta = frac{1}{sqrt{(-2)^2+1^2+(-1)^2}} = frac{1}{sqrt{6}} $$ $$ cos gamma = frac{-1}{sqrt{(-2)^2+1^2+(-1)^2}} = – frac{1}{sqrt{6}} $$ Подставляем полученные частные производные в точке $ M $ и направляющие косинусы в формулу: $$ frac{partial u}{partial l} = 1 cdot (-frac{2}{sqrt{6}}) + 1 cdot frac{1}{sqrt{6}} + 1 cdot (-frac{1}{sqrt{6}}) = -frac{2}{sqrt{6}} $$ Если не получается решить свою задачу, то присылайте её к нам. Мы предоставим подробное решение онлайн. Вы сможете ознакомиться с ходом вычисления и почерпнуть информацию. Это поможет своевременно получить зачёт у преподавателя! |
Ответ |
$$ frac{partial u}{partial l} = -frac{2}{sqrt{6}} $$ |
Пример 2 |
Найти производную $ u = xy – frac{x}{z} $ в точке $ M(-4,3,-1) $ по направлению вектора $ overline{l} = (5,1,-1) $ |
Решение |
Берем частные производные первого порядка от функции в точке $ M(-4,3,-1) $: $$ frac{partial u}{partial x} = y – frac{1}{z}; frac{partial u}{partial x} bigg |_{M(-4,3,-1)} = 4 $$ $$ frac{partial u}{partial y} = x; frac{partial u}{partial y} bigg |_{M(-4,3,-1)} = -4 $$ $$ frac{partial u}{partial z} = frac{x}{z^2}; frac{partial u}{partial z} bigg |_{M(-4,3,-1)} = -4 $$ Вычисляем направляющие косинусы: $$ cos alpha = frac{5}{sqrt{5^2+1^2+(-1)^2}} = frac{5}{sqrt{27}} $$ $$ cos beta = frac{1}{sqrt{5^2+1^2+(-1)^2}} = frac{1}{sqrt{27}} $$ $$ cos gamma = frac{-1}{sqrt{5^2+1^2+(-1)^2}} = frac{-1}{sqrt{27}} $$ По формуле производной по направлению получаем ответ: $$ frac{partial u}{partial l} = 4 cdot frac{5}{sqrt{27}} + (-4) cdot frac{1}{sqrt{27}} + (-4) cdot frac{-1}{sqrt{27}} = frac{20}{sqrt{27}} $$ |
Ответ |
$$ frac{partial u}{partial l} = frac{20}{sqrt{27}} $$ |
15 марта 2011
В задаче 6 дается график функции или производной, по которому требуется определить одну из следующих величин:
- Значение производной в некоторой точке x0,
- Точки максимума или минимума (точки экстремума),
- Интервалы возрастания и убывания функции (интервалы монотонности).
Функции и производные, представленные в этой задаче, всегда непрерывны, что значительно упрощает решение. Не смотря на то, что задача относится к разделу математического анализа, она вполне по силам даже самым слабым ученикам, поскольку никаких глубоких теоретических познаний здесь не требуется.
Для нахождения значения производной, точек экстремума и интервалов монотонности существуют простые и универсальные алгоритмы — все они будут рассмотрены ниже.
Внимательно читайте условие задачи B9, чтобы не допускать глупых ошибок: иногда попадаются довольно объемные тексты, но важных условий, которые влияют на ход решения, там немного.
Вычисление значения производной. Метод двух точек
Если в задаче дан график функции f(x), касательная к этому графику в некоторой точке x0, и требуется найти значение производной в этой точке, применяется следующий алгоритм:
- Найти на графике касательной две «адекватные» точки: их координаты должны быть целочисленными. Обозначим эти точки A (x1; y1) и B (x2; y2). Правильно выписывайте координаты — это ключевой момент решения, и любая ошибка здесь приводит к неправильному ответу.
- Зная координаты, легко вычислить приращение аргумента Δx = x2 − x1 и приращение функции Δy = y2 − y1.
- Наконец, находим значение производной D = Δy/Δx. Иными словами, надо разделить приращение функции на приращение аргумента — и это будет ответ.
Еще раз отметим: точки A и B надо искать именно на касательной, а не на графике функции f(x), как это часто случается. Касательная обязательно будет содержать хотя бы две таких точки — иначе задача составлена некорректно.
Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Рассмотрим точки A (−3; 2) и B (−1; 6) и найдем приращения:
Δx = x2 − x1 = −1 − (−3) = 2; Δy = y2 − y1 = 6 − 2 = 4.
Найдем значение производной: D = Δy/Δx = 4/2 = 2.
Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Рассмотрим точки A (0; 3) и B (3; 0), найдем приращения:
Δx = x2 − x1 = 3 − 0 = 3; Δy = y2 − y1 = 0 − 3 = −3.
Теперь находим значение производной: D = Δy/Δx = −3/3 = −1.
Задача. На рисунке изображен график функции y = f(x) и касательная к нему в точке с абсциссой x0. Найдите значение производной функции f(x) в точке x0.
Рассмотрим точки A (0; 2) и B (5; 2) и найдем приращения:
Δx = x2 − x1 = 5 − 0 = 5; Δy = y2 − y1 = 2 − 2 = 0.
Осталось найти значение производной: D = Δy/Δx = 0/5 = 0.
Из последнего примера можно сформулировать правило: если касательная параллельна оси OX, производная функции в точке касания равна нулю. В этом случае даже не надо ничего считать — достаточно взглянуть на график.
Вычисление точек максимума и минимума
Иногда вместо графика функции в задаче B9 дается график производной и требуется найти точку максимума или минимума функции. При таком раскладе метод двух точек бесполезен, но существует другой, еще более простой алгоритм. Для начала определимся с терминологией:
- Точка x0 называется точкой максимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≥ f(x).
- Точка x0 называется точкой минимума функции f(x), если в некоторой окрестности этой точки выполняется неравенство: f(x0) ≤ f(x).
Для того чтобы найти точки максимума и минимума по графику производной, достаточно выполнить следующие шаги:
- Перечертить график производной, убрав всю лишнюю информацию. Как показывает практика, лишние данные только мешают решению. Поэтому отмечаем на координатной оси нули производной — и все.
- Выяснить знаки производной на промежутках между нулями. Если для некоторой точки x0 известно, что f’(x0) ≠ 0, то возможны лишь два варианта: f’(x0) ≥ 0 или f’(x0) ≤ 0. Знак производной легко определить по исходному чертежу: если график производной лежит выше оси OX, значит f’(x) ≥ 0. И наоборот, если график производной проходит под осью OX, то f’(x) ≤ 0.
- Снова проверяем нули и знаки производной. Там, где знак меняется с минуса на плюс, находится точка минимума. И наоборот, если знак производной меняется с плюса на минус, это точка максимума. Отсчет всегда ведется слева направо.
Эта схема работает только для непрерывных функций — других в задаче B9 не встречается.
Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−5; 5]. Найдите точку минимума функции f(x) на этом отрезке.
Избавимся от лишней информации — оставим только границы [−5; 5] и нули производной x = −3 и x = 2,5. Также отметим знаки:
Очевидно, в точке x = −3 знак производной меняется с минуса на плюс. Это и есть точка минимума.
Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7]. Найдите точку максимума функции f(x) на этом отрезке.
Перечертим график, оставив на координатной оси только границы [−3; 7] и нули производной x = −1,7 и x = 5. Отметим на полученном графике знаки производной. Имеем:
Очевидно, в точке x = 5 знак производной меняется с плюса на минус — это точка максимума.
Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−6; 4]. Найдите количество точек максимума функции f(x), принадлежащих отрезку [−4; 3].
Из условия задачи следует, что достаточно рассмотреть только часть графика, ограниченную отрезком [−4; 3]. Поэтому строим новый график, на котором отмечаем только границы [−4; 3] и нули производной внутри него. А именно, точки x = −3,5 и x = 2. Получаем:
На этом графике есть лишь одна точка максимума x = 2. Именно в ней знак производной меняется с плюса на минус.
Небольшое замечание по поводу точек с нецелочисленными координатами. Например, в последней задаче была рассмотрена точка x = −3,5, но с тем же успехом можно взять x = −3,4. Если задача составлена корректно, такие изменения не должны влиять на ответ, поскольку точки «без определенного места жительства» не принимают непосредственного участия в решении задачи. Разумеется, с целочисленными точками такой фокус не пройдет.
Нахождение интервалов возрастания и убывания функции
В такой задаче, подобно точкам максимума и минимума, предлагается по графику производной отыскать области, в которых сама функция возрастает или убывает. Для начала определим, что такое возрастание и убывание:
- Функция f(x) называется возрастающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≤ f(x2). Другими словами, чем больше значение аргумента, тем больше значение функции.
- Функция f(x) называется убывающей на отрезке [a; b] если для любых двух точек x1 и x2 из этого отрезка верно утверждение: x1 ≤ x2 ⇒ f(x1) ≥ f(x2). Т.е. большему значению аргумента соответствует меньшее значение функции.
Сформулируем достаточные условия возрастания и убывания:
- Для того чтобы непрерывная функция f(x) возрастала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была положительна, т.е. f’(x) ≥ 0.
- Для того чтобы непрерывная функция f(x) убывала на отрезке [a; b], достаточно, чтобы ее производная внутри отрезка была отрицательна, т.е. f’(x) ≤ 0.
Примем эти утверждения без доказательств. Таким образом, получаем схему для нахождения интервалов возрастания и убывания, которая во многом похожа на алгоритм вычисления точек экстремума:
- Убрать всю лишнюю информацию. На исходном графике производной нас интересуют в первую очередь нули функции, поэтому оставим только их.
- Отметить знаки производной на интервалах между нулями. Там, где f’(x) ≥ 0, функция возрастает, а где f’(x) ≤ 0 — убывает. Если в задаче установлены ограничения на переменную x, дополнительно отмечаем их на новом графике.
- Теперь, когда нам известно поведение функции и ограничения, остается вычислить требуемую в задаче величину.
Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−3; 7,5]. Найдите промежутки убывания функции f(x). В ответе укажите сумму целых чисел, входящих в эти промежутки.
Как обычно, перечертим график и отметим границы [−3; 7,5], а также нули производной x = −1,5 и x = 5,3. Затем отметим знаки производной. Имеем:
Поскольку на интервале (− 1,5) производная отрицательна, это и есть интервал убывания функции. Осталось просуммировать все целые числа, которые находятся внутри этого интервала:
−1 + 0 + 1 + 2 + 3 + 4 + 5 = 14.
Задача. На рисунке изображен график производной функции f(x), определенной на отрезке [−10; 4]. Найдите промежутки возрастания функции f(x). В ответе укажите длину наибольшего из них.
Избавимся от лишней информации. Оставим только границы [−10; 4] и нули производной, которых в этот раз оказалось четыре: x = −8, x = −6, x = −3 и x = 2. Отметим знаки производной и получим следующую картинку:
Нас интересуют промежутки возрастания функции, т.е. такие, где f’(x) ≥ 0. На графике таких промежутков два: (−8; −6) и (−3; 2). Вычислим их длины:
l1 = − 6 − (−8) = 2;
l2 = 2 − (−3) = 5.
Поскольку требуется найти длину наибольшего из интервалов, в ответ записываем значение l2 = 5.
Смотрите также:
- ЕГЭ 2022, задание 6. Касательная к графику функции
- ЕГЭ 2022, задание 6. Касательная к графику функции
- Схема Бернулли. Примеры решения задач
- Решение задач B6: №362—377
- Четырехугольная пирамида: как найти координаты вершин
- Нестандартная задача B2: студенты, гонорары и налоги
Предел
отношения приназывается производной
от функциив
точкепо
направлению вектораи
обозначается,
т.е..
Производная
по направлению характеризует скорость
изменения функции в направлении вектора.
Если то
функциявозрастает
в направлении вектора,
если,
то функцияубывает
в направлении вектора.
Механический
(физический) смысл производной по
направлению состоит в том, что она
характеризует мгновенную скорость
изменения функции в
точкевнаправлении
вектора.
Для
вычисления производной по направлению
функции двух переменных используют
формулу:
где инаправляющие
косинусы, т.е. косинусы углов, образуемых
векторомс
осями координат.
Пример..
Найти производную функции в
точкев
направлении, идущем от этой точки к
точке
Решение. Вычислим иНайдем
значения этих производных в точке:Найдем
координаты вектораВычислим
направляющие косинусы вектораДля
вычисления производной функциипо
направлениюподставим
полученные выражения в формулу:
9.Экстремум функции двух переменных. Условия экстремума.
Функция
имеет максимум
(минимум)
в точкеМ0, если для любой точки М,
находящейся в некоторой окрестности
точкиМ0, выполняется условие f(x0,
y0)>f(x,
y)
(f(x0,
y0)<f(x,
y)).
Максимумы
и минимумы функции называются экстремумами.
Теорема
(необходимое
условие экстремума)
Если функция-дифференцируемая функция
и достигает в точке М0 экстремума, то ее
частные производные первого порядка в
этой точке равны нулю.
Точки,
в которых частные производные первого
порядка обращаются в нуль (или не
существуют), называются критическими
или стационарными.
;
;
Дискриминант
.
Достаточное
условие экстремума в стационарной
точке:
-
–экстремум
есть, при этом, если А>0 (или С>0 при
А=0), в точке функция имеет минимум, а
если А<0 (или C<0
при А=0) – максимум -
–экстремума
нет
–требуется
дополнительные исследования
13. Интегрирование по частям в неопред. Интеграле
12.Замена переменной в неопределенном интеграле.
Интегрирование
по частям
Замена
переменной в неопределенном интеграле
производится с помощью подстановок
двух видов:
а) ,
где –
монотонная, непрерывно дифференцируемая
функция новой переменной t. Формула
замены переменной в этом случае: ;
б) ,
где U –
новая переменная. Формула замены
переменной при такой подстановке: .
16.Интегрирование квадратичных иррациональностей.
R(x, √
a2 ± x2 ) и R(x, √ x2 − a2 )
где R —
рациональная функция.
а)
Для интегрирования выражений R(x, √
a2 − x2 ) используются подстановки
x = a ·
sin t или
x = a · cos t .
б)
Для интегрирования выражений R(x,√a2
− x2 ) dx используются подстановки
x = a ·
tg t или
x = a·sht .
в)
Для интегрирования выражений R (x,√a2
− x2 ) dx используются подстановки
x=
a/cost или
x=a·ch t .
Во
всех случаях, применив формулу замены
переменной в неопределенном интеграле,
получаем интегралы вида
∫ Rs(sin t, cos t) dt ,
где Rs —
рациональноя функция, т.е. задача сводится
к интегрированию
триглнометрических выражений.
19.Замена переменной в определенном интеграле.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Пусть Z=F(M) – функция, определенная в некоторой окрестности точки М(у; х); L={Cos; Cos} – единичный вектор (на рис. 33 1=, 2=); L – направленная прямая, проходящая через точку М; М1(х1; у1), где х1=х+х и у1=у+у – точка на прямой L; L – величина отрезка ММ1; Z=F(х+х, у+у)-F(X, Y) – приращение функции F(M) в точке М(х; у).
Определение. Предел отношения , если он существует, называется Производной функции Z=F(M) в точке M(X; Y) по направлению вектора L .
Обозначение.
|
Если функция F(M) дифференцируема в точке М(х; у), то в точке М(х; у) существует производная по любому направлению L, исходящему из М; вычисляется она по следующей формуле:
(8)
Где Cos И Cos – направляющие косинусы вектора L.
Пример 46. Вычислить производную функции Z=X2+Y2X в точке М(1; 2) по направлению вектора ММ1, где М1 – точка с координатами (3; 0).
Решение. Найдем единичный вектор L, имеющий данное направление:
Откуда Cos=; Cos=-.
Вычислим частные производные функции в точке М(1; 2):
По формуле (8) получим
Пример 47. Найти производную функции U = Xy2Z3 в точке М(3; 2; 1) В направлении вектора MN, где N(5; 4; 2).
Решение. Найдем вектор и его направляющие косинусы:
Вычислим значения частных производных в точке М:
Следовательно,
Определение. Градиентом Функции Z=F(M) в точке М(х; у) называется вектор, координаты которого равны соответствующим частным производным и, взятым в точке М(х; у).
Обозначение.
Пример 48. Найти градиент функции Z=X2+2Y2-5 в точке М(2; -1).
Решение. Находим частные производные: и их значения в точке М(2; -1):
Пример 49. Найти величину и направление градиента функции в точке
Решение. Найдем частные производные и вычислим их значения в точке М:
Следовательно,
Аналогично определяется производная по направлению для функции трех переменных U=F(X, Y, Z), выводятся формулы
Вводится понятие градиента
Подчеркнем, что Основные свойства градиента функции важнее для анализа экономических оптимизационных задач: в направлении градиента функция возрастает. В экономических задачах находят применение следующие свойства градиента:
1) Пусть задана функция Z=F(X, Y), имеющая частные производные в области определения. Рассмотрим некоторую точку М0(х0, у0) из области определения. Значение функции в этой точке пусть равно F(X0, Y0). Рассмотрим график функции. Через точку (X0, Y0, F(X0, Y0)) трехмерного пространства проведем плоскость, касательную к поверхности графика функции. Тогда градиент функции, вычисленный в точке (х0, у0), рассматриваемый геометрически как вектор, приложенный в точке (X0, Y0, F(X0, Y0)), будет перпендикулярен касательной плоскости. Геометрическая иллюстрация приведена на рис. 34.
2) Градиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого возрастания функции в точке М0. Кроме того, любое направление, составляющее с градиентом острый угол, является направлением роста функции в точке М0. Другими словами, малое движение из точки (х0, у0) по направлению градиента функции в этой точке ведет к росту функции, причем в наибольшей степени.
Рассмотрим вектор, противоположный градиенту. Он называется Антиградиентом. Координаты этого вектора равны:
Антиградиент функции F(X, Y) в точке М0(х0, у0) указывает направление наиболее быстрого убывания функции в точке М0. Любое направление, образующее острый угол с антиградиентом, является направлением убывания функции в этой точке.
3) При исследовании функции часто возникает необходимость нахождения таких пар (х, у) из области определения функции, при которых функция принимает одинаковые значения. Рассмотрим множество точек (X, Y) из области определения функции F(X, Y), таких, что F(X, Y)=Const, где запись “Const” означает, что значение функции зафиксировано и равно некоторому числу из области значений функции.
Определение. Линией уровня функции U=F(X, Y) называется линия F(X, Y)=С на плоскости XOy, в точках которой функция сохраняет постоянное значение U=C.
Линии уровня геометрически изображаются на плоскости изменения независимых переменных в виде кривых линий. Получение линий уровня можно представить себе следующим образом. Рассмотрим множество С, которое состоит из точек трехмерного пространства с координатами (X, Y, F(X, Y)=Const), которые, с одной стороны, принадлежат графику функции Z=F(X, Y), с другой – лежат в плоскости, параллельной координатной плоскости ХОУ, и отстоящей от неё на величину, равную заданной константе. Тогда для построения линии уровня достаточно поверхность графика функции пересечь плоскостью Z=Const и линию пересечения спроектировать на плоскость ХОУ. Проведенное рассуждение является обоснованием возможности непосредственно строить линии уровня на плоскости ХОУ.
Определение. Множество линий уровня называют Картой линий уровня.
Хорошо известны примеры линий уровня – уровни одинаковых высот на топографической карте и линии одинакового барометрического давления на карте погоды.
Определение. Направление, вдоль которого скорость увеличения функции максимальна, называется «предпочтительным» направлением, или Направлением наискорейшего роста.
«Предпочтительное» направление задается вектором-градиентом функции. На рис. 35 изображены максимум, минимум и седловая точка в задаче оптимизации функции двух переменных при отсутствии ограничений. В нижней части рисунка изображены линии уровня и направления наискорейшего роста.
Пример 50. Найти линии уровня функции U=X2+Y2.
Решение. Уравнение семейства линий уровня имеет вид X2+Y2=C (C>0). Придавая С различные действительные значения, получим концентрические окружности с центром в начале координат.
Построение линий уровня. Их анализ находит широкое применение в экономических задачах микро – и макроуровня, теории равновесия и эффективных решений. Изокосты, изокванты, кривые безразличия – это все линии уровня, построенные для разных экономических функций.
Пример 51. Рассмотрим следующую экономическую ситуацию. Пусть производство продукции описывается Функцией Кобба-Дугласа F(X, Y)=10х1/3у2/3, где Х – количество труда, У – количество капитала. На приобретение ресурсов выделено 30 у. ед., цена труда составляет 5 у. ед., капитала – 10 у. ед. Зададимся вопросом: какой наибольший выпуск можно получить в данных условиях? Здесь под «данными условиями» имеются в виду заданные технологии, цены на ресурсы, вид производственной функции. Как уже отмечалось, функция Кобба-Дугласа является монотонно возрастающей по каждой переменной, т. е. увеличение каждого вида ресурса ведет к росту выпуска. В данных условиях ясно, что увеличивать приобретение ресурсов можно до тех пор, пока хватает денег. Наборы ресурсов, стоимость которых составляет 30 у. ед., удовлетворяют условию:
5х + 10у = 30,
Т. е. определяют линию уровня функции:
G(X, Y) = 5х + 10у.
С другой стороны, с помощью линий уровня Функции Кобба-Дугласа (рис. 36) можно показать возрастание функции: в любой точке линии уровня направление градиента – это направление наибольшего возрастания, а для построения градиента в точке достаточно провести касательную к линии уровня в этой точке, построить перпендикуляр к касательной и указать направление градиента. Из рис. 36 видно, что движение линии уровня функции Кобба-Дугласа вдоль градиента следует производить до тех пор, пока она не станет касательной к линии уровня 5х + 10у = 30. Таким образом, с помощью понятий линии уровня, градиента, свойств градиента можно выработать подходы к наилучшему использованию ресурсов с точки зрения увеличения объемов выпускаемой продукции.
Определение. Поверхностью уровня функции U=F(X, Y, Z) называется поверхность F(X, Y, Z)=С, в точках которой функция сохраняет постоянное значение U=C.
Пример 52. Найти поверхности уровня функции U=X2+Z2–Y2.
Решение. Уравнение семейства поверхностей уровня имеет вид X2+Z2–Y2=С. Если С=0, то получаем X2+Z2–Y2=0 – конус; если C<0, то X2+Z2–Y2=С – Семейство двуполостных гиперболоидов.
< Предыдущая | Следующая > |
---|
Для исследования функции важно уметь определять угловой коэффициент касательной к ее графику.
Этот угловой коэффициент касательной называют производной.
Понятие производной часто используют и при решении многих других задач. Поэтому рассмотрим его подробнее.
Графический смысл производной
Пусть дан график функции y=f(x)y = f(x) и на нем точка АА, в которой существует касательная к графику:
Если абсцисса точки АА равна x0x_0, то ее ордината f(x0)f(x_0). Предоставим значению аргумента x0x_0 прирост ΔxΔx. Увеличенное значение аргумента х0+Δxх_0 + Δx на графике функции соответствует точка ТТ с абсциссой x0+Δxx_0 + Δx и ординатой f(x0+Δx)f(x_0 + Δx).
Через точки АА и ТТ проведем прямые АКАК и ТКТК, параллельные осям абсцисс и ординат; они пересекутся в некоторой точке КК. Тогда АК−ΔхАК – Δх – приращение аргумента, а ТК=ΔуТК = Δу – прирост функции на [x0;x0+Δx][x_0; x_0 + Δx].
Угловой коэффициент секущей ATAT равен тангенсу угла ββ, то есть отношению ΔуΔу к ΔxΔx:
tgβ=ΔyΔx=f(x0+Δx)−f(x0)Δxtgbeta =frac{Delta y}{Delta x}=frac{f({{x}_{0}}+Delta x)-f({{x}_{0}})}{Delta x}
Если ΔxΔx бесконечно мало и стремится к нулю, то секущая АТАТ, поворачиваясь вокруг точки АА, приближается к касательной, проведенной в точке АА с графиком данной функции. То есть если kk – угловой коэффициент этой касательной и ΔxΔx стремится к нулю, то
f(x0+Δx)−f(x0)Δx→kfrac{f({{x}_{0}}+Delta x)-f({{x}_{0}})}{Delta x}to k
Это число kk – производная функции f(x)f(x) в точке x0x_0.
Производной функции f(x)f(x) в точке x0x_0 называется число kk, которому соответствует дробь f(x0+Δx)−f(x0)Δxfrac{f({{x}_{0}}+Delta x)-f({{x}_{0}})}{Delta x} при Δх→0.
Производную функции f(x)f(x) в точке x0x_0 обозначают f′(x0)f'(x_0). Ее определение записывают также в виде равенства:
f′(x0)=limΔx→0 f(x0+Δx)−f(x0)Δx{f}'({{x}_{0}})=underset{Delta xto 0}{mathop{lim }},frac{f({{x}_{0}}+Delta x)-f({{x}_{0}})}{Delta x}
или
f′(x0)=limΔx→0 ΔyΔx{f}'({{x}_{0}})=underset{Delta xto 0}{mathop{lim }},frac{Delta y}{Delta x}
Задача 1
Найдите производную функции f(x)=x2f(x) = x^2 в точке x=3x = 3.
Решение
Предоставим аргументу x=3x = 3 прирост ΔxΔx. Соответствующий прирост функции Δу=(3+Δx)2−33=6Δx+Δx2Δу = (3 + Δx)^2 – 33 = 6Δx+Δx^2.
Поэтому
ΔyΔx=6Δ+Δ2Δfrac{Delta y}{Delta x}=frac{6Delta +Delta {{}^{2}}}{Delta }
Если Δx→0Δx→0, то Δy/Δx→6Δy/Δx → 6.
Ответ: f′(3)=6f ‘(3) = 6.
Так решают задачу, пользуясь определением производной функции в точке.
Задача 2
Используя формулу (1/x)′=−1/x2(1/x)’ = – 1/x^2, запишите уравнение к графику функции у=1/xу = 1/x в точке с абсциссой x0=1/2x_0 = 1/2.
Уравнение касательной к графику функции у=f(x)у = f (x) в точке с абсциссой x0x^0 в общем виде записывается так:
y=f(x0)+f′(x0)(x−x0)y=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}})
Чтобы записать это уравнение для заданной функции, нужно найти значение f(x0)f(x_0), производную f′(x)f'(x) и значение f′(x0)f'(x_0). Для выполнения соответствующих вычислений удобно обозначить заданную функцию через f(x)f(x) и использовать табличное значение производной: (1/x)′=−1/x2.(1/x)’ = – 1/x^2.
Таким образом, если f(x)=1/xf(x) = 1/x, то f(x0)=f(1/2)=2f(x_0) = f(1/2) = 2.
Тогда f′(x0)=f′(1/2)=−4.f'(x_0) = f'(1/2) = -4.
Подставляя эти значения в уравнение касательной y=f(x0)+f′(x0)(x−x0)y=f({{x}_{0}})+{f}'({{x}_{0}})(x-{{x}_{0}}) получаем
y=2−4(x−12).y=2-4left( x-frac{1}{2} right).
То есть у=−4x+4у = -4x + 4 – искомое уравнение касательной.