Как найти произвольный вектор

Содержание:

Определение: Вектором называется направленный отрезок прямой Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

где А начало, а В конец вектора.

Замечание: Векторы в основном обозначают одной прописной буквой латинского алфавита со стрелочкой (или черточкой) наверху Вектор - определение и основные понятия с примерами решения.

Определение: Если начало и конец вектора Вектор - определение и основные понятия с примерами решения не закреплены, то он называется свободным.

Замечание: Свободный вектор можно перемещать как вдоль его прямой, так и параллельно самому себе.

Определение: Если зафиксирована точка, которая определяет начало вектора, то она называется точкой приложения вектора.

Определение: Длиной (модулем) вектора а называется расстояние от его начала до его конца: Вектор - определение и основные понятия с примерами решения

Определение: Векторы называются коллинеарными (Рис. 1), если они лежат на одной прямой или в параллельных прямых.

Вектор - определение и основные понятия с примерами решения

Рис.1. Коллинеарные векторы.

Определение: Векторы называются компланарными (Рис. 2), если они лежат в одной плоскости или параллельных плоскостях.

Вектор - определение и основные понятия с примерами решения

Рис.2. Компланарные векторы.

Определение: Два коллинеарных вектора Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения называются равными, если они со-направлены и имеют одинаковую длину.

Определение вектора и основные свойства

Многие величины, например, масса, длина, время, температура и др. характеризуются только числовыми значениями. Такие величины называются скалярными величинами. Некоторые же величины, например, скорость, ускорение, сила и др. определяются как числовыми значениями, так и направлением. Такие величины называются векторными величинами. Перемещение – самый простой пример векторных величин. Перемещение тела из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения изображается с помощью направленного от Вектор - определение и основные понятия с примерами решения до Вектор - определение и основные понятия с примерами решения отрезка – вектора. Вектор изображается с помощью направленного отрезка.

Вектор - определение и основные понятия с примерами решения

Длина этого отрезка, называется длиной или модулем вектора. Вектор обозначается указанием начальной и конечной точки. Например, вектор Вектор - определение и основные понятия с примерами решения, здесь Вектор - определение и основные понятия с примерами решения – начало, Вектор - определение и основные понятия с примерами решения вектора. Вектор обозначается также и маленькими буквами, например, вектор Вектор - определение и основные понятия с примерами решения. Длину вектора Вектор - определение и основные понятия с примерами решения обозначают, как: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Два вектора называется равными, если они равны по модулю и одинаково направлены. На рисунке векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения равны: Вектор - определение и основные понятия с примерами решения.

• Два вектора называются противоположными, если они равны по модулю и противоположно направлены.

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения противоположны: Вектор - определение и основные понятия с примерами решения

Если начало и конец вектора совпадают, то такой вектор называется нулевым и обозначается Вектор - определение и основные понятия с примерами решения Длина нулевого вектора равна 0, а направление не определено. Если направленные отрезки, изображающие векторы, параллельны или лежат на одной и той же прямой, то они называются коллинеарными векторами. Коллинеарные вектора могут быть одинаково направлены или противоположно направлены. Одинаково направленные вектора обозначаются как Вектор - определение и основные понятия с примерами решения, а противоположно направленные Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решения

На рисунке векторы Вектор - определение и основные понятия с примерами решения -коллинеарные векторы. Здесь Вектор - определение и основные понятия с примерами решения

Выражения вектора компонентами в координатной плоскости

Рассмотрим вектор Вектор - определение и основные понятия с примерами решения на координатной плоскости. Конечная точка Вектор - определение и основные понятия с примерами решения относительно начальной точки Вектор - определение и основные понятия с примерами решения изменила свое положение вдоль оси Вектор - определение и основные понятия с примерами решения на Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения направо, при Вектор - определение и основные понятия с примерами решения налево), вдоль оси Вектор - определение и основные понятия с примерами решения на Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения вверх, при Вектор - определение и основные понятия с примерами решения вниз). Векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения, определенные (и по модулю, и по направлению) парами чисел Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения(как указано выше), являются компонентами вектора Вектор - определение и основные понятия с примерами решения. На координатной плоскости вектор записывается как Вектор - определение и основные понятия с примерами решения. Эта запись называется записью вектора с компонентами.

Вектор - определение и основные понятия с примерами решения

Равные векторы имеют равные компоненты. Наоборот, если, соответствующие компоненты векторов равны, то эти векторы равны. На рисунке Вектор - определение и основные понятия с примерами решения. Если дан какой либо вектор Вектор - определение и основные понятия с примерами решения, то выбрав любую точку плоскости как начало, можно построить вектор равный данному, причем только один. Значит, выбирая разные начальные точки можно построить бесконечно много векторов равных данному.

Вектор - определение и основные понятия с примерами решения

На координатной плоскости вектор Вектор - определение и основные понятия с примерами решения с начальной точкой Вектор - определение и основные понятия с примерами решения и конечной точкой Вектор - определение и основные понятия с примерами решения согласно координатам этих точек можно выразить с компонентами. Так как Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения. Здесь Вектор - определение и основные понятия с примерами решения называются также координатами вектора.

Вектор - определение и основные понятия с примерами решения

Длина вектора

Длину вектора можно найти по координатам начальной у и конечной точек, используя формулу расстояния между точками.

Вектор - определение и основные понятия с примерами решения

Длину вектора данными с компонентами можно найти по формуле: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 1.

Напишите вектор Вектор - определение и основные понятия с примерами решения начальная точка которого Вектор - определение и основные понятия с примерами решения, конечная Вектор - определение и основные понятия с примерами решения в виде Вектор - определение и основные понятия с примерами решения

Решение: Напишем вектор с компонентами: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 2.

Точка Вектор - определение и основные понятия с примерами решения начальная точка вектора Вектор - определение и основные понятия с примерами решения Найдите координаты конечной точки этого вектора.

Решение: Примем за координаты конечной точки вектора Вектор - определение и основные понятия с примерами решения – точку Вектор - определение и основные понятия с примерами решения: Тогда Вектор - определение и основные понятия с примерами решения. Конечная точка этого вектора Вектор - определение и основные понятия с примерами решения

Пример 3.

В координатной плоскости нарисуйте несколько векторов равных вектору Вектор - определение и основные понятия с примерами решения начальными точками которых являются точки Вектор - определение и основные понятия с примерами решения.

Решение: Данные точки отмечаются на координатной плоскости. Начиная с этих точек изображаются векторы равные Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 4.

Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения соответственно начальная и конечная точка вектора Вектор - определение и основные понятия с примерами решения. Напишите этот вектор в виде Вектор - определение и основные понятия с примерами решения и найдите длину Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Направление вектора

В соответствии с областями применения существуют различные способы определения направления вектора. В повседневной жизни мы выражаем направление словами налево, направо, вниз, вверх или же восток, запад, север, юг. На координатной плоскости направление вектора определяется углом с положительным направлением оси Вектор - определение и основные понятия с примерами решения против часовой стрелки. Этот угол назовем углом наклона.

На рисунке длина вектора Вектор - определение и основные понятия с примерами решения обозначена Вектор - определение и основные понятия с примерами решения а угол, определяющий направление, через Вектор - определение и основные понятия с примерами решения.

длина вектора: Вектор - определение и основные понятия с примерами решения

направление вектора: Вектор - определение и основные понятия с примерами решения или Вектор - определение и основные понятия с примерами решения

Иногда для простоты вектор изображается на плоскости только указанием положительного направления Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример 1.

Вектор перемещения, модуль которого 200 м, направлен под углом наклона Вектор - определение и основные понятия с примерами решения Выбрав масштаб 1 см : 100 м, нарисуйте этот вектор.

Решение: От начала луча, образующий с положительным направлением оси Вектор - определение и основные понятия с примерами решения угол в Вектор - определение и основные понятия с примерами решения, соответственно масштабу 1 см : 100 м линейкой отложим отрезок длиной 2 см.

Пример 2.

Определите длину и угол наклона вектора Вектор - определение и основные понятия с примерами решения

Решение: Произвольную точку на координатной плоскости примем за начало вектора. От этой точки по горизонтальной оси отложим компоненту Вектор - определение и основные понятия с примерами решения, равную 3 единицам, по вертикальной оси отложим компоненту Вектор - определение и основные понятия с примерами решения, равную 4 единицам, и построим вектор Вектор - определение и основные понятия с примерами решения как показано на рисунке. Если измерить транспортиром угол Вектор - определение и основные понятия с примерами решения, то можно увидеть, что его приближенное значение равно Вектор - определение и основные понятия с примерами решения Это можно проверить вычислениями.

Вектор - определение и основные понятия с примерами решения

Длина вектора: Вектор - определение и основные понятия с примерами решения Угол наклона: Вектор - определение и основные понятия с примерами решения

Сложение и вычитание коллинеарных векторов

Вектор, показывающий сумму одинаково направленных коллинеарных векторов называется результирующим. Его абсолютная величина равна сумме абсолютных величин данных векторов, а сам вектор имеет одинаковое направление с данными векторами.

Вектор - определение и основные понятия с примерами решения

Абсолютная величина результирующего вектора 2-х противоположно-направленных коллинеарных векторов равна разности абсолютных величин этих векторов, а направление совпадает с направлением вектора большего по абсолютной величине.

Вектор - определение и основные понятия с примерами решения

Выполним графически сложение векторов, соответствующее реальным жизненным ситуациям.

Задача 1.

Для того, чтобы достичь финиша, Джамиля должна пройти 3 знака. Если она пройдет 10 м на восток, то доберется до 1-го знака, потом пройдя 50 м вперед до 2-го знака и, пройдя в том же направлении еще 20 м, сможет добраться до финиша. Изобразите движение Джамили графически – векторами. Выберем масштаб:

1 см : 10 м и на числовой оси нарисуем векторы так, чтобы начало второго вектора совпало с концом первого, а начало третьего с концом второго.

Вектор - определение и основные понятия с примерами решения

Результирующий вектор обозначим через Вектор - определение и основные понятия с примерами решения Его длину можно выразить как: Вектор - определение и основные понятия с примерами решения

Общее перемещение: 10 м + 50 м + 20 м = 80 м (на восток) Изображается вектор Вектор - определение и основные понятия с примерами решения длиной 8 см согласно выбранному масштабу.

Задача 2.

Представьте, что вы прошли 100 м на восток, еще 200 метров на запад.

Нарисуем данные вектора в масштабе

По определению, модуль результирующего вектора равен разности модулей векторов. А направление будет на запад.

В этом случае длина результирующего вектора Вектор - определение и основные понятия с примерами решения равна: Вектор - определение и основные понятия с примерами решения

200 м 100 м = 100 м (на запад)

Вектор - определение и основные понятия с примерами решения

Пусть векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения противоположно направленные, а Вектор - определение и основные понятия с примерами решения их результирующий вектор. При Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения одинаково направлен с вектором Вектор - определение и основные понятия с примерами решения.

При Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения одинаково направлен с вектором Вектор - определение и основные понятия с примерами решения.

При Вектор - определение и основные понятия с примерами решения то есть сумма противоположных векторов равна Вектор - определение и основные понятия с примерами решения вектору.

Для того, чтобы найти разность Вектор - определение и основные понятия с примерами решения нужно к вектору Вектор - определение и основные понятия с примерами решения прибавить вектор Вектор - определение и основные понятия с примерами решения, противоположный вектору Вектор - определение и основные понятия с примерами решения.

То есть выражения Вектор - определение и основные понятия с примерами решения эквивалентные.

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Жившие в XVII веке ученые-математики Рене Декарт и Пьер Ферма, взаимосвязывая алгебру и геометрию, создали новую область науки-аналитическую геометрию. Аналитическая геометрия, благодаря методу координат, позволила, с одной стороны, посредством алгебраических выкладок легко доказывать геометрические теоремы, а с другой стороны, в силу наглядности геометрических представлений упрощает решение задач над векторами.

Сложение векторов

Существуют различные способы сложения неколлинеарных векторов. Рассмотрим два графических способа. При сложении векторов графическим способом данные вектора и результирующий вектор, показывающий их сумму строятся с помощью линейки (модуль) и транспортира(направление).

Вектор - определение и основные понятия с примерами решения

Вектора можно складывать в любой последовательности. Переместительное свойство сложения верно и для векторов. По этому правилу можно складывать три и более вектора. Определим графическим способом вектор Вектор - определение и основные понятия с примерами решения Для этого: 1) нарисуем вектор Вектор - определение и основные понятия с примерами решенияпротивоположный вектору Вектор - определение и основные понятия с примерами решения 2) Вектор - определение и основные понятия с примерами решения переместим так, чтобы конечная точка вектора Вектор - определение и основные понятия с примерами решения совпадала с начальной точкой вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

3. Соединим начальную точку вектора Вектор - определение и основные понятия с примерами решения и конечную точку вектора Вектор - определение и основные понятия с примерами решения Это будет вектор Вектор - определение и основные понятия с примерами решения

Пример 1.

Джамал прошел от палатки, разбитой в лагере 60 метров на юг, 120 м на восток, еще 100 м на север и дошел до озера. Какое наименьшее расстояние от палатки до озера?

Вектор - определение и основные понятия с примерами решения

Решение:

Выберем масштаб: 1 см : 40 м

Движение Джамала изобразим последовательно соответствующими векторами по выбранному масштабу.

Начальную точку 1-го вектора, показывающего движение Джамала, соединим с конечной точкой 3-го вектора. Полученный результирующий вектор Вектор - определение и основные понятия с примерами решения выражает сумму векторов Вектор - определение и основные понятия с примерами решения Длина этого вектора приблизительно 126,4 метров, а направление под углом Вектор - определение и основные понятия с примерами решения

Ответ: Озеро находится на расстоянии 126,4 м от палатки.

Правило параллелограмма

1. Даны вектора: Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

2. Переместим вектор Вектор - определение и основные понятия с примерами решения так, чтобы начальные точки векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения совпадали.

3. Построим параллелограмм со сторонами Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения параллельным переносом соответствующих векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения Диагональ этого параллелограмма, которая соединяет начальную и конечную точку векторов Вектор - определение и основные понятия с примерами решения показывает их сумму: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Переместительные и сочетательные свойства сложения векторов

Для любых векторов Вектор - определение и основные понятия с примерами решения верно следующее:

Переместительное свойство: Вектор - определение и основные понятия с примерами решения

Сочетательное свойство: Вектор - определение и основные понятия с примерами решения

Свойство идентичности: Вектор - определение и основные понятия с примерами решения

Сумма противоположенных векторов: Вектор - определение и основные понятия с примерами решения

Пример:

Вектор - определение и основные понятия с примерами решения

Сложение векторов, заданных компонентами

Выполним сложение двух векторов на координатной плоскости, используя их компоненты.

Суммой векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения будет вектор: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 1.

Если Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения выразите через компоненты.

Решение: Для того, чтобы найти компоненты вектора Вектор - определение и основные понятия с примерами решения нужно по горизонтали (оси абсцисс) и по вертикали (оси ординат) сложить соответствующие компоненты векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 2.

Самолет летит в направлении северо-востока со скоростью 707 миль/час. Скорость самолета выражается вектором Вектор - определение и основные понятия с примерами решения В восточном направлении дует ветер со скоростью 40 миль/час. Скорость ветра выражается вектором Вектор - определение и основные понятия с примерами решения Как изменится скорость самолета под воздействием ветра? Вектор - определение и основные понятия с примерами решения

Конечная скорость самолета:Вектор - определение и основные понятия с примерами решения

Аналогично можно показать, что Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример 3.

Если Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения

Тригонометрические отношения и компоненты вектора

Найдем компоненты вектора Вектор - определение и основные понятия с примерами решения в координатной плоскости, используя тригонометрические отношения. Обозначим Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения имеем: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Запись Вектор - определение и основные понятия с примерами решения также является записью вектора с компонентами. Угол наклона можно найти по формуле Вектор - определение и основные понятия с примерами решения

Пример 1.

Автомобиль движется в северо-восточном направлении под углом Вектор - определение и основные понятия с примерами решения со скоростью 80 км/ч. Напишите вектор скорости с компонентами.

Вектор - определение и основные понятия с примерами решения

Решение: По данным Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

скорость в вост. напр. Вектор - определение и основные понятия с примерами решения

скорость в север, напр. Вектор - определение и основные понятия с примерами решения

Пример 2.

Движения мяча изображены двумя векторами: Вектор - определение и основные понятия с примерами решения с углом наклона Вектор - определение и основные понятия с примерами решения и модулем равным 18 м и Вектор - определение и основные понятия с примерами решения с углом наклона Вектор - определение и основные понятия с примерами решения и модулем равным 10 м. Определите вектор, показывающий перемещение мяча (модуль и направление).

Вектор - определение и основные понятия с примерами решения

Решение: Перемещение мяча: Вектор - определение и основные понятия с примерами решения Запишем векторы Вектор - определение и основные понятия с примерами решения c компонентами: Вектор - определение и основные понятия с примерами решения

Здесь Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пусть Вектор - определение и основные понятия с примерами решения

По правилу сложения векторов с заданными компонентами имеем: Вектор - определение и основные понятия с примерами решения

Найдем длину и угол наклона вектора перемежения Вектор - определение и основные понятия с примерами решения мяча, изобразив этот вектор в новой системе координат.

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Умножение вектора на число

Произведение вектораВектор - определение и основные понятия с примерами решения на число Вектор - определение и основные понятия с примерами решения записывается как Вектор - определение и основные понятия с примерами решения а его длина равна Вектор - определение и основные понятия с примерами решения при Вектор - определение и основные понятия с примерами решения вектора Вектор - определение и основные понятия с примерами решения имеют одинаковое направление, при Вектор - определение и основные понятия с примерами решения вектора Вектор - определение и основные понятия с примерами решения имеют противоположное направление. Вектор - определение и основные понятия с примерами решения Любой вектор коллинеарен вектору, выражающему произведение этого вектора на число (отличное от нуля). Если Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения коллинеарные векторы, то существует единственное число Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения

Свойство умножения вектора на число

1. Сочетательное свойство.

Для любых чисел Вектор - определение и основные понятия с примерами решения и вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

2. Распределительное свойство.

Для любых чисел Вектор - определение и основные понятия с примерами решения и вектора Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Для любого числа Вектор - определение и основные понятия с примерами решения и векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Действия над векторами, заданным над координатами

Для вектора Вектор - определение и основные понятия с примерами решения заданного компонентами и для любого числа Вектор - определение и основные понятия с примерами решения верно: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример: Если Вектор - определение и основные понятия с примерами решения

Пример: Если Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

• Соответствующие координаты коллинеарных векторов пропорциональны.

• Наоборот, если соответствующие координаты векторов пропорциональны, то эти векторы коллинеарные.

Условие коллинеарности векторов Вектор - определение и основные понятия с примерами решения (при Вектор - определение и основные понятия с примерами решения)

Вектор - определение и основные понятия с примерами решения

Пример: При каком значении Вектор - определение и основные понятия с примерами решения векторы Вектор - определение и основные понятия с примерами решения коллинеарны?

Вектор - определение и основные понятия с примерами решения

Подробное объяснение вектора:

Определение: Вектор — Упорядоченную совокупность Вектор - определение и основные понятия с примерами решения n вещественных чисел называют n-мерным вектором, а числа Вектор - определение и основные понятия с примерами решения – компонентами, или координатами, вектора.

Пример:

Если, например, некоторый автомобильный завод должен выпустить в смену 50 легковых автомобилей, 100 грузовых, 10 автобусов, 50 комплектов запчастей для легковых автомобилей и 150 комплектов для грузовых автомобилей и автобусов, то производственную программу этого завода можно записать в виде вектора (50, 100, 10, 50, 150), имеющего пять компонент.

Обозначения:

Векторы обозначают жирными строчными буквами или буквами с чертой или стрелкой наверху, например, Вектор - определение и основные понятия с примерами решения Два вектора называются равными, если они имеют одинаковое число компонент и их соответствующие компоненты равны.

Компоненты вектора нельзя менять местами, например, (3, 2, 5, 0, 1) Вектор - определение и основные понятия с примерами решения(2, 3, 5, 0, 1).

Операции над векторами. Произведением вектора Вектор - определение и основные понятия с примерами решения на действительное число Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения Суммой векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решенияназывается вектор Вектор - определение и основные понятия с примерами решения

Пространство векторов. N-мерное векторное пространство Вектор - определение и основные понятия с примерами решения определяется как множество всех n-мерных векторов, для которых определены операции умножения на действительные числа и сложение.

Экономическая иллюстрация. Экономическая иллюстрация n-мерного векторного пространства: пространство благ (товаров). Под товаром мы будем понимать некоторое благо или услугу, поступившие в продажу в определенное время в определенном месте. Предположим, что существует конечное число наличных товаров n; количества каждого из них, приобретенные потребителем, характеризуются набором товаров

Вектор - определение и основные понятия с примерами решения

где через Вектор - определение и основные понятия с примерами решения обозначается количество Вектор - определение и основные понятия с примерами решения блага, приобретенного потребителем. Будем считать, что все товары обладают свойством произвольной делимости, так что может быть куплено любое неотрицательное количество каждого из них. Тогда все возможные наборы товаров являются векторами пространства товаров Вектор - определение и основные понятия с примерами решения

Линейная независимость. Система Вектор - определение и основные понятия с примерами решения n-мерных векторов называется линейно зависимой, если найдутся такие числа Вектор - определение и основные понятия с примерами решения из которых хотя бы одно отлично от нуля, что выполняется равенство Вектор - определение и основные понятия с примерами решения в противном случае данная система векторов называется линейно независимой, то есть указанное равенство возможно лишь в случае, когда все Вектор - определение и основные понятия с примерами решения Геометрический смысл линейной зависимости векторов в Вектор - определение и основные понятия с примерами решения интерпретируемых как направленные отрезки, поясняют следующие теоремы.

Теорема 1. Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой.

Теорема 2. Для того, чтобы два вектора были линейно зависимы, необходимо и достаточно, чтобы они были коллинеарны.

Теорема 3. Для того, чтобы три вектора были линейно зависимы, необходимо и достаточно, чтобы они были компланарны.

Левая и правая тройки векторов. Тройка некомпланарных векторов Вектор - определение и основные понятия с примерами решенияназывается правой, если наблюдателю из их общего начала обход концов векторов Вектор - определение и основные понятия с примерами решения в указанном порядке кажется совершающимся по часовой стрелке. В противном случае Вектор - определение и основные понятия с примерами решения – левая тройка. Все правые (или левые) тройки векторов называются одинаково ориентированными.

Базис и координаты. Тройка Вектор - определение и основные понятия с примерами решения некомпланарных векторов в Вектор - определение и основные понятия с примерами решения называется базисом, а сами векторы Вектор - определение и основные понятия с примерами решения – базисными. Любой вектор Вектор - определение и основные понятия с примерами решения может быть единственным образом разложен по базисным векторам, то есть представлен в виде Вектор - определение и основные понятия с примерами решения (1.1) числа Вектор - определение и основные понятия с примерами решения в разложении (1.1) называются координатами вектора Вектор - определение и основные понятия с примерами решения в базисе Вектор - определение и основные понятия с примерами решения и обозначаются Вектор - определение и основные понятия с примерами решения

Ортонормированный базис. Если векторы Вектор - определение и основные понятия с примерами решения попарно перпендикулярны и длина каждого из них равна единице, то базис называется ортонормированным, а координаты Вектор - определение и основные понятия с примерами решения прямоугольными. Базисные векторы ортонормированного базиса будем обозначать Вектор - определение и основные понятия с примерами решения Будем предполагать, что в пространстве Вектор - определение и основные понятия с примерами решения выбрана правая система декартовых прямоугольных координат Вектор - определение и основные понятия с примерами решения

Векторное произведение. Векторным произведением вектора Вектор - определение и основные понятия с примерами решения на вектор Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения , который определяется следующими тремя условиями:

  1. Длина вектора Вектор - определение и основные понятия с примерами решения численно равна площади параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения
  2. Вектор Вектор - определение и основные понятия с примерами решения перпендикулярен к каждому из векторов Вектор - определение и основные понятия с примерами решения
  3. Векторы Вектор - определение и основные понятия с примерами решениявзятые в указанном порядке, образуют правую тройку.

Для векторного произведения Вектор - определение и основные понятия с примерами решения вводится обозначение Вектор - определение и основные понятия с примерами решения

Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, тo Вектор - определение и основные понятия с примерами решения в частности, Вектор - определение и основные понятия с примерами решения Векторные произведения ортов: Вектор - определение и основные понятия с примерами решения Если векторы Вектор - определение и основные понятия с примерами решения заданы в базисе Вектор - определение и основные понятия с примерами решения координатами Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения Смешанное произведение. Если векторное произведение двух векторов Вектор - определение и основные понятия с примерами решения скалярно умножается на третий вектор Вектор - определение и основные понятия с примерами решения, то такое произведение трех векторов называется смешанным произведением и обозначается символом Вектор - определение и основные понятия с примерами решения Если векторы Вектор - определение и основные понятия с примерами решения в базисе Вектор - определение и основные понятия с примерами решения заданы своими координатами Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Смешанное произведение имеет простое геометрическое толкование – это скаляр, по абсолютной величине равный объему параллелепипеда, построенного на трех данных векторах.

Если векторы образуют правую тройку, то их смешанное произведение есть число положительное, равное указанному объему; если же тройка Вектор - определение и основные понятия с примерами решения – левая, то Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения следовательно Вектор - определение и основные понятия с примерами решения

Координаты векторов, встречающиеся в задачах первой главы, предполагаются заданными относительно правого ортонормированного базиса. Единичный вектор, сонаправленный вектору Вектор - определение и основные понятия с примерами решения обозначается символом Вектор - определение и основные понятия с примерами решения Символом Вектор - определение и основные понятия с примерами решения обозначается радиус-вектор точки М, символами Вектор - определение и основные понятия с примерами решения обозначаются модули векторов Вектор - определение и основные понятия с примерами решения

Пример №1

Найдите угол между векторамиВектор - определение и основные понятия с примерами решенияединичные векторы и угол между Вектор - определение и основные понятия с примерами решения равен 120°.

Решение:

Имеем: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Окончательно имеем: Вектор - определение и основные понятия с примерами решения

Пример №2

Зная векторы АВ(-3,-2,6) и ВС(-2,4,4), вычислите длину высоты AD треугольника АВС.

Решение:

Обозначая площадь треугольника АВС через S, получим:

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения значит, вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения (—5,2,10).

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №3

Даны два вектора Вектор - определение и основные понятия с примерами решения Найдите единичный вектор Вектор - определение и основные понятия с примерами решения, ортогональный векторам Вектор - определение и основные понятия с примерами решения и направленный так, чтобы упорядоченная тройка векторов Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения была правой.

Решение:

Обозначим координаты вектора Вектор - определение и основные понятия с примерами решенияотносительно данного правого ортонормированного базиса через Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения По условию задачи требуется, чтобы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения Имеем систему уравнений для нахождения Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Из первого и второго уравнений системы получим Вектор - определение и основные понятия с примерами решенияПодставляя Вектор - определение и основные понятия с примерами решения в третье уравнение, будем иметь: Вектор - определение и основные понятия с примерами решения

Используя условие Вектор - определение и основные понятия с примерами решенияполучим неравенство Вектор - определение и основные понятия с примерами решения

С учетом выражений для Вектор - определение и основные понятия с примерами решения перепишем полученное неравенство в виде: Вектор - определение и основные понятия с примерами решения откуда следует, что Вектор - определение и основные понятия с примерами решения

Линейные операции над векторами

1. Сумма векторов. Для нахождения суммы векторов существует два правила: а) правило треугольника. Пусть векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения неколлинеарные и пусть начало вектора Вектор - определение и основные понятия с примерами решения совмещено с концом вектора Вектор - определение и основные понятия с примерами решения, тогда их суммой будет вектор Вектор - определение и основные понятия с примерами решения начало которого совпадает с началом вектора Вектор - определение и основные понятия с примерами решения, а его конец – с концом вектора Вектор - определение и основные понятия с примерами решения(Рис. 3):

Вектор - определение и основные понятия с примерами решения

Рис. 3. Сложение векторов по правилу треугольника.

б) правило параллелограмма. Пусть векторы Вектор - определение и основные понятия с примерами решения неколлинеарные и пусть начала векторов Вектор - определение и основные понятия с примерами решения совпадают. Построим на векторах Вектор - определение и основные понятия с примерами решения параллелограмм (Рис. 4), тогда их суммой будет вектор Вектор - определение и основные понятия с примерами решения начало которого совпадает с общим началом векторов Вектор - определение и основные понятия с примерами решения, а его конец лежит в противоположной вершине параллелограмма: Вектор - определение и основные понятия с примерами решения

Рис. 4. Сложение векторов по правилу параллелограмма.

Сумма векторов обладает следующими свойствами:

-переместительным Вектор - определение и основные понятия с примерами решения; – сочетательным Вектор - определение и основные понятия с примерами решения

2. Разность векторов. Разностью векторов Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения сумма которого с вектором Вектор - определение и основные понятия с примерами решениядает вектор Вектор - определение и основные понятия с примерами решения (Рис. 5): Вектор - определение и основные понятия с примерами решения Рис. 5. Разность векторов.

3. Умножение вектора на вещественное число. При умножении веществе иного числа k на вектор Вектор - определение и основные понятия с примерами решения получают ему коллинеарный вектор Вектор - определение и основные понятия с примерами решения длина которого равна Вектор - определение и основные понятия с примерами решения сонаправленный с вектором Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения и антинаправленный вектору Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения

Замечание: Числа в векторной алгебре называют скалярами. Отметим здесь, что векторы и скаляры нельзя складывать и вычитать, так как это объекты разной природы.

Замечание: Из определения операции 3 следует первое условие коллинеарности векторов: Вектор - определение и основные понятия с примерами решения – отношения соответствующих проекции векторов должны быть равны между собой (о проекциях векторов см. ниже пункты 3 и 4).

Пример №4

Найти произведение вектора Вектор - определение и основные понятия с примерами решения на 2 и (-3).

Решение:

Используя вышеприведенное правило, получим Вектор - определение и основные понятия с примерами решения

Произведение числа на вектор обладает следующими свойствами:

  • – сочетательным Вектор - определение и основные понятия с примерами решения
  • – распределительным относительно скаляров Вектор - определение и основные понятия с примерами решения
  • -распределительным относительно векторов Вектор - определение и основные понятия с примерами решения

Замечание: Если k = 0, то в результате умножения Вектор - определение и основные понятия с примерами решения, получают нулевой вектор.

Определение: Нулевым вектором называется вектор, начало и конец которого совпадают, т.е. расположены в одной точке.

Проекция вектора на произвольную ось

Пусть дана ось l и вектор Вектор - определение и основные понятия с примерами решения Проведем через начало вектора Вектор - определение и основные понятия с примерами решения прямую,

которая параллельна оси l, угол между прямой и вектором Вектор - определение и основные понятия с примерами решения обозначим через Вектор - определение и основные понятия с примерами решения (Рис. 6):

Вектор - определение и основные понятия с примерами решения

Рис. 6. Проекция вектора на заданную ось.

Из начала и конца вектора Вектор - определение и основные понятия с примерами решения опустим на ось l перпендикуляры, получим отрезок Вектор - определение и основные понятия с примерами решения

Определение: Проекцией вектора Вектор - определение и основные понятия с примерами решения на ось l называется длина отрезка Вектор - определение и основные понятия с примерами решения взятая со знаком «+», если угол Вектор - определение и основные понятия с примерами решения и со знаком «-», если Вектор - определение и основные понятия с примерами решения Из рисунка видно, что отрезок Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Из этой формулы видно, что при Вектор - определение и основные понятия с примерами решения величина Вектор - определение и основные понятия с примерами решения а при Вектор - определение и основные понятия с примерами решения величина Вектор - определение и основные понятия с примерами решения При Вектор - определение и основные понятия с примерами решения проекция равна нулю, Т. е. Вектор - определение и основные понятия с примерами решения

Проекции обладают свойствами:

– если Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения

Декартова система координат и вектора

Определение: Направленная прямая с выбранным началом отсчета и масштабом измерения называется числовой осью.

Определение: Две (три) взаимно перпендикулярные числовые оси называются декартовой системой координат на плоскости (в пространстве).

Рассмотрим декартову систему координат и спроектируем вектор Вектор - определение и основные понятия с примерами решения на координатные оси (Рис. 7). Вектор - определение и основные понятия с примерами решения

Рис. 7. Проекции вектора на оси декартовой системы координат.

Из рисунка видно, что проекции вектора Вектор - определение и основные понятия с примерами решения на:

  • – ось абсцисс (Ох) равна Вектор - определение и основные понятия с примерами решения
  • – ось ординат (Оу) Вектор - определение и основные понятия с примерами решения

(в пространстве – ось аппликат (Oz) Вектор - определение и основные понятия с примерами решения).

Определение: Проекции Вектор - определение и основные понятия с примерами решения называются координатами вектора Вектор - определение и основные понятия с примерами решения Используя теорему Пифагора, найдем длину вектора Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Направляющие косинусы вектора Вектор - определение и основные понятия с примерами решения

Обозначим углы, которые образует вектор Вектор - определение и основные понятия с примерами решенияс положительными направлениями координатных осей пространственной декартовой системы отсчета через Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения

Определение: Величины Вектор - определение и основные понятия с примерами решения называются направляющими косинусами вектора Вектор - определение и основные понятия с примерами решения

Вычислив квадрат модуля вектора Вектор - определение и основные понятия с примерами решения найдем соотношение, которое связывает направляющие косинусы вектора Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Способы задания вектора

  1. Задаются координаты начальной и конечной точек вектора Вектор - определение и основные понятия с примерами решения иВектор - определение и основные понятия с примерами решения. Тогда Вектор - определение и основные понятия с примерами решения
  2. Задаются аффинные координаты вектора Вектор - определение и основные понятия с примерами решения
  3. Задаются длина вектора и два любых угла, которые образует вектор Вектор - определение и основные понятия с примерами решения с какими-либо координатными осями и знак одной из проекций:Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения, но так как по условию Вектор - определение и основные понятия с примерами решения, то Вектор - определение и основные понятия с примерами решения. Следовательно, Вектор - определение и основные понятия с примерами решения

Деление отрезка в заданном отношении

Пусть в пространственной декартовой системе отсчета даны две точки Вектор - определение и основные понятия с примерами решенияи Вектор - определение и основные понятия с примерами решения Требуется найти на заданном отрезке Вектор - определение и основные понятия с примерами решения такую точку Вектор - определение и основные понятия с примерами решениячтобы Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения – заданное число (Рис. 8). Вектор - определение и основные понятия с примерами решения

Рис. 8. Деление отрезка в заданном отношении.

Из рисунка видно, чтоВектор - определение и основные понятия с примерами решения В силу того, что Вектор - определение и основные понятия с примерами решения Подставляя это равенство в систему и исключая вектор Вектор - определение и основные понятия с примерами решения найдем, что Вектор - определение и основные понятия с примерами решения.

Отсюда найдем вектор Вектор - определение и основные понятия с примерами решения В проекциях на координатные оси это равенство равносильно системе равенств Вектор - определение и основные понятия с примерами решения которая определяет деление отрезка в заданном отношении. Если точка Вектор - определение и основные понятия с примерами решения делит отрезок Вектор - определение и основные понятия с примерами решения пополам Вектор - определение и основные понятия с примерами решения то система полученных равенств принимает вид известный из курса математики средней школы Вектор - определение и основные понятия с примерами решения

Понятие базиса векторов

Определение: Любые два (три) неколлинеарных (некомпланарных) вектора образуют базис.

Теорема: Пусть даны два неколлинеарных вектора Вектор - определение и основные понятия с примерами решенияи Вектор - определение и основные понятия с примерами решения. Любой другой компланарный им вектор может быть единственным образом представлен в виде линейной комбинации векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения: Вектор - определение и основные понятия с примерами решения, где Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения – вещественные числа.

Доказательство: Пусть векторы Вектор - определение и основные понятия с примерами решения, Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения приведены к общему началу (Рис. 9), т.е.

Вектор - определение и основные понятия с примерами решения

Рис. 9. Разложение вектора по заданному базису.

Из рисунка видно, что Вектор - определение и основные понятия с примерами решения (правило параллелограмма, Лекция .№ 4). Вектор Вектор - определение и основные понятия с примерами решения коллинеарен вектору Вектор - определение и основные понятия с примерами решения а вектор Вектор - определение и основные понятия с примерами решения вектору Вектор - определение и основные понятия с примерами решения Следовательно, найдутся 2 вещественных числа Вектор - определение и основные понятия с примерами решения такие, что будут выполняться равенства: Вектор - определение и основные понятия с примерами решения Отсюда следует, что Вектор - определение и основные понятия с примерами решения

Докажем единственность разложения вектора Вектор - определение и основные понятия с примерами решенияпо базису Вектор - определение и основные понятия с примерами решения Пусть существуют другие вещественные числа Вектор - определение и основные понятия с примерами решения такие что Вектор - определение и основные понятия с примерами решения и пусть хотя бы одна из пар Вектор - определение и основные понятия с примерами решения содержит разные числа, например, Вектор - определение и основные понятия с примерами решения Вычитая из первого разложения второе, получим

Вектор - определение и основные понятия с примерами решения

Это означает, что векторы Вектор - определение и основные понятия с примерами решения коллинеарные, что противоречит условию теоремы о том, что они образуют базис. Таким образом, разложение вектора Вектор - определение и основные понятия с примерами решения по базису Вектор - определение и основные понятия с примерами решения единственно и имеет ВИД Вектор - определение и основные понятия с примерами решения В силу произвольности вектора Вектор - определение и основные понятия с примерами решения данная теорема справедлива для любого вектора компланарного с векторами Вектор - определение и основные понятия с примерами решения

Замечание: С геометрической точки зрения числа Вектор - определение и основные понятия с примерами решения определяют те числа, на которые надо умножить базисные вектора Вектор - определение и основные понятия с примерами решения чтобы по правилу параллелограмма получить вектор Вектор - определение и основные понятия с примерами решения В трехмерном пространстве произвольный вектор Вектор - определение и основные понятия с примерами решения может быть разложен по некомпланарной тройке векторов Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения причем единственным образом.

Определение: Ортом направления оси Вектор - определение и основные понятия с примерами решения называется вектор единичной длины в выбранном масштабе измерения, сонаправленный с этой осью Вектор - определение и основные понятия с примерами решения Рассмотрим пространственную декартову систему координат, по всем осям (абсцисс – Ох, ординат – Оу и аппликат – Oz) выберем одинаковый масштаб измерения. Вдоль направления каждой оси отложим отрезки единичной длины. Обозначим орты осей:Вектор - определение и основные понятия с примерами решения – черезВектор - определение и основные понятия с примерами решения – через Вектор - определение и основные понятия с примерами решения – через Вектор - определение и основные понятия с примерами решения(Рис. 10): Вектор - определение и основные понятия с примерами решения

Рис. 10. Орты (единичные векторы) декартовой системы координат.

Из Рис. 10 видно, что орты осей имеют следующие проекции:

Вектор - определение и основные понятия с примерами решения

Так как векторы Вектор - определение и основные понятия с примерами решения некомпланарные, то они образуют базис и любой пространственный вектор может быть единственным образом разложен по этому базису, причем в качестве чисел Вектор - определение и основные понятия с примерами решения выступают проекции вектора: Вектор - определение и основные понятия с примерами решения

Векторы в геометрии

Изучая материал этого параграфа, вы узнаете, что векторы используются не только в физике, но и в геометрии. Вы научитесь складывать и вычитать векторы, умножать вектор на число, находить угол между двумя векторами, применять свойства векторов для решения задач.

Понятие вектора в геометрии

Вы знаете много величин, которые определяются своими числовыми значениями: масса, площадь, длина, объем, время, температура и т. д. Такие величины называют скалярными величинами или скалярами.

Из курса физики вам знакомы величины, для задания которых недостаточно знать только их числовое значение. Например, если на пружину действует сила 5 Вектор - определение и основные понятия с примерами решения то непонятно, будет ли пружина сжиматься или растягиваться (рис. 12.1). Надо еще знать, в каком направлении действует сила.

Вектор - определение и основные понятия с примерами решения

Величины, которые определяются не только числовым значением, но и направлением, называют векторными величинами или векторами.

Сила, перемещение, скорость, ускорение, вес — примеры векторных величин.

Есть векторы и в геометрии.

Рассмотрим отрезок Вектор - определение и основные понятия с примерами решения Если мы договоримся точку Вектор - определение и основные понятия с примерами решения считать началом отрезка, а точку Вектор - определение и основные понятия с примерами решения — его концом, то такой отрезок будет характеризоваться не только длиной, но и направлением от точки Вектор - определение и основные понятия с примерами решения к точке Вектор - определение и основные понятия с примерами решения

Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.

Вектор с началом в точке Вектор - определение и основные понятия с примерами решения и концом в точке Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения (читают: «вектор Вектор - определение и основные понятия с примерами решения

На рисунках вектор изображают отрезком со стрелкой, указывающей его конец. На рисунке 12.2 изображены векторы Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения Для обозначения векторов также используют строчные буквы латинского алфавита со стрелкой сверху. На рисунке 12.3 изображены векторы Вектор - определение и основные понятия с примерами решения

Вектор, у которого начало и конец — одна и та же точка, называют нулевым вектором или нуль-вектором и обозначают Вектор - определение и основные понятия с примерами решения Если начало и конец нулевого вектора — это точка Вектор - определение и основные понятия с примерами решения то его можно обозначить и так: Вектор - определение и основные понятия с примерами решения На рисунке нулевой вектор изображают точкой.

Модулем вектора Вектор - определение и основные понятия с примерами решения называют длину отрезка Вектор - определение и основные понятия с примерами решения Модуль вектора Вектор - определение и основные понятия с примерами решенияобозначают так: Вектор - определение и основные понятия с примерами решения а модуль вектора Вектор - определение и основные понятия с примерами решения — так: Вектор - определение и основные понятия с примерами решения

Модуль нулевого вектора считают равным нулю: Вектор - определение и основные понятия с примерами решения

Определение. Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой.

Нулевой вектор считают коллинеарным любому вектору.

На рисунке 12.4 изображены коллинеарные векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Тот факт, что векторы Вектор - определение и основные понятия с примерами решения коллинеарны, обозначают так: Вектор - определение и основные понятия с примерами решения

На рисунке 12.5 ненулевые коллинеарные векторы Вектор - определение и основные понятия с примерами решения одинаково направлены. Такие векторы называют сонаправленными и пишут: Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения

Аналогичным свойством обладают и сонаправленные векторы, то есть если Вектор - определение и основные понятия с примерами решения (рис. 12.6).

На рисунке 12.7 ненулевые коллинеарные векторы Вектор - определение и основные понятия с примерами решения противоположно направлены. Этот факт обозначают так: Вектор - определение и основные понятия с примерами решения

Определение. Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны.

На рисунке 12.8 изображены равные векторы Вектор - определение и основные понятия с примерами решения Это обозначают так: Вектор - определение и основные понятия с примерами решения

Равенство ненулевых векторов Вектор - определение и основные понятия с примерами решения означает, что Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Нетрудно доказать, что если Вектор - определение и основные понятия с примерами решения Убедитесь в этом самостоятельно.

Часто, говоря о векторах, мы не конкретизируем, какая точка является началом вектора. Так, на рисунке 12.9 изображены вектор а и векторы, равные вектору Вектор - определение и основные понятия с примерами решения Каждый из них также принято называть вектором Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

На рисунке 12.10, а изображены вектор Вектор - определение и основные понятия с примерами решения и точка Вектор - определение и основные понятия с примерами решения Если построен вектор Вектор - определение и основные понятия с примерами решенияравный вектору Вектор - определение и основные понятия с примерами решения то говорят, что вектор Вектор - определение и основные понятия с примерами решения отложен от точки Вектор - определение и основные понятия с примерами решения (рис. 12.10, б).

Покажем, как от произвольной точки Вектор - определение и основные понятия с примерами решения отложить вектор, равный данному вектору Вектор - определение и основные понятия с примерами решения

Если вектор Вектор - определение и основные понятия с примерами решения нулевой, то искомым вектором будет вектор Вектор - определение и основные понятия с примерами решения

Теперь рассмотрим случай, когда Вектор - определение и основные понятия с примерами решения Пусть точка Вектор - определение и основные понятия с примерами решения лежит на прямой, содержащей вектор Вектор - определение и основные понятия с примерами решения (рис. 12.11). На этой прямой существуют две точки Вектор - определение и основные понятия с примерами решения такие, что Вектор - определение и основные понятия с примерами решения На указанном рисунке вектор Вектор - определение и основные понятия с примерами решения будет равным вектору Вектор - определение и основные понятия с примерами решения Его и следует выбрать.

Вектор - определение и основные понятия с примерами решения

Если точка Вектор - определение и основные понятия с примерами решения не принадлежит прямой, содержащей вектор Вектор - определение и основные понятия с примерами решения то через точку Вектор - определение и основные понятия с примерами решения проведем прямую, ей параллельную (рис. 12.12). Дальнейшее построение аналогично уже рассмотренному.

От заданной точки можно отложить только один вектор, равный данному.

Пример №5

Дан четырехугольник Вектор - определение и основные понятия с примерами решения Известно, что Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решенияОпределите вид четырехугольника Вектор - определение и основные понятия с примерами решения

Решение:

Из условия Вектор - определение и основные понятия с примерами решения следует, что Вектор - определение и основные понятия с примерами решения Следовательно, четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм.

Равенство Вектор - определение и основные понятия с примерами решения означает, что диагонали четырехугольника Вектор - определение и основные понятия с примерами решения равны. А параллелограмм с равными диагоналями — прямоугольник. Вектор - определение и основные понятия с примерами решения

Координаты вектора

Рассмотрим на координатной плоскости вектор Вектор - определение и основные понятия с примерами решения Отложим от начала координат равный ему вектор Вектор - определение и основные понятия с примерами решения (рис. 13.1). Координатами вектора Вектор - определение и основные понятия с примерами решения называют координаты точки Вектор - определение и основные понятия с примерами решения Запись Вектор - определение и основные понятия с примерами решения означает, что вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Числа Вектор - определение и основные понятия с примерами решения называют соответственно первой и второй координатами вектора Вектор - определение и основные понятия с примерами решения

Из определения следует, что равные векторы имеют равные соответствующие координаты. Например, каждый из равных векторов Вектор - определение и основные понятия с примерами решения (рис. 13.2) имеет координаты Вектор - определение и основные понятия с примерами решения

Справедливо и обратное утверждение: если соответствующие координаты векторов равны, то равны и сами векторы.

Действительно, если отложить такие векторы от начала координат, то их концы совпадут.

Очевидно, что нулевой вектор имеет координаты Вектор - определение и основные понятия с примерами решения

Теорема 13.1. Если точки Вектор - определение и основные понятия с примерами решения соответственно являются началом и концом вектора Вектор - определение и основные понятия с примерами решения то числа Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения равны соответственно первой и второй координатам вектора Вектор - определение и основные понятия с примерами решения

Доказательство: Пусть вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то утверждение теоремы очевидно.

Пусть Вектор - определение и основные понятия с примерами решения Отложим от начала координат вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Тогда координаты точки Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то, воспользовавшись результатом задачи 12.32, можем сделать вывод, что середины отрезков Вектор - определение и основные понятия с примерами решения совпадают. Координаты середин отрезков Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения Тогда

Вектор - определение и основные понятия с примерами решения

Эти равенства выполняются и тогда, когда точка Вектор - определение и основные понятия с примерами решения совпадает с точкой Вектор - определение и основные понятия с примерами решения или точка Вектор - определение и основные понятия с примерами решения совпадает с точкой Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Из формулы расстояния между двумя точками следует, что если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то

Вектор - определение и основные понятия с примерами решения

Пример №6

Даны координаты трех вершин параллелограмма Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения Найдите координаты вершины Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм, то Вектор - определение и основные понятия с примерами решения Следовательно, координаты этих векторов равны.

Пусть координаты точки Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения Для нахождения координат векторов Вектор - определение и основные понятия с примерами решения воспользуемся теоремой 13.1.

Имеем:

Вектор - определение и основные понятия с примерами решения

Отсюда: Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Сложение и вычитание векторов

Если тело переместилось из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения а затем из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения то суммарное перемещение из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения естественно представить в виде вектора Вектор - определение и основные понятия с примерами решения считая этот вектор суммой векторов Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения (рис. 14.1).

Вектор - определение и основные понятия с примерами решения

Этот пример подсказывает, как ввести понятие суммы векторов, то есть как сложить два данных вектора Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Далее от точки Вектор - определение и основные понятия с примерами решения отложим вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Вектор Вектор - определение и основные понятия с примерами решения называют суммой векторов Вектор - определение и основные понятия с примерами решения (рис. 14.2) и записывают: Вектор - определение и основные понятия с примерами решения

Описанный алгоритм сложения двух векторов называют правилом треугольника.

Это название связано с тем, что если векторы Вектор - определение и основные понятия с примерами решения не коллинеарны, то точки Вектор - определение и основные понятия с примерами решения являются вершинами треугольника (рис. 14.2).

Вектор - определение и основные понятия с примерами решения

По правилу треугольника можно складывать и коллинеарные векторы. На рисунке 14.3 вектор Вектор - определение и основные понятия с примерами решения равен сумме коллинеарных векторов Вектор - определение и основные понятия с примерами решения

Следовательно, для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения которое выражает правило треугольника для сложения векторов.

Теорема 14.1. Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Доказательство: Пусть точки Вектор - определение и основные понятия с примерами решения таковы, что Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения Докажем, что координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Найдем координаты векторов Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

С учетом того, что Вектор - определение и основные понятия с примерами решения получаем: Вектор - определение и основные понятия с примерами решения

Замечание. Описывая правило треугольника для нахождения суммы векторов Вектор - определение и основные понятия с примерами решения мы отложили вектор Вектор - определение и основные понятия с примерами решения от произвольной точки. Если точку Вектор - определение и основные понятия с примерами решения заменить точкой Вектор - определение и основные понятия с примерами решения то вместо вектора Вектор - определение и основные понятия с примерами решения равного сумме векторов Вектор - определение и основные понятия с примерами решения получим некоторый вектор Вектор - определение и основные понятия с примерами решения Из теоремы 14.1 следует, что координаты векторов Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Это означает, что сумма векторов Вектор - определение и основные понятия с примерами решения не зависит от того, от какой точки отложен вектор Вектор - определение и основные понятия с примерами решенияСвойства сложения векторов аналогичны свойствам сложения чисел.

Для любых векторов Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения
  • Вектор - определение и основные понятия с примерами решения — переместительное свойство;
  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство.

Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенств. Сделайте это самостоятельно.

Сумму трех и более векторов находят так: сначала складывают первый и второй векторы, затем складывают полученный вектор с третьим и т. д. Например, Вектор - определение и основные понятия с примерами решения

Из переместительного и сочетательного свойств сложения векторов следует, что при сложении нескольких векторов можно менять местами слагаемые и расставлять скобки любым способом.

В физике часто приходится складывать векторы, отложенные от одной точки. Так, если к телу приложены силы Вектор - определение и основные понятия с примерами решения (рис. 14.4), то равнодействующая этих сил равна сумме Вектор - определение и основные понятия с примерами решения

Для нахождения суммы двух неколлинеарных векторов, отложенных от одной точки, удобно пользоваться правилом параллелограмма для сложения векторов.

Вектор - определение и основные понятия с примерами решения Пусть надо найти сумму неколлинеарных векторов Вектор - определение и основные понятия с примерами решения (рис. 14.5). Отложим вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Поскольку векторы Вектор - определение и основные понятия с примерами решения равны, то четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм с диагональю Вектор - определение и основные понятия с примерами решения

Приведенные соображения позволяют сформулировать правило параллелограмма для сложения неколлинеарных векторов Вектор - определение и основные понятия с примерами решения

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Построим параллелограмм Вектор - определение и основные понятия с примерами решения (рис. 14.6). Тогда искомая сумма Вектор - определение и основные понятия с примерами решения равна вектору Вектор - определение и основные понятия с примерами решения

Определение. Разностью векторов Вектор - определение и основные понятия с примерами решения называют такой вектор Вектор - определение и основные понятия с примерами решения сумма которого с вектором Вектор - определение и основные понятия с примерами решения равна вектору Вектор - определение и основные понятия с примерами решения

Пишут: Вектор - определение и основные понятия с примерами решения

Покажем, как построить вектор, равный разности данных векторов Вектор - определение и основные понятия с примерами решения

От произвольной точки Вектор - определение и основные понятия с примерами решения отложим векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения (рис. 14.7). Тогда вектор Вектор - определение и основные понятия с примерами решения равен разности Вектор - определение и основные понятия с примерами решенияДействительно, Вектор - определение и основные понятия с примерами решения Следовательно, по определению разности двух векторов Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

На рисунке 14.7 векторы Вектор - определение и основные понятия с примерами решения неколлинеарны. Однако описанный алгоритм применим и для нахождения разности кол-линеарных векторов. На рисунке 14.8 вектор Вектор - определение и основные понятия с примерами решения равен разности коллинеарных векторов Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения Следовательно, для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения которое выражает правило нахождения разности двух векторов, отложенных от одной точки.

Теорема 14.2. Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Докажите эту теорему самостоятельно.

Из теоремы 14.2 следует, что для любых векторов Вектор - определение и основные понятия с примерами решения существует единственный вектор Вектор - определение и основные понятия с примерами решения такой, что Вектор - определение и основные понятия с примерами решения

Определение. Два ненулевых вектора называют противоположными, если их модули равны и векторы противоположно направлены.

Если векторы Вектор - определение и основные понятия с примерами решения противоположны, то говорят, что вектор Вектор - определение и основные понятия с примерами решения противоположный вектору Вектор - определение и основные понятия с примерами решения а вектор Вектор - определение и основные понятия с примерами решения противоположный вектору Вектор - определение и основные понятия с примерами решения

Вектором, противоположным нулевому вектору, считают нулевой вектор.

Вектор, противоположный вектору Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения

Из определения следует, что противоположным вектору Вектор - определение и основные понятия с примерами решения является вектор Вектор - определение и основные понятия с примерами решения Тогда для любых точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Из правила треугольника следует, что

Вектор - определение и основные понятия с примерами решения

А из этого равенства следует, что если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Теорема 14.3. Для любых векторов Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Для доказательства достаточно сравнить соответствующие координаты векторов, записанных в правой и левой частях равенства. Сделайте это самостоятельно.

Теорема 14.3 позволяет свести вычитание векторов к сложению: чтобы из вектора Вектор - определение и основные понятия с примерами решения вычесть вектор Вектор - определение и основные понятия с примерами решения можно к вектору Вектор - определение и основные понятия с примерами решения прибавить вектор Вектор - определение и основные понятия с примерами решения (рис. 14.9).

Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример №7

Диагонали параллелограмма Вектор - определение и основные понятия с примерами решения пересекаются в точке Вектор - определение и основные понятия с примерами решения (рис. 14.10). Выразите векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения через векторы Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку точка Вектор - определение и основные понятия с примерами решения — середина отрезков Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

Умножение вектора на число

Пусть дан ненулевой вектор Вектор - определение и основные понятия с примерами решения На рисунке 15.1 изображены вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Очевидно, что Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вектор Вектор - определение и основные понятия с примерами решения обозначают Вектор - определение и основные понятия с примерами решения и считают, что он получен в результате умножения вектора Вектор - определение и основные понятия с примерами решения на число 2. Аналогично считают, что вектор Вектор - определение и основные понятия с примерами решения получен в результате умножения вектора Вектор - определение и основные понятия с примерами решения на число -3, и записывают: Вектор - определение и основные понятия с примерами решения

Этот пример подсказывает, как ввести понятие «умножение вектора на число».

Определение. Произведением ненулевого вектора Вектор - определение и основные понятия с примерами решения и числа Вектор - определение и основные понятия с примерами решения отличного от нуля, называют такой вектор Вектор - определение и основные понятия с примерами решения что:

Вектор - определение и основные понятия с примерами решения

2) если Вектор - определение и основные понятия с примерами решения если Вектор - определение и основные понятия с примерами решения

Пишут: Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то считают, что Вектор - определение и основные понятия с примерами решения

На рисунке 15.2 изображены векторы Вектор - определение и основные понятия с примерами решения

Из определения следует, что

Вектор - определение и основные понятия с примерами решения

Также из определения следует, что если Вектор - определение и основные понятия с примерами решения то векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

А если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, то можно ли представить вектор Вектор - определение и основные понятия с примерами решения в виде произведения Вектор - определение и основные понятия с примерами решения Ответ дает следующая теорема.

Теорема 15.1. Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны и Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения

Доказательство: Если Вектор - определение и основные понятия с примерами решения то при Вектор - определение и основные понятия с примерами решения получаем, что Вектор - определение и основные понятия с примерами решения Если Вектор - определение и основные понятия с примерами решения то или Вектор - определение и основные понятия с примерами решения

1) Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения следовательно, Вектор - определение и основные понятия с примерами решения Кроме того, Вектор - определение и основные понятия с примерами решения Таким образом, векторы Вектор - определение и основные понятия с примерами решения сонаправлены и их модули равны. Отсюда Вектор - определение и основные понятия с примерами решения

2) Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения Для этого случая завершите доказательство самостоятельно. Вектор - определение и основные понятия с примерами решения

Теорема 15.2. Если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Доказательство: Если Вектор - определение и основные понятия с примерами решения то утверждение теоремы очевидно.

Пусть Вектор - определение и основные понятия с примерами решения Рассмотрим вектор Вектор - определение и основные понятия с примерами решения. Покажем, что Вектор - определение и основные понятия с примерами решения Имеем:

Вектор - определение и основные понятия с примерами решения

Отложим от начала координат векторы Вектор - определение и основные понятия с примерами решения равные соответственно векторам Вектор - определение и основные понятия с примерами решения Поскольку прямая Вектор - определение и основные понятия с примерами решения проходит через начало координат, то ее уравнение имеет вид Вектор - определение и основные понятия с примерами решения Этой прямой принадлежит точка Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Следовательно, точка Вектор - определение и основные понятия с примерами решения также принадлежит прямой Вектор - определение и основные понятия с примерами решения поэтому векторы Вектор - определение и основные понятия с примерами решения коллинеарны, то есть Вектор - определение и основные понятия с примерами решения

При Вектор - определение и основные понятия с примерами решения числа Вектор - определение и основные понятия с примерами решения имеют одинаковые знаки (или оба равны нулю). Таким же свойством обладают числа Вектор - определение и основные понятия с примерами решенияСледовательно, при Вектор - определение и основные понятия с примерами решения точки Вектор - определение и основные понятия с примерами решения лежат в одной координатной четверти (или на одном координатном луче), поэтому векторы Вектор - определение и основные понятия с примерами решения сонаправлены (рис. 15.3), то есть Вектор - определение и основные понятия с примерами решения При Вектор - определение и основные понятия с примерами решения векторы Вектор - определение и основные понятия с примерами решения будут противоположно направленными, то есть Вектор - определение и основные понятия с примерами решения Следовательно, мы получили, что Вектор - определение и основные понятия с примерами решения

Следствие 1. Векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

Следствие 2. Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, причем Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

С помощью теоремы 15.2 можно доказать такие свойства умножения вектора на число.

Для любых чисел Вектор - определение и основные понятия с примерами решения и любых векторов Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство;
  • Вектор - определение и основные понятия с примерами решения — первое распределительное свойство;
  • Вектор - определение и основные понятия с примерами решения — второе распределительное свойство.

Для доказательства этих свойств достаточно сравнить соответствующие координаты векторов, записанных в правых и левых частях равенств. Сделайте это самостоятельно.

Эти свойства позволяют преобразовывать выражения, содержащие сумму векторов, разность векторов и произведение векторов на число, аналогично тому, как мы преобразовываем алгебраические выражения. Например,

Вектор - определение и основные понятия с примерами решения

Пример №8

Докажите, что если Вектор - определение и основные понятия с примерами решения то точки Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения лежат на одной прямой.

Решение:

Из условия следует, что векторы Вектор - определение и основные понятия с примерами решения коллинеарны. Кроме того, эти векторы отложены от одной точки Вектор - определение и основные понятия с примерами решения Следовательно, точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой. Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №9

Точка Вектор - определение и основные понятия с примерами решения — середина отрезка Вектор - определение и основные понятия с примерами решения— произвольная точка (рис. 15.4). Докажите, что Вектор - определение и основные понятия с примерами решения

Решение:

Применяя правило треугольника, запишем:

Вектор - определение и основные понятия с примерами решения

Сложим эти два равенства:

Вектор - определение и основные понятия с примерами решения

Поскольку векторы Вектор - определение и основные понятия с примерами решения противоположны, то Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Пример №10

Докажите, что середины оснований трапеции и точка пересечения продолжение ее боковых сторон лежат на одной прямой.

Решение:

Пусть точки Вектор - определение и основные понятия с примерами решения — середины оснований Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения трапеции Вектор - определение и основные понятия с примерами решения — точка пересечения прямых Вектор - определение и основные понятия с примерами решения (рис. 15.5).

Применяя ключевую задачу 2, запишем: Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения —некоторые числа.

Поскольку Вектор - определение и основные понятия с примерами решения Следовательно, Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Из ключевой задачи 1 следует, что точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой. Вектор - определение и основные понятия с примерами решения

Пример №11

Докажите, что если Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения

Решение:

Пусть отрезки Вектор - определение и основные понятия с примерами решения — медианы треугольника Вектор - определение и основные понятия с примерами решения (рис. 15.6). Имеем:

Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Из свойства медиан треугольника следует, что Вектор - определение и основные понятия с примерами решения

Тогда Вектор - определение и основные понятия с примерами решения Аналогично Вектор - определение и основные понятия с примерами решения

Отсюда

Вектор - определение и основные понятия с примерами решения

Применение векторов

Применяя векторы к решению задач, часто используют следующую лемму.

Лемма. Пусть Вектор - определение и основные понятия с примерами решения — такая точка отрезка Вектор - определение и основные понятия с примерами решения что Вектор - определение и основные понятия с примерами решения (рис. 15.9). Тогда для любой точки Вектор - определение и основные понятия с примерами решения выполняется равенство

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Доказательство: Имеем:

Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то

Вектор - определение и основные понятия с примерами решения

Запишем: Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения то имеем:

Вектор - определение и основные понятия с примерами решения

Заметим, что эта лемма является обобщением ключевой задачи 2 п. 15.

Пример №12

Пусть Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения — произвольная точка (рис. 15.10). Докажите, что

Вектор - определение и основные понятия с примерами решения

Решение:

Пусть точка Вектор - определение и основные понятия с примерами решения — середина отрезка Вектор - определение и основные понятия с примерами решения Имеем: Вектор - определение и основные понятия с примерами решения Тогда, используя лемму, можно записать:

Вектор - определение и основные понятия с примерами решения

Докажем векторное равенство, связывающее две замечательныеВектор - определение и основные понятия с примерами решения точки треугольника.

Теорема. Если точка Вектор - определение и основные понятия с примерами решения — ортоцентр треугольника Вектор - определение и основные понятия с примерами решения а точка Вектор - определение и основные понятия с примерами решения — центр его описанной окружности, то

Вектор - определение и основные понятия с примерами решения

Доказательство: Для прямоугольного треугольника равенство Вектор - определение и основные понятия с примерами решения очевидно.

Пусть треугольник Вектор - определение и основные понятия с примерами решения не является прямоугольным. Опустим из точки Вектор - определение и основные понятия с примерами решения перпендикуляр Вектор - определение и основные понятия с примерами решения на сторону Вектор - определение и основные понятия с примерами решения треугольника Вектор - определение и основные понятия с примерами решения (рис. 15.11). В курсе геометрии 8 класса было доказано, что Вектор - определение и основные понятия с примерами решения

На луче Вектор - определение и основные понятия с примерами решения отметим точку Вектор - определение и основные понятия с примерами решения такую, что Вектор - определение и основные понятия с примерами решения Тогда Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решения то четырехугольник Вектор - определение и основные понятия с примерами решения — параллелограмм.

По правилу параллелограмма Вектор - определение и основные понятия с примерами решения

Поскольку точка Вектор - определение и основные понятия с примерами решения является серединой отрезка Вектор - определение и основные понятия с примерами решения то в четырехугольнике Вектор - определение и основные понятия с примерами решения диагонали точкой пересечения делятся пополам. Вектор - определение и основные понятия с примерами решения

Следовательно, этот четырехугольник — параллелограмм. Отсюда Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Обратимся к векторному равенству Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения — точка пересечения медиан треугольника Вектор - определение и основные понятия с примерами решения Так как Вектор - определение и основные понятия с примерами решения — произвольная точка, то равенство остается справедливым, если в качестве точки Вектор - определение и основные понятия с примерами решения выбрать точку Вектор - определение и основные понятия с примерами решения — центр описанной окружности треугольника Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения

Учитывая равенство Вектор - определение и основные понятия с примерами решения получаем: Вектор - определение и основные понятия с примерами решения

Это равенство означает, что точки Вектор - определение и основные понятия с примерами решения лежат на одной прямой, которую называют прямой Эйлера. Напомним, что это замечательное свойство было доказано в курсе геометрии 8 класса, но другим способом.

Скалярное произведение векторов

Пусть Вектор - определение и основные понятия с примерами решения — два ненулевых и несонаправленных вектора (рис. 16.1). От произвольной точки Вектор - определение и основные понятия с примерами решения отложим векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения Величину угла Вектор - определение и основные понятия с примерами решения будем называть углом между векторами Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Угол между векторами Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения Например, на рисунке 16.1 Вектор - определение и основные понятия с примерами решения а на рисунке 16.2 Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Если векторы Вектор - определение и основные понятия с примерами решения сонаправлены, то считают, что Вектор - определение и основные понятия с примерами решения Если хотя бы один из векторов Вектор - определение и основные понятия с примерами решения нулевой, то так же считают, что Вектор - определение и основные понятия с примерами решения

Следовательно, для любых векторов Вектор - определение и основные понятия с примерами решения имеет место неравенство:

Вектор - определение и основные понятия с примерами решения

Векторы Вектор - определение и основные понятия с примерами решения называют перпендикулярными, если угол между ними равен Вектор - определение и основные понятия с примерами решения Пишут: Вектор - определение и основные понятия с примерами решения

Вы умеете складывать и вычитать векторы, умножать вектор на число. Также из курса физики вы знаете, что если под действием постоянной силы Вектор - определение и основные понятия с примерами решения тело переместилось из точки Вектор - определение и основные понятия с примерами решения в точку Вектор - определение и основные понятия с примерами решения (рис. 16.3), то совершенная механическая работа равна Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Изложенное выше подсказывает, что целесообразно ввести еще одно действие над векторами.

Определение. Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними. Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения обозначают так: Вектор - определение и основные понятия с примерами решения

Имеем:

Вектор - определение и основные понятия с примерами решения

Если хотя бы один из векторов Вектор - определение и основные понятия с примерами решения нулевой, то очевидно, что Вектор - определение и основные понятия с примерами решения

Пусть Вектор - определение и основные понятия с примерами решения

Скалярное произведение Вектор - определение и основные понятия с примерами решения называют скалярным квадратом вектора Вектор - определение и основные понятия с примерами решения и обозначают Вектор - определение и основные понятия с примерами решения

Мы получили, что Вектор - определение и основные понятия с примерами решения то есть скалярный квадрат, вектора равен квадрату его модуля.

Теорема 16.1. Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.

Доказательство: Пусть Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Пусть теперь Вектор - определение и основные понятия с примерами решения Докажем, что Вектор - определение и основные понятия с примерами решения

Запишем: Вектор - определение и основные понятия с примерами решения Поскольку Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Теорема 16.2. Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения можно вычислить по формуле

Вектор - определение и основные понятия с примерами решения

Доказательство: Сначала рассмотрим случай, когда векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решениянеколлинеарны.

Отложим от начала координат векторы Вектор - определение и основные понятия с примерами решения соответственно равные векторам Вектор - определение и основные понятия с примерами решения (рис. 16.4). Тогда

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Применим теорему косинусов к треугольнику Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Поскольку Вектор - определение и основные понятия с примерами решения

Кроме того, Вектор - определение и основные понятия с примерами решения Отсюда Вектор - определение и основные понятия с примерами решения

Имеем: Вектор - определение и основные понятия с примерами решения Воспользовавшись формулой нахождения модуля вектора по его координатам, запишем:

Вектор - определение и основные понятия с примерами решения

Упрощая выражение, записанное в правой части последнего равенства, получаем:

Вектор - определение и основные понятия с примерами решения

Рассмотрим случай, когда векторы Вектор - определение и основные понятия с примерами решения коллинеарны.

Если Вектор - определение и основные понятия с примерами решения то очевидно, что Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения то есть Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения Имеем:

Вектор - определение и основные понятия с примерами решения

Случай, когда Вектор - определение и основные понятия с примерами решения рассмотрите самостоятельно. Вектор - определение и основные понятия с примерами решения

Следствие. Косинус угла между ненулевыми векторами Вектор - определение и основные понятия с примерами решенияможно вычислить по формуле

Вектор - определение и основные понятия с примерами решения

Доказательство: Из определения скалярного произведения векторов Вектор - определение и основные понятия с примерами решенияследует, что Вектор - определение и основные понятия с примерами решения Воспользовавшись теоремой 16.2 и формулой нахождения модуля вектора по его координатам, получаем формулу Вектор - определение и основные понятия с примерами решения

С помощью теоремы 16.2 легко доказать следующие свойства скалярного произведения векторов.

Для любых векторов Вектор - определение и основные понятия с примерами решения и любого числа Вектор - определение и основные понятия с примерами решения справедливы равенства:

Вектор - определение и основные понятия с примерами решения— переместительное свойство;

Вектор - определение и основные понятия с примерами решения — сочетательное свойство;

Вектор - определение и основные понятия с примерами решения — распределительное свойство.

Для доказательства этих свойств достаточно выразить через координаты векторов скалярные произведения, записанные в правых и левых частях равенств, и сравнить их. Сделайте это самостоятельно.

Эти свойства вместе со свойствами сложения векторов и умножения вектора на число позволяют преобразовывать выражения, содержащие скалярное произведение векторов, аналогично тому, как мы преобразовываем алгебраические выражения.

Например, Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Пример №13

С помощью векторов докажите, что диагонали ромба перпендикулярны.

Вектор - определение и основные понятия с примерами решения

Решение:

На рисунке 16.5 изображен ромб Вектор - определение и основные понятия с примерами решения Пусть Вектор - определение и основные понятия с примерами решения Очевидно, что Вектор - определение и основные понятия с примерами решения По правилу параллелограмма имеем: Вектор - определение и основные понятия с примерами решения

Отсюда

Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Пример №14

Известно, что Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения

Найдите Вектор - определение и основные понятия с примерами решения

Решение:

Поскольку скалярный квадрат вектора равен квадрату его модуля, то Вектор - определение и основные понятия с примерами решения Отсюда

Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Пример №15

В треугольнике Вектор - определение и основные понятия с примерами решения известно, что Вектор - определение и основные понятия с примерами решения Найдите медиану Вектор - определение и основные понятия с примерами решения

Решение. Применяя ключевую задачу 2 п. 15, запишем: Вектор - определение и основные понятия с примерами решения (рис. 16.6).

Вектор - определение и основные понятия с примерами решения

Отсюда:

Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Ответ: Вектор - определение и основные понятия с примерами решения

Справочный материал

Вектор

Если указано, какая точка является началом отрезка, а какая точка — его концом, то такой отрезок называют направленным отрезком или вектором.

Коллинеарные векторы

Ненулевые векторы называют коллинеарными, если они лежат на параллельных прямых или на одной прямой. Нулевой вектор считают коллинеарным любому вектору.

Равные векторы

Ненулевые векторы называют равными, если их модули равны и они сонаправлены. Любые два нулевых вектора равны. Равные векторы имеют равные соответствующие координаты. Если соответствующие координаты векторов равны, то равны и сами векторы.

Координаты вектора

Если точки Вектор - определение и основные понятия с примерами решения соответственно являются началом и концом вектора Вектор - определение и основные понятия с примерами решения то числа Вектор - определение и основные понятия с примерами решения равны соответственно первой и второй координатам вектора Вектор - определение и основные понятия с примерами решения

Модуль вектора

Если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Правила сложения двух векторов

Правило треугольника

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения а от точки Вектор - определение и основные понятия с примерами решения — вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Вектор Вектор - определение и основные понятия с примерами решения — сумма векторов Вектор - определение и основные понятия с примерами решения Для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Правило параллелограмма

Отложим от произвольной точки Вектор - определение и основные понятия с примерами решения вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения равный вектору Вектор - определение и основные понятия с примерами решения Построим параллелограмм Вектор - определение и основные понятия с примерами решения Тогда вектор Вектор - определение и основные понятия с примерами решения — сумма векторов Вектор - определение и основные понятия с примерами решения

Координаты суммы векторов

Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Свойства сложения векторов

Для любых векторов Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения
  • Вектор - определение и основные понятия с примерами решения — переместительное свойство;
  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство.

Разность векторов

Разностью векторов Вектор - определение и основные понятия с примерами решения называют такой вектор Вектор - определение и основные понятия с примерами решения сумма которого с вектором Вектор - определение и основные понятия с примерами решения равна вектору Вектор - определение и основные понятия с примерами решения

Для любых трех точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Координаты разности векторов

Если координаты векторов Вектор - определение и основные понятия с примерами решения соответственно равны Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения то координаты вектора Вектор - определение и основные понятия с примерами решения равны Вектор - определение и основные понятия с примерами решения

Противоположные векторы

Два ненулевых вектора называют противоположными, если их модули равны и векторы противоположно направлены. Для любых точек Вектор - определение и основные понятия с примерами решения выполняется равенство Вектор - определение и основные понятия с примерами решения

Умножение вектора на число

Произведением ненулевого вектора Вектор - определение и основные понятия с примерами решения и числа Вектор - определение и основные понятия с примерами решения отличного от нуля, называют такой вектор Вектор - определение и основные понятия с примерами решения что:

Вектор - определение и основные понятия с примерами решения

2) если Вектор - определение и основные понятия с примерами решения

Если Вектор - определение и основные понятия с примерами решения то считают, что Вектор - определение и основные понятия с примерами решения

Если вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения то вектор Вектор - определение и основные понятия с примерами решения имеет координаты Вектор - определение и основные понятия с примерами решения

Свойства коллинеарных векторов

Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, причем Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения

Если векторы Вектор - определение и основные понятия с примерами решения коллинеарны, причем Вектор - определение и основные понятия с примерами решения то существует такое число Вектор - определение и основные понятия с примерами решения

Свойства умножения вектора на число

Для любых чисел Вектор - определение и основные понятия с примерами решения и любых векторов Вектор - определение и основные понятия с примерами решения справедливы равенства:

  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство;
  • Вектор - определение и основные понятия с примерами решения — первое распределительное свойство;
  • Вектор - определение и основные понятия с примерами решения — второе распределительное свойство.

Скалярное произведение векторов

Скалярным произведением двух векторов называют произведение их модулей и косинуса угла между ними:

Вектор - определение и основные понятия с примерами решения Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения можно вычислить по формуле Вектор - определение и основные понятия с примерами решения

Свойства скалярного произведения

Для любых векторов Вектор - определение и основные понятия с примерами решения и любого числа Вектор - определение и основные понятия с примерами решения выполняются равенства:

  • Вектор - определение и основные понятия с примерами решения — переместительное свойство;
  • Вектор - определение и основные понятия с примерами решения — сочетательное свойство;
  • Вектор - определение и основные понятия с примерами решения — распределительное свойство.

Условие перпендикулярности двух векторов

Скалярное произведение двух ненулевых векторов равно нулю тогда и только тогда, когда эти векторы перпендикулярны.

Косинус угла между двумя векторами

Косинус угла между ненулевыми векторами Вектор - определение и основные понятия с примерами решения можно вычислить по формуле Вектор - определение и основные понятия с примерами решения

Векторы в аналитической геометрии

Понятие вектора широко применяется в экономике, математике, физике и других науках, при этом одинаково широко используется как алгебраическая концепция изложения векторного анализа, так и его геометрическая интерпретация, в рамках которой различаются величины двух видов: скалярные и векторные.

Скалярной величиной или скаляром называется величина, которая полностью определяется одним числом, выражающим отношение этой величины к соответствующей единице измерения, например, цена, количество проданного товара, стоимость и т.д.

Векторной величиной или вектором называется величина, для задания которой кроме численного значения необходимо указать и ее направление в пространстве, например, изменение темпов производства (рост или падение), колебание курса акций на бирже и т.д.

Векторная величина графически обычно изображается как связанный вектор или направленный отрезок, т.е. отрезок прямой, у которого указано, какая из ограничивающих точек является его началом, а какая концом. Но в отличие от направленного отрезка, для описания которого необходимо указать начальную точку, длину и направление, свободный вектор или просто вектор представляет собой множество всех эквивалентных между собой связанных векторов и вполне характеризуется:

  • направлением;
  • длиной (модулем).

Для задания такого множества достаточно указать какой-либо один из связанных векторов этого множества – представитель вектора, в качестве которого обычно выбирается связанный вектор с началом, совпадающим с началом координат.

Вектор обозначается одной маленькой буквой со стрелкой сверху, например, Вектор - определение и основные понятия с примерами решенияили двумя буквами со стрелкой Вектор - определение и основные понятия с примерами решения, где точка А есть начало вектора (его точка приложения), а В – его конец.

Длина вектора называется его модулем, обозначаетсяВектор - определение и основные понятия с примерами решенияили Вектор - определение и основные понятия с примерами решения

и равна длине любого его представителя, т.е. расстоянию между начальной и конечной точками связного вектора Вектор - определение и основные понятия с примерами решения. Вектор, длина которого равна нулю, называется нуль-вектором и обозначается Вектор - определение и основные понятия с примерами решения.

Два вектора называются равными, если:

  1. равны их длины;
  2. они параллельны;
  3. они направлены в одну сторону.

Иными словами, равные векторы получаются один из другого параллельным переносом в пространстве.

Векторы называются коллинеарными, если они расположены на одной или на параллельных прямых, и компланарными, если они лежат на одной или на параллельных плоскостях.

Вектор, длина которого равна единице, называется единичным вектором или ортом. Орт обозначатся Вектор - определение и основные понятия с примерами решения.

Линейные операции над векторами

Сложение вектора производится по правилу параллелограмма:

Вектор - определение и основные понятия с примерами решения

Поскольку вектор Вектор - определение и основные понятия с примерами решенияравен Вектор - определение и основные понятия с примерами решения, то можно дать другое правило нахождения суммы Вектор - определение и основные понятия с примерами решения (правило треугольника): суммой векторов Вектор - определение и основные понятия с примерами решения является вектор, идущий из начала Вектор - определение и основные понятия с примерами решенияв конец Вектор - определение и основные понятия с примерами решения если вектор Вектор - определение и основные понятия с примерами решенияприложен к концу вектора Вектор - определение и основные понятия с примерами решения, т.е.:

Вектор - определение и основные понятия с примерами решения (4-1)

Это правило распространяется на любое число слагаемых: если векторы Вектор - определение и основные понятия с примерами решенияобразуют ломаную OAB…KL, то суммой этих векторов является вектор Вектор - определение и основные понятия с примерами решения, замыкающий эту ломаную, т.е.:

Вектор - определение и основные понятия с примерами решения (4-2)

В частности, если ломаная замыкается, т.е. O = L, то сумма ее звеньев равна нуль-вектору Вектор - определение и основные понятия с примерами решения.

Сложение векторов подчиняется обычным законам сложения -сочетательному и переместительному, а также обладает обратной операцией – вычитанием.

Разностью двух векторов Вектор - определение и основные понятия с примерами решения, отложенных от одной точки О является вектор, направленный из конца вычитаемого вектора Вектор - определение и основные понятия с примерами решения в конец уменьшаемого вектора Вектор - определение и основные понятия с примерами решения, т.е. Вектор - определение и основные понятия с примерами решения (Рис. 4.2.). Это правило следует из формулы (1): т.к. Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решения Рис. 4.2.

Векторы можно не только складывать и вычитать, но и умножать на числа (скаляры).

Вектор Вектор - определение и основные понятия с примерами решения равен Вектор - определение и основные понятия с примерами решения, где Вектор - определение и основные понятия с примерами решения – некоторое число, если:

  1. Вектор - определение и основные понятия с примерами решения коллинеарен Вектор - определение и основные понятия с примерами решения;
  2. длина вектора Вектор - определение и основные понятия с примерами решения отличается от длины вектора Вектор - определение и основные понятия с примерами решения в Вектор - определение и основные понятия с примерами решения раз, т.е.
  3. Вектор - определение и основные понятия с примерами решения
  4. при Вектор - определение и основные понятия с примерами решения направлены в одну сторону, при Вектор - определение и основные понятия с примерами решения – в разные.

Произведение вектора на скаляр обладает следующими свойствами:

Вектор - определение и основные понятия с примерами решения

Проекция вектора на ось

Пусть даны осьВектор - определение и основные понятия с примерами решения и вектор Вектор - определение и основные понятия с примерами решения. Проектируя начало и конец вектора на ось Вектор - определение и основные понятия с примерами решенияполучим на ней вектор Вектор - определение и основные понятия с примерами решения. ПроекциейВектор - определение и основные понятия с примерами решениявектора Вектор - определение и основные понятия с примерами решенияна ось Вектор - определение и основные понятия с примерами решения называется число, равное длине вектора Вектор - определение и основные понятия с примерами решения, взятой со знаком плюс или минус в зависимости от того, направлен ли вектор Вектор - определение и основные понятия с примерами решения, в ту же сторону, что и ось Вектор - определение и основные понятия с примерами решения (. или в противоположную.

Проекция вектора Вектор - определение и основные понятия с примерами решения на ось Вектор - определение и основные понятия с примерами решения (: обозначается Вектор - определение и основные понятия с примерами решения).

Свойства проекций:

  1. Вектор - определение и основные понятия с примерами решения – угол между вектором Вектор - определение и основные понятия с примерами решенияи осью Вектор - определение и основные понятия с примерами решения;
  2. Вектор - определение и основные понятия с примерами решения
  3. Вектор - определение и основные понятия с примерами решения

ПустьВектор - определение и основные понятия с примерами решения – произвольная конечная система векторов; Вектор - определение и основные понятия с примерами решения произвольная система действительных чисел.

Вектор Вектор - определение и основные понятия с примерами решения называется линейной комбинацией векторов этой системы.

Из свойства проекций следует, что:

Вектор - определение и основные понятия с примерами решения

Линейная зависимость векторов

Говорят, что векторы линейно независимы, если из равенства:

Вектор - определение и основные понятия с примерами решения (4-3)

следует, что Вектор - определение и основные понятия с примерами решения.

В противном случае векторы Вектор - определение и основные понятия с примерами решения, называются линейно зависимыми. Если какой-нибудь вектор можно представить в виде Вектор - определение и основные понятия с примерами решениякак, то говорят, что вектор Вектор - определение и основные понятия с примерами решения линейно выражается через векторы Вектор - определение и основные понятия с примерами решения.

Теорема. Векторы Вектор - определение и основные понятия с примерами решения линейно зависимы тогда и только тогда, когда, по крайней мере, один из них линейно выражается через остальные.

Следствие. Если векторы Вектор - определение и основные понятия с примерами решения линейно независимы, то ни один из них нельзя выразить через остальные; в частности , ни один из них не может быть нулевым.

Система, состоящая из одного вектора, линейно зависима тогда и только тогда, когда этот вектор нулевой. Любые два неколлинеарных вектора Вектор - определение и основные понятия с примерами решения линейно независимы. В самом деле, предположим, неколлинсарные векторы Вектор - определение и основные понятия с примерами решения линейно зависимы. Тогда, по предыдущей теореме, один из них, напримерВектор - определение и основные понятия с примерами решения ? линейно выражается через второй, т.е. Вектор - определение и основные понятия с примерами решения, а это противоречит неколлинеарности Вектор - определение и основные понятия с примерами решения. Следовательно, Вектор - определение и основные понятия с примерами решения– линейно независимы.

Пусть Вектор - определение и основные понятия с примерами решения неколлинеарные векторы, Вектор - определение и основные понятия с примерами решения – произвольный вектор компланарный векторам Вектор - определение и основные понятия с примерами решения. Отложим векторы Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения от одной точки О, т.е. построимВектор - определение и основные понятия с примерами решения (Рис.4.3).

Вектор - определение и основные понятия с примерами решения

Из параллелограмма Вектор - определение и основные понятия с примерами решения видно, что:

Вектор - определение и основные понятия с примерами решения

Следовательно, любые три компланарных вектора Вектор - определение и основные понятия с примерами решения линейно зависимы.

Любые три некомпланарных вектора Вектор - определение и основные понятия с примерами решения линейно независимы.

Если предположить, что три некомпланарных вектора Вектор - определение и основные понятия с примерами решения линейно зависимы, то один из них, например Вектор - определение и основные понятия с примерами решения, линейно выражается через Вектор - определение и основные понятия с примерами решения, т.е. Вектор - определение и основные понятия с примерами решения а это говорит о том, что три вектора Вектор - определение и основные понятия с примерами решения лежат в одной плоскости, что противоречит условию.

Три вектора Вектор - определение и основные понятия с примерами решения линейно зависимы тогда и только тогда, когда определитель, составленный из их координат, равен нулю.

Пусть векторы Вектор - определение и основные понятия с примерами решения в некотором базисе имеют координаты

Вектор - определение и основные понятия с примерами решениясоответственно. Тогда векторы Вектор - определение и основные понятия с примерами решениялинейно зависимы тогда и только тогда, когда линейно зависимы их координатные столбцы. Значит, векторы Вектор - определение и основные понятия с примерами решения линейно зависимы тогда и только тогда, когда существуют числа Вектор - определение и основные понятия с примерами решения, неравные одновременно нулю, что выполняется равенство:

Вектор - определение и основные понятия с примерами решения

Линейная зависимость означает, что существует ненулевой набор коэффициентов Вектор - определение и основные понятия с примерами решения такой, что:

Вектор - определение и основные понятия с примерами решения 4)

Если один из векторов, например, Вектор - определение и основные понятия с примерами решения,, является нулевым, то система Вектор - определение и основные понятия с примерами решения окажется линейно зависимой, т.к. равенство (4.4) будет выполнено при Вектор - определение и основные понятия с примерами решения.

Теорема, Векторы Вектор - определение и основные понятия с примерами решения линейно зависимы тогда и только тогда, когда один из векторов является линейной комбинацией остальных.

Базис. Координаты вектора в базисе

Определим понятие базиса на прямой, плоскости и в пространстве.

Базисом на прямой называется любой ненулевой векторВектор - определение и основные понятия с примерами решения на

этой прямой. Любой другой вектор Вектор - определение и основные понятия с примерами решения, коллинеарный данной прямой,

может быть выражен через вектор Вектор - определение и основные понятия с примерами решения в виде Вектор - определение и основные понятия с примерами решения.

Базисом на плоскости называются любых два линейно независимых вектора Вектор - определение и основные понятия с примерами решенияэтой плоскости, взятые в определенном порядке. Любой третий вектор Вектор - определение и основные понятия с примерами решения, компланарный плоскости, на которой выбран базис Вектор - определение и основные понятия с примерами решения, может быть представлен в виде Вектор - определение и основные понятия с примерами решения.

Базисом в трехмерном пространстве называются любые три некомпланарных вектора Вектор - определение и основные понятия с примерами решения взятые в определенном порядке. Такой базис обозначается Вектор - определение и основные понятия с примерами решения. Пусть Вектор - определение и основные понятия с примерами решения – произвольный вектор трехмерного пространства, в котором выбран базис Вектор - определение и основные понятия с примерами решения. Тогда существуют числа Вектор - определение и основные понятия с примерами решения такие, что:

Вектор - определение и основные понятия с примерами решения (4.5)

КоэффициентыВектор - определение и основные понятия с примерами решения называются координатами вектораВектор - определение и основные понятия с примерами решения в базисе Вектор - определение и основные понятия с примерами решения, а формула (4.5) есть разложение вектора с по данному базису.

Координаты вектора в заданном базисе определяются однозначно. Введение координат для векторов позволяет сводить различные соотношения между векторами к числовым соотношениям между их координатами. Координаты линейной комбинации векторов равны таким же линейным комбинациям соответствующих координат этих векторов.

Декартовы прямоугольные координаты в пространстве. Координаты точек. Координаты векторов. Деление отрезка в данном отношении

Декартова прямоугольная система координат в пространстве определяется заданием единицы масштаба для измерения длин и трех пересекающихся в точке взаимно перпендикулярных осей, первая из которых называется осью абсцисс (Ох), вторая – осью ординат (Оу), третья – осью аппликат (Oz); точка О – начало координат (Рис. 4.4).

Вектор - определение и основные понятия с примерами решения

Положение координат осей можно задать с помощью единичных векторов Вектор - определение и основные понятия с примерами решения направленных по осям Ох, Оу, Oz. Векторы Вектор - определение и основные понятия с примерами решения называются основными или базисными ортами и определяют базис Вектор - определение и основные понятия с примерами решенияв трехмерном пространстве.

Пусть в пространстве дана точка М. Проектируя ее на ось Ох, получим точку Мх. Первой координатой х или абсциссой точки М называется длина вектора Вектор - определение и основные понятия с примерами решения, взятая со знаком плюс, если Вектор - определение и основные понятия с примерами решения направлен в ту же сторону, что и вектор Вектор - определение и основные понятия с примерами решения, и со знаком минус -если в противоположную. Аналогично проектируя точку М на оси Оу и Oz, определим ее ординату у и аппликату z. Тройка чисел (х, у, z) взаимно однозначно соответствует точке М .

Система координат называется правой, если вращение от оси Ох к оси Оу в ближайшую сторону видно с положительного направления оси Oz совершающимися против часовой стрелки, и левой, если вращение от оси Ох к оси Оу в ближайшую сторону видно совершающимися по часовой стрелке.

Вектор Вектор - определение и основные понятия с примерами решения, направленный из начала координат в точку М(х, у, z) называется радиус-вектором точки М, т.е.:

Вектор - определение и основные понятия с примерами решения (4.6)

Если даны координаты точек Вектор - определение и основные понятия с примерами решения, то координаты вектора АВ получаются вычитанием из координат его конца В координат начала Вектор - определение и основные понятия с примерами решения или Вектор - определение и основные понятия с примерами решения.

Следовательно, по формуле (4.5):

Вектор - определение и основные понятия с примерами решения

При сложении (вычитании) векторов их координаты складываются (вычитаются), при умножении вектора на число все его координаты умножаются на это число.

Длина вектора Вектор - определение и основные понятия с примерами решения равна квадратному корню из суммы квадратов его координат.

Вектор - определение и основные понятия с примерами решения (4.8)

Длина вектораВектор - определение и основные понятия с примерами решения, заданного координатами своих концов, т.е. расстояние между точками А и В вычисляется по формуле:

Вектор - определение и основные понятия с примерами решения (4.9)

Если Вектор - определение и основные понятия с примерами решения коллинеарны, то они отличаются друг от друга скалярным множителем. Следовательно, у коллинеарных векторов координаты пропорциональны:

Вектор - определение и основные понятия с примерами решения (4.10)

Пусть точка М(х, у, z) делит отрезок между точками Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения в отношении Вектор - определение и основные понятия с примерами решения, тогда радиус-вектор точки М выражается через радиусы-векторы Вектор - определение и основные понятия с примерами решения его концов по формуле:Вектор - определение и основные понятия с примерами решения

Отсюда получаются координатные формулы:

Вектор - определение и основные понятия с примерами решения

В частности, если точка М делит отрезок Вектор - определение и основные понятия с примерами решения пополам, то

Вектор - определение и основные понятия с примерами решения

Направляющие косинусы

Пусть дан вектор Вектор - определение и основные понятия с примерами решения. Единичный вектор того же направления, что и Вектор - определение и основные понятия с примерами решения (орт вектора Вектор - определение и основные понятия с примерами решения) находится по формуле:

Вектор - определение и основные понятия с примерами решения

Пусть ось Вектор - определение и основные понятия с примерами решения образует с осями координат углыВектор - определение и основные понятия с примерами решения. Направляющими косинусами оси Вектор - определение и основные понятия с примерами решения называются косинусы этих углов: Вектор - определение и основные понятия с примерами решения. Если направление Вектор - определение и основные понятия с примерами решения задано единичным вектором Вектор - определение и основные понятия с примерами решения, то направляющие косинусы служат его координатами, т.е.:

Вектор - определение и основные понятия с примерами решения

Направляющие косинусы связаны между собой соотношением: Вектор - определение и основные понятия с примерами решения

Если направление Вектор - определение и основные понятия с примерами решения задано произвольным вектором Вектор - определение и основные понятия с примерами решения, то находят орт этого вектора и, сравнивая его с выражением для единичного вектораВектор - определение и основные понятия с примерами решения , получают:

Вектор - определение и основные понятия с примерами решения

Скалярное произведение

Скалярными произведением Вектор - определение и основные понятия с примерами решения двух векторов Вектор - определение и основные понятия с примерами решения называется число, равное произведению их длин на косинус угла между ними Вектор - определение и основные понятия с примерами решения

Скалярное произведение обладает следующими свойствами:

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

4. Если Вектор - определение и основные понятия с примерами решения– ненулевые векторы, то Вектор - определение и основные понятия с примерами решения тогда и только тогда, когда эти векторы перпендикулярны. Если Вектор - определение и основные понятия с примерами решения, то угол между а и ЬВектор - определение и основные понятия с примерами решения– острый, если Вектор - определение и основные понятия с примерами решения, то угол – тупой;

5. Скалярный квадрат вектора а равен квадрату его длины, т.е.

Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Геометрический смысл скалярного произведения: скалярное произведение вектора на единичный вектор Вектор - определение и основные понятия с примерами решения равно проекции вектора Вектор - определение и основные понятия с примерами решения на направление, определяемое Вектор - определение и основные понятия с примерами решения, т.е. Вектор - определение и основные понятия с примерами решения.

Из определения скалярного произведения вытекает следующая таблица умножения ортов Вектор - определение и основные понятия с примерами решения :

Вектор - определение и основные понятия с примерами решения

Если векторы заданы своими координатами Вектор - определение и основные понятия с примерами решения и

Вектор - определение и основные понятия с примерами решения, то, перемножая эти векторы скалярно и используя таблицу умножения ортов, получим выражение скалярного произведения Вектор - определение и основные понятия с примерами решения через координаты векторов:

Вектор - определение и основные понятия с примерами решения

Векторное произведение

Векторным произведением вектора Вектор - определение и основные понятия с примерами решения на вектор Вектор - определение и основные понятия с примерами решения называется вектор Вектор - определение и основные понятия с примерами решения длина и направление которого определяется условиями:

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

  3. Вектор - определение и основные понятия с примерами решениянаправлен так, что кратчайший поворот от Вектор - определение и основные понятия с примерами решения виден из его конца совершающимся против часовой стрелки.

Векторное произведение обладает следующими свойствами: Вектор - определение и основные понятия с примерами решения 4. Векторное произведение равно нулю (нуль вектору) тогда и только тогда, когда Вектор - определение и основные понятия с примерами решения коллинсарны. В частностиВектор - определение и основные понятия с примерами решения для любого вектора Вектор - определение и основные понятия с примерами решения;

5. Если Вектор - определение и основные понятия с примерами решения неколлинеарны, то модуль векторного произведения равен площади параллелограмма S построенного на этих векторах, как на сторонах.

Из первых трех свойств следует, что векторное умножение суммы векторов на сумму векторов подчиняется обычным правилам перемножения многочленов. Надо только следить за тем, чтобы порядок следования множителей не менялся.

Основные орты перемножаются следующим образом: Вектор - определение и основные понятия с примерами решения

ЕслиВектор - определение и основные понятия с примерами решения, то с учетом свойств векторного произведения векторов, можно вывести правило вычисления координат векторного произведения по координатам векторов-сомножителей :

Вектор - определение и основные понятия с примерами решения

Если принять во внимание полученные выше правила перемножения ортов, то:

Вектор - определение и основные понятия с примерами решения (4.11)

Более компактную форму записи выражения для вычисления координат векторного произведения двух векторов можно построить, если ввести понятие определителя матрицы.

Рассмотрим частный случай, когда вектора Вектор - определение и основные понятия с примерами решения принадлежат плоскости Оху, т.е. их можно представить какВектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения

Если координаты векторов записать в виде таблицы следующим образом: Вектор - определение и основные понятия с примерами решения, то можно сказать, что из них сформирована квадратная матрица второго порядка, т.е. размером 2×2, состоящая из двух строк и двух столбцов. Каждой квадратной матрице ставится в соответствие число, которое вычисляется из элементов матрицы по определенным правилам и называется определителем. Определитель матрицы второго порядка равен разности произведений элементов главной диагонали и побочной диагонали: Вектор - определение и основные понятия с примерами решения

В таком случае: Вектор - определение и основные понятия с примерами решения

Абсолютная величина определителя, таким образом, равна площади параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения, как на сторонах.

Если сравнить это выражение с формулой векторного произведения (4.7), то: Вектор - определение и основные понятия с примерами решения (4.12) Это выражение представляет собой формулу для вычисления определителя матрицы третьего порядка по первой строке. Таким образом:

Вектор - определение и основные понятия с примерами решения

Определитель матрицы третьего порядка вычисляется следующим образом:

Вектор - определение и основные понятия с примерами решения

и представляет собой алгебраическую сумму шести слагаемых.

Формулу для вычисления определителя матрицы третьего порядка легко запомнить, если воспользоваться правилом Саррюса, которое формулируется следующим образом:

  • Каждое слагаемое является произведением трех элементов, расположенных в разных столбцах и разных строках матрицы;
  • Знак “плюс” имеют произведения элементов, образующих треугольники со стороной, параллельной главной диагонали;
  • Знак “минус” имеют произведения элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники со стороной, параллельной побочной диагонали.Вектор - определение и основные понятия с примерами решения

Смешанное произведение

Смешанным произведением тройки векторов Вектор - определение и основные понятия с примерами решения называется число, равное скалярному произведению вектора Вектор - определение и основные понятия с примерами решения на векторное произведение Вектор - определение и основные понятия с примерами решения

Если рассматриваемые векторы Вектор - определение и основные понятия с примерами решения некомпланарны, то векторное произведение Вектор - определение и основные понятия с примерами решения есть вектор, длина которого численно равна площади построенного на них параллелограмма. Направлен этот вектор по нормали к плоскости параллелограмма. Если этот вектор скалярно умножить на вектор а, то получившееся число будет равно произведению площади основания параллелепипеда, построенного на тройке векторов Вектор - определение и основные понятия с примерами решения , и его высоты, т.е. объему этого параллелепипеда.

Таким образом, смешанное произведение векторов Вектор - определение и основные понятия с примерами решения

(которое обозначается есть число, абсолютная величина которого выражает объем параллелепипеда, построенного па векторах Вектор - определение и основные понятия с примерами решения.

Знак произведение положителен, если векторыВектор - определение и основные понятия с примерами решения, образуют правую тройку векторов, т.е. вектор Вектор - определение и основные понятия с примерами решения направлен так, что кратчайший поворот от Вектор - определение и основные понятия с примерами решения виден из его конца совершающимся против часовой стрелки.

Из геометрического смысла смешанного произведения непосредственно следует необходимое и достаточное условие некомпланарности векторов Вектор - определение и основные понятия с примерами решения: для того, чтобы векторы Вектор - определение и основные понятия с примерами решения были некомпланарными необходимо и достаточно, чтобы их сметанное произведение было отлично от нуля.

Если Вектор - определение и основные понятия с примерами решенияи Вектор - определение и основные понятия с примерами решения то:

Вектор - определение и основные понятия с примерами решения

или в свернутой форме:

Вектор - определение и основные понятия с примерами решения

Справедливы следующие свойства сметанного произведения векторов:

  1. Смешанное произведение не меняется при циклической перестановке его сомножителей Вектор - определение и основные понятия с примерами решения
  2. При перестановке двух соседних множителей смешанное произведение меняет свой знак на противоположный Вектор - определение и основные понятия с примерами решения

Векторы в высшей математике

Определение вектора:

На начальной стадии, когда приходится прибегать к математическим методам исследования, необходимо разработать удобное средство организации исходных данных. Таким простейшим средством является вектор. Например, еженедельное изменение цены за месяц на некоторый товар удобно записать в виде массива: (5500; 5700; 6000; 6200). Записанный таким образом массив чисел называют вектором.

Алгебраические операции над векторами и их свойства

Введём теперь математическое определение векторов и алгебраические операции над ними.

Упорядоченную совокупность действительных чиселВектор - определение и основные понятия с примерами решения назовём вектором и обозначим Вектор - определение и основные понятия с примерами решения, т.е Вектор - определение и основные понятия с примерами решения. Действительные числа Вектор - определение и основные понятия с примерами решения будем называть координатами вектора. Равные векторы имеют равные координаты. Вектор, все координаты которого равны нулю, называется нулевым вектором и обозначается Вектор - определение и основные понятия с примерами решения. Вектор, у которого одна из координат равна 1, а все остальные равны нулю, называется единичным вектором. Единичными векторами будут векторы:

Вектор - определение и основные понятия с примерами решения

С геометрической точки зрения, вектор – это направленный отрезок. Поэтому вектор, длина которого равна единице, также называется единичным вектором.

Определим далее линейные операции над векторами: сложение и умножение вектора на число.

Сложение векторов

Пусть даны два вектора

Вектор - определение и основные понятия с примерами решения . Суммой двух векторов Вектор - определение и основные понятия с примерами решения и

Вектор - определение и основные понятия с примерами решения назовем вектор Вектор - определение и основные понятия с примерами решения, координаты которого равны суммам соответствующих координат векторов Вектор - определение и основные понятия с примерами решения:

Вектор - определение и основные понятия с примерами решения

Пусть дан вектор Вектор - определение и основные понятия с примерами решения . Обозначим через –Вектор - определение и основные понятия с примерами решения вектор, порождённый вектором Вектор - определение и основные понятия с примерами решения , такой, что Вектор - определение и основные понятия с примерами решения .

Сложение векторов обладает следующими свойствами:

  1. Для любых двух векторов Вектор - определение и основные понятия с примерами решения существует единственный вектор Вектор - определение и основные понятия с примерами решения , называемый суммой векторов Вектор - определение и основные понятия с примерами решения.
  2. Для любых Вектор - определение и основные понятия с примерами решения.
  3. Для любых Вектор - определение и основные понятия с примерами решения.
  4. Существует единственный вектор Вектор - определение и основные понятия с примерами решения, называемый нулевым вектором, такой, что Вектор - определение и основные понятия с примерами решения для всех Вектор - определение и основные понятия с примерами решения.
  5. Для любого вектора Вектор - определение и основные понятия с примерами решения существует единственный вектор Вектор - определение и основные понятия с примерами решения , такой, что Вектор - определение и основные понятия с примерами решения. Вектор Вектор - определение и основные понятия с примерами решения называется вектором, противоположным вектору Вектор - определение и основные понятия с примерами решения

Из указанных свойств векторов следует, что можно рассматривать сумму любого конечного числа векторов Вектор - определение и основные понятия с примерами решения.

Умножение вектора на число

Пусть Вектор - определение и основные понятия с примерами решения и

Вектор - определение и основные понятия с примерами решения. Произведение вектора Вектор - определение и основные понятия с примерами решения на число Вектор - определение и основные понятия с примерами решения – это вектор, обозначаемый, Вектор - определение и основные понятия с примерами решения полученный умножением координат вектора Вектор - определение и основные понятия с примерами решения на число Вектор - определение и основные понятия с примерами решения:

Вектор - определение и основные понятия с примерами решения.

Положим, Вектор - определение и основные понятия с примерами решения для любого вектора Вектор - определение и основные понятия с примерами решения для любого числа Вектор - определение и основные понятия с примерами решения.

Умножение вектора на число обладает следующими свойствами:

  1. Для любого вектора Вектор - определение и основные понятия с примерами решения и любого числа Вектор - определение и основные понятия с примерами решения существует единственный вектор Вектор - определение и основные понятия с примерами решения.
  2. Вектор - определение и основные понятия с примерами решения для любых чисел Вектор - определение и основные понятия с примерами решения и любогоВектор - определение и основные понятия с примерами решения.
  3. Вектор - определение и основные понятия с примерами решения для любых чисел Вектор - определение и основные понятия с примерами решения и любого .
  4. Вектор - определение и основные понятия с примерами решения для любых чисел Вектор - определение и основные понятия с примерами решения и любого Вектор - определение и основные понятия с примерами решения .
  5. Вектор - определение и основные понятия с примерами решения для любого Вектор - определение и основные понятия с примерами решения .

Выражение Вектор - определение и основные понятия с примерами решения где Вектор - определение и основные понятия с примерами решения – вскто-ры, а Вектор - определение и основные понятия с примерами решения – любые действительные числа, называется ли-нейиой комбинацией векторов Вектор - определение и основные понятия с примерами решения с коэффициентами Вектор - определение и основные понятия с примерами решения. Линейная комбинация векторов-это вектор. Вектор Вектор - определение и основные понятия с примерами решения представленный в виде Вектор - определение и основные понятия с примерами решениябудем называть транспонированным по отношению к вектору Вектор - определение и основные понятия с примерами решения и обозначать Вектор - определение и основные понятия с примерами решения.

Замечание. Зная координаты вектора Вектор - определение и основные понятия с примерами решения, можно вычислить его длину по формуле

Вектор - определение и основные понятия с примерами решения.

Пример №16

Найти линейную комбинацию Вектор - определение и основные понятия с примерами решения векторов Вектор - определение и основные понятия с примерами решения.

Решение:

Воспользуемся определением линейной комбинации векторов и операций над векторами. Тогда получим вектор вида:

Вектор - определение и основные понятия с примерами решения

Скалярное произведение векторов и его свойства

Предположим, что объем продаж трёх видов товаров фирмы Вектор - определение и основные понятия с примерами решения в течение месяца составил 34, 57, 21 единиц, и что цены этих же товаров были равны соответственно 2, 3, 7 дсн.ед. Следовательно, общий доход от продажи всех трёх товаров за месяц равен: Вектор - определение и основные понятия с примерами решенияден.ед. Представим данные о продажах с помощью вектора: Вектор - определение и основные понятия с примерами решения, а соответствующие цены с помощью вектора Вектор - определение и основные понятия с примерами решения. Тогда общий доход от продажи трёх товаров, равный 386 ден.ед., представляет собой сумму произведений элементов вектора Вектор - определение и основные понятия с примерами решения на соответствующие элементы вектора Вектор - определение и основные понятия с примерами решения:Вектор - определение и основные понятия с примерами решения.

Приведенный пример помогает уяснить общую методику введения скалярного произведения векторов.

Определепие2.2.1. Скалярным произведением векторов Вектор - определение и основные понятия с примерами решения называется число, обозначаемое Вектор - определение и основные понятия с примерами решения, равное сумме произведений соответствующих коорди-. пат векторов Вектор - определение и основные понятия с примерами решения:

Вектор - определение и основные понятия с примерами решения

Это определение можно применять только в тех случаях, когда векторы Вектор - определение и основные понятия с примерами решения содержат одинаковое количество координат; в противном случае скалярное произведение Вектор - определение и основные понятия с примерами решения не может быть определено.

Укажем некоторые свойства скалярного произведения:

  1. Вектор - определение и основные понятия с примерами решения;
  2. Вектор - определение и основные понятия с примерами решения;
  3. Вектор - определение и основные понятия с примерами решения;
  4. Вектор - определение и основные понятия с примерами решения.

Два ненулевых вектора Вектор - определение и основные понятия с примерами решения называются ортогональными, если их скалярное произведение равно нулю, т.е.

Вектор - определение и основные понятия с примерами решения

Рассмотрим систему n ненулевых векторов Вектор - определение и основные понятия с примерами решения. Если

скалярное произведение каждого вектора на себя равно единице, а скалярное произведение различных векторов равно нулю, т.е.

Вектор - определение и основные понятия с примерами решения

то система векторов Вектор - определение и основные понятия с примерами решения называется ортоиормированной. Условия (1.3) можно записать в координатной форме:

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения.

Пример №17

Найти вектор Вектор - определение и основные понятия с примерами решения коллинеарный1 вектору Вектор - определение и основные понятия с примерами решения и удовлетворяющий условию Вектор - определение и основные понятия с примерами решения.

Решение:

Так как вектор Вектор - определение и основные понятия с примерами решения коллинеарный вектору Вектор - определение и основные понятия с примерами решения, то его координаты пропорциональны координатам вектора Вектор - определение и основные понятия с примерами решения, т.е.

Вектор - определение и основные понятия с примерами решения. Воспользовавшись определением скалярного произведения, составим равенство: Вектор - определение и основные понятия с примерами решения.

Откуда следует, что Вектор - определение и основные понятия с примерами решения . Тогда вектор коллинеарный вектору я будет иметь координаты: (6,-2,8).

Пример №18

Пусть рассматривается проект вложения капитала на четыре года. Этот проект должен обеспечивать следующую денежную выручку: в первый год- 1000 дсн.ед.; во второй – 3000 дсн.ед.; в третий – 10000 ден.ед.; в четвёртый – 15000 дсн.ед. Проект будет принят в том случае, если совокупный доход от капиталовложений (в пересчёте на сегодняшний доход) будет превышать требующиеся затраты, составляющие 17000 дсн.ед. Дисконтирование ожидаемого дохода проводится по годовой ставке равной 10%. Будет ли принят рассматриваемый проект?

Решение:

При ставке дисконтирования 10% годовых, доход, который будет получен на протяжении первого года, должен быть умножен на Вектор - определение и основные понятия с примерами решения, на протяжении второго года- на Вектор - определение и основные понятия с примерами решения , на протяжении третьего года- на 0,7513 =Вектор - определение и основные понятия с примерами решения и на протяжении четвёртого года- на 0,6838 =Вектор - определение и основные понятия с примерами решения.

1. Вектор Вектор - определение и основные понятия с примерами решения называется коллинеарным вектору Вектор - определение и основные понятия с примерами решения , если при совмещении их начальных точек они располагаются на одной прямой.

Запишем денежную выручку и дисконтирующие множители в векторной форме:

Вектор - определение и основные понятия с примерами решения

и

Вектор - определение и основные понятия с примерами решения.

Скалярное произведение векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения —определяет дисконтированный совокупный доход за четыре года: Вектор - определение и основные понятия с примерами решения

Так как 21158,3>17000, то рассматриваемый проект вложения капитала будет принят.

Операции над векторами в высшей математике

Внимание! Вектор определяется числом и направлением.

Отрезком АВ называется множество точек, заключенных между точками

А и В, включая их. Точки А и В называются концами отрезка.

Отрезок АВ называется направленным, если его концы упорядочены.

Направленный отрезок с началом в точке А и концом в точке В будем обозначать АВ. Направленный отрезок ВА с началом в точке В и концом в точке А называется противоположно направленным отрезку АВ.

Модулем Вектор - определение и основные понятия с примерами решения направленного отрезка АВ называется его длина.

Вектором называется класс направленных отрезков, расположенных на параллельных или совпадающих прямых и имеющих одинаковые направление и длину.

Векторы геометрически изображают направленными отрезками и обозначаются Вектор - определение и основные понятия с примерами решения и буквами жирного шрифта Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Вывод. Вектор однозначно определяется своим одним направленным отрезком. Пусть заданы два вектора Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения (рис.1). Суммой векторов а и b

называется вектор, проведенный из начала а к концу b: Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Способ сложения векторов, показанный на рис.1, называется правилом треугольника.

Замечание. На векторах а и b можно построить параллелограмм, в котором одна диагональ будет их суммой: Вектор - определение и основные понятия с примерами решения, а вторая – разностью: Вектор - определение и основные понятия с примерами решения Способ сложения векторов, показанный на рис.2, называется правилом параллелограмма.

Множество всех нулевых отрезков называется нулевым вектором и обозначается 0. Направление нулевого вектора произвольно.

Вектор, длина которого равна единице, называется единичным.

Для любого вектора а верны равенства:

Вектор - определение и основные понятия с примерами решения

Произведением вектора а на число Вектор - определение и основные понятия с примерами решения отличное от нуля, называется вектор, обозначаемый Вектор - определение и основные понятия с примерами решения и удовлетворяющий следующим условиям:

  1. длина вектора Вектор - определение и основные понятия с примерами решения равна длине вектора а, умноженного на модуль числаВектор - определение и основные понятия с примерами решения
  2. векторы а и Вектор - определение и основные понятия с примерами решения одинаково направлены, если Вектор - определение и основные понятия с примерами решения, и противоположно направлены, если Вектор - определение и основные понятия с примерами решения (рис.З).

Произведение вектора на число «нуль» есть нулевой вектор. Вектор - определение и основные понятия с примерами решения

Углом между двумя векторами а и b называется наименьший угол Вектор - определение и основные понятия с примерами решения на который нужно повернуть один вектор, чтобы он совпал по направлению с другим вектором (рис.4).

Проекцией вектора а на вектор b называется длина вектора а, умноженная на косинус угла между векторами а и b (рис.4):

Вектор - определение и основные понятия с примерами решения

Внимание! Для ненулевых векторов возможны три варианта произведений: скалярное произведение (в ответе получается число), векторное произведение (в ответе получается вектор) и смешанное произведение (в ответе получается число).

Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению длин этих векторов на косинус угла между ними. Обозначение: Вектор - определение и основные понятия с примерами решения Таким образом,

Вектор - определение и основные понятия с примерами решения

Например, для скалярного квадрата ii, где i -единичный вектор, имеем Вектор - определение и основные понятия с примерами решения

Векторным произведением двух ненулевых векторов а и b называется такой вектор Вектор - определение и основные понятия с примерами решения что

  1. 1) его модуль равен площади параллелограмма, построенного на данных векторах, т.е.Вектор - определение и основные понятия с примерами решения
  2. 2) он перпендикулярен плоскости построенного на данных векторах параллелограмма, , т.е.Вектор - определение и основные понятия с примерами решения
  3. 3) векторы Вектор - определение и основные понятия с примерами решения образуют правую тройку векторов, т.е. при наблюдении из конца вектора Вектор - определение и основные понятия с примерами решения кратчайший поворот от а к b виден против часовой стрелки.

Пример №19

Найти площадь параллелограмма, построенного на векторах а и b. если а – единичный вектор, длина вектора b равна трем, а их скалярное произведение – двум.

Решение:

Площадь параллелограмма, построенного на векторах а и b, равна Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения.

По условию задачи имеем Вектор - определение и основные понятия с примерами решения

Найдем синус угла между векторами а и b. Так как Вектор - определение и основные понятия с примерами решения то Вектор - определение и основные понятия с примерами решения

Следовательно, Вектор - определение и основные понятия с примерами решения

Подставим найденное значение в формулу и получим: Вектор - определение и основные понятия с примерами решения Задача решена.

Смешанным произведением трех ненулевых векторов а, b и с называется число, равное скалярному произведению векторного произведения первых двух векторов а и b на третий вектор Вектор - определение и основные понятия с примерами решения. Обозначение: Вектор - определение и основные понятия с примерами решения

Замечание. Смешанное произведение не меняется при циклической перестановке его сомножителей. При перестановке двух соседних множителей смешанное произведение меняет свой знак на противоположный, т.е. Вектор - определение и основные понятия с примерами решения

Геометрический смысл смешанного произведения. Модуль смешанного произведения трех векторов равен объему параллелепипеда, построенного на этих векторах.

Действительно,

Вектор - определение и основные понятия с примерами решения где S – площадь основания параллелепипеда, H – высота параллелепипеда, V -объем параллелепипеда.

Два вектора называются ортогональными, если угол между ними равен Вектор - определение и основные понятия с примерами решения

Необходимое и достаточное условие ортогональности:

Два ненулевых вектора ортогональны тогда и только тогда, когда их скалярное произведение равно нулю Вектор - определение и основные понятия с примерами решения Нулевой вектор ортогонален любому вектору.

Два вектора называются коллинеарными, если они лежат на одной прямой. Пулевой вектор коллинеарен любому вектору.

Необходимое и достаточное условие коллинеарности:

  1. Два ненулевых вектора а и b коллинеарны тогда и только тогда, когда они пропорциональны, т.е. Вектор - определение и основные понятия с примерами решения– произвольное число, отличное от нуля.
  2. Два ненулевых вектора коллинеарны тогда и только тогда, когда их векторное произведение равно нулевому вектору (площадь параллелограмма равна нулю).

Три вектора называются компланарными, если они лежат на одной плоскости. Любую тройку векторов, содержащую нулевой вектор, считают компланарной.

Необходимое и достаточное условие компланарности. Три ненулевых вектора компланарны тогда и только тогда, когда их смешанное произведение равно нулю (объем параллелепипеда равен нулю).

Действия над векторами, заданными прямоугольными координатами

Пусть Ох, Оу, Oz – три взаимно перпендикулярные оси в трехмерном пространстве (оси координат), исходящие из общей точки О (начала координат) и образующие правую тройку (рис. 5).

Точка М с координатами х, у, z обозначается M(x,y,z), причем первая координата называется абсциссой, вторая – ординатой, третья – аппликатой точки М.

Для каждой точки М пространства существует ее радиус-вектор r=ОМ, начало которого есть начало координат О и конец которого есть данная точка М. Координаты x,y,z точки М являются проекциями радиус-вектора r на оси Ох, Оу, Oz соответственно.

Вектор - определение и основные понятия с примерами решения Пусть в прямоугольной системе координат заданы точки Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения Тогда координаты вектора АВ вычисляются по формуле:

Вектор - определение и основные понятия с примерами решения

(«от координат конца отнимают координаты начала»).

Например, координаты радиус-вектора Вектор - определение и основные понятия с примерами решения

Если ввести единичные векторы i,j, k, направленные по осям Ох, Оу, Oz соответственно (рис.5), то координаты вектора r можно записать в эквивалентной форме:

Вектор - определение и основные понятия с примерами решения

Векторы i, j,k называются базисными.

Пусть даны два вектора Вектор - определение и основные понятия с примерами решения

Сложив векторы почленно, получим: Вектор - определение и основные понятия с примерами решения

или

Вектор - определение и основные понятия с примерами решения

Умножив вектор а на число Вектор - определение и основные понятия с примерами решения получим:

Вектор - определение и основные понятия с примерами решения

или

Вектор - определение и основные понятия с примерами решения

Пример №20

Найти вектор х из уравнения

Вектор - определение и основные понятия с примерами решения

Решение:

Выразим х из векторного уравнения:

Вектор - определение и основные понятия с примерами решения

Подставим векторы а, b и с в полученное выражение:

Вектор - определение и основные понятия с примерами решения

Задача решена.

Скалярное произведение двух векторов в координатной форме вычисляется по формуле:

Вектор - определение и основные понятия с примерами решения

Для cкалярного квадрата аа получаем: Вектор - определение и основные понятия с примерами решения

но, с другой стороны, Вектор - определение и основные понятия с примерами решения Следовательно,

Вектор - определение и основные понятия с примерами решения

Мы получили формулу вычисления длины вектора, заданного в координатной форме.

Векторное произведение двух векторов в координатной форме вычисляется по формуле

Вектор - определение и основные понятия с примерами решения

которую можно выразить через символический определитель третьего порядка Вектор - определение и основные понятия с примерами решения

Смешанное произведение трех векторов в координатной форме Вектор - определение и основные понятия с примерами решения определяется формулой Вектор - определение и основные понятия с примерами решения

  • Заказать решение задач по высшей математике

Пример №21

Вершины треугольной пирамиды находятся в точках А( 1,1 ,-1), В(2,1,-3), С(-1,1,1), D(0,7,3). Вычислить высоту пирамиды, опущенную из вершины D на основание АВС.

Решение:

Высоту треугольной пирамиды найдем из формулы:

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения – объем пирамиды ABCD, Вектор - определение и основные понятия с примерами решения – площадь основания АВС, H – высота пирамиды, опущенная из вершины D.

Найдем площадь треугольника АВС. Она равна половине площади параллелограмма, построенного, например, на векторах АВ и АС. Следовательно, по определению векторного произведения

Вектор - определение и основные понятия с примерами решения По координатам точек А, В и С найдем координаты векторов АВ и АС:Вектор - определение и основные понятия с примерами решения

Векторное произведение АВ и АС в координатной форме равно Вектор - определение и основные понятия с примерами решения

Найдем объем треугольной пирамиды. Он равен одной шестой объема параллелепипеда, построенного, например, на векторах АВ, АС и AD. Тогда по геометрическому смыслу смешанного произведения Вектор - определение и основные понятия с примерами решения Найдем координаты вектора AD:

Вектор - определение и основные понятия с примерами решения

Смешанное произведение АВ, АС и AD в координатной форме равно Вектор - определение и основные понятия с примерами решенияразложим определитель по второму столбцуВектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Задача решена.

Замечание.

  • 1. Площадь треугольника АВС можно находить из площади параллелограмма, построенного на любых двух векторах, исходящих из одной вершины, например: АВ и АС; ВА и ВС; СА и СВ.
  • 2. Объем треугольной пирамиды ABCD можно находить из объема параллелепипеда, построенного на любых трех векторах, исходящих из одной точки, например: АВ, АС и AD; ВА, ВС и BD; СА, СВ и CD; DA, DB и DC.

Линейное пространство

Идея линейности является одним из важнейших принципов математики. На этой основе построены различные разделы математики. Более того, почти каждый экономический процесс в малом является линейным, что позволяет делать о нём достаточно точные выводы, изучая линейный, гораздо более простой для исследования объект.

В математике часто приходится встречаться с объектами, для которых определены операции сложения и умножения на числа. Объектами такого рода являются векторы, функции, матрицы и т.д. Для того, чтобы изучать все такие объекты с единой точки зрения и вводится понятие линейного пространства.

Определение 2.3.1. Множество L элементов х, у, z,… называется линейным пространством, если:

При этом введенные операции должны удовлетворять следующим требованиям (аксиомам):

  1. х+у = у+х (коммутативности);
  2. (х+у)+ z = x+(y+z) (ассоциативности);
  3. существует элемент 0, такой, что х+0=х для любого х. Элемент 0 называется нулевым элементом;
  4. для каждого х существует противоположный элемент, обозначаемый -х, такой, что х+(-х)=0;
  5. Вектор - определение и основные понятия с примерами решения;
  6. Вектор - определение и основные понятия с примерами решения;
  7. Вектор - определение и основные понятия с примерами решения:;
  8. Вектор - определение и основные понятия с примерами решения,

где Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения – вещественные числа.

В определении линейного пространства не говорится, как определяются операции сложения и умножения на числа, и не говорится о природе объектов. Требуется только, чтобы были выполнены сформулированные выше аксиомы. Поэтому всякий раз, когда мы встречаемся с операциями, удовлетворяющими этим условиям, будем считать их операциями сложения и умножения.

Рассмотрим систему векторов на плоскости и в трёхмерном пространстве, для которых определены операции сложения векторов и умножения вектора на число как в п.2.1. Так как для этих операций выполняются свойства (1) – (8) определения 2.3.1, то они образуют линейное пространство.

Линейное пространство образует и совокупность многочленов степени не выше п с вещественными коэффициентами, для которых определены обычные операции сложения многочленов и умножения многочлена на число.

Линейное пространство, в котором введено скалярное произведение, называется евклидовым.

Пространство, где векторами являются наборы из n действительных чисел с покомпонентными операциями сложения и умножения их на число, и скалярное произведение определяется по формуле (1.2.1), является евклидовым пространством. Это пространство обозначается Вектор - определение и основные понятия с примерами решения.

Линейно зависимые и линейно независимые векторы. Свойства линейной зависимости векторов.

Определение линейной комбинации векторов, тесно связано с понятием подпространства векторного пространства.

Определение 2.4.1. Некоторое непустое подмножество векторного пространства М называется подпространством, если оно само является векторным пространством.

А доказательство того, что подмножество является векторным пространством, проводится на основании доказательства того, что всякая линейная комбинация любых двух векторов этого подмножества, также является вектором этого подмножества.

Определение 2.4.2. Векторы Вектор - определение и основные понятия с примерами решения из Вектор - определение и основные понятия с примерами решенияназываются линейно независимыми, если не существует чисел Вектор - определение и основные понятия с примерами решения хотя бы одно из которых отлично от нуля, таких, что Вектор - определение и основные понятия с примерами решения

Если равенство (2.4.1) возможно и при ненулевом значении хотя бы одного числа Вектор - определение и основные понятия с примерами решения, то векторы Вектор - определение и основные понятия с примерами решения называются линейно зависимыми.

Пример №22

Рассмотрим евклидово пространство Вектор - определение и основные понятия с примерами решения и векторы Вектор - определение и основные понятия с примерами решения

называемые координатными векторами. Покажем, что в пространстве Вектор - определение и основные понятия с примерами решения векторыВектор - определение и основные понятия с примерами решениялинейно независимы.

Решение:

Пусть Вектор - определение и основные понятия с примерами решения произвольные числа. Составим линейную комбинацию векторов Вектор - определение и основные понятия с примерами решения:

Вектор - определение и основные понятия с примерами решения

Подставив координаты векторов Вектор - определение и основные понятия с примерами решения , получим:

Вектор - определение и основные понятия с примерами решения

В результате получили векторВектор - определение и основные понятия с примерами решения, который будет нулевым если Вектор - определение и основные понятия с примерами решения . Следовательно, линейная комбинация Вектор - определение и основные понятия с примерами решения, может равняться нулю если Вектор - определение и основные понятия с примерами решения. А это и есть условие линейной независимости векторов Вектор - определение и основные понятия с примерами решения.

Вектор Вектор - определение и основные понятия с примерами решения называется линейной комбинацией векторов Вектор - определение и основные понятия с примерами решенияиз Вектор - определение и основные понятия с примерами решения, если существуют числаВектор - определение и основные понятия с примерами решения, такие, что выполняется равенство: Вектор - определение и основные понятия с примерами решения.

Относительно линейной зависимости векторов справедливы следующие утверждения:

  1. Если совокупность векторов Вектор - определение и основные понятия с примерами решенияиз Вектор - определение и основные понятия с примерами решения содержит нулевой вектор, то она линейно зависима.
  2. Если в системе векторов Вектор - определение и основные понятия с примерами решения имеется подсистема линейно зависимых векторов, то и вся совокупность векторов Вектор - определение и основные понятия с примерами решения линейно зависима.
  3. Система векторов Вектор - определение и основные понятия с примерами решения из Вектор - определение и основные понятия с примерами решения линейно зависима тогда и только тогда, если один из векторов этой системы является линейной комбинацией остальных.
  4. Любые Вектор - определение и основные понятия с примерами решения векторов Вектор - определение и основные понятия с примерами решения из Вектор - определение и основные понятия с примерами решения, каждый из которых является линейной комбинацией m векторов Вектор - определение и основные понятия с примерами решения линейно зависимы. .

Пример №23

Выясним линейную зависимость векторов Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения. Решение. Составим линейную комбинацию этих векторов

Вектор - определение и основные понятия с примерами решения

Полученный вектор является нулевым, если координаты равны нулю:

Вектор - определение и основные понятия с примерами решения

Полученная система имеет только одно решение Вектор - определение и основные понятия с примерами решения. Следовательно, векторное равенство Вектор - определение и основные понятия с примерами решения выполняется при нулевых значениях коэффициентов Вектор - определение и основные понятия с примерами решения. Это значит, что векторы Вектор - определение и основные понятия с примерами решения линейно независимы.

Заметим, что два геометрических вектора линейно зависимы тогда и только тогда, когда они коллинеарны (их направления параллельны). Три геометрических вектора линейно зависимы тогда и только тогда, когда они компланарны (их направления параллельны некоторой плоскости).

Элементы векторной алгебры

Некоторые физические величины (например, температура, масса, объем, работа, потенциал) могут быть охарактеризованы одним числом, которое выражает отношение этой величины к соответствующей единице измерения; такие величины называются скалярными. Ещё примеры скалярных величин: длина, площадь, время, угол, плотность, сопротивление.

Другие величины (например, сила, скорость, ускорение, напряжённость электрического или магнитного поля) характеризуются числом и направлением. Эти величины называются векторными.

Необходимо подчеркнуть, что вектор не является числом. Если мы рассматриваем вектор, лежащий в плоскости, то для его описания необходимо знать два фактора – модуль и его направление (например, угол, образуемый им с одним из осей координат). Если рассматривается вектор в трехмерном пространстве, то для описания вектора требуется три фактора: один – величину для его модуля и два для указания его положения в системе координат.

Скаляры и векторы

Величина, полностью характеризуемая своим числовым значением в выбранной системе единиц, называется скалярной или скаляром. Таковы, например, масса тела, объем его, температура среды и т. п. Скаляр определяется числом положительным или отрицательным или равным нулю.

Величина, кроме числового значения характеризуемая еще направлением, называется векторной или вектором. К числу их относятся сила, перемещение, скорость и т.п. Вектор определяется числом и направлением.

Векторы обычно обозначают буквами жирного шрифта, например а. Геометрически вектор изображается направленным отрезком пространства (рис. 168); при этом используется обозначение а = Вектор - определение и основные понятия с примерами решения, где точка А — начало В отрезка, а точка В — конец его. В дальнейшем, для наглядности изложения, векторы мы будем рассматривать как направленные отрезки.

Под модулем (длиной) вектора а

Вектор - определение и основные понятия с примерами решения

понимается числовое значение его, без учета направления. (Естественно, Вектор - определение и основные понятия с примерами решения обозначает модуль вектора Вектор - определение и основные понятия с примерами решения) Вектор 0, модуль которого равен нулю, называется нулевым или нуль-вектором (направление нулевого вектора произвольно).

Вектор - определение и основные понятия с примерами решения

Два вектора Вектор - определение и основные понятия с примерами решения считаются равными, если они расположены на параллельных или совпадающих прямых (параллельность в широком смысле) и имеют одинаковую длину и одинаково направлены. Мы условимся не различать равные векторы и, таким образом, приходим к понятию свободного вектора. Иными словами, свободный вектор допускает перенос его в любую точку пространства при условии сохранения длины и направления.

В частности, для свободных векторов можно обеспечить общую начальную точку их. В дальнейшем мы будем излагать теорию свободных векторов в трехмерном пространстве.

Сумма векторов

Определение: Суммой нескольких векторов, например а, b, с, d (рис. 169), называется вектор

Вектор - определение и основные понятия с примерами решения

по величине и направлению равный замыкающей ОМ пространственной ломаной линии, построенной на данных векторах.

Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения

Для случая двух векторов а и b (рис. 170) их суммой s является диагональ параллелограмма, построенного на этих векторах, исходящая из общей точки приложения их (правило параллелограмма).

Так как в треугольнике длина одной стороны не превышает суммы длин двух других сторон, то из рис. 170 имеем

Вектор - определение и основные понятия с примерами решения

т. е. модуль суммы двух векторов не превышает суммы модулей этих векторов.

Для случая трех векторов а, b, с (рис. 171) их суммой s является диагональ Вектор - определение и основные понятия с примерами решения параллелепипеда, построенного на этих векторах (правило параллелепипеда).

Вектор - определение и основные понятия с примерами решения

Легко проверить, что для векторного сложения справедливы следующие свойства:

1)переместительное свойство

а + b = b + а,

т. е. векторная сумма не зависит от порядка слагаемых;

2)сочетательное свойство

Вектор - определение и основные понятия с примерами решения

т.е. сумма трех (и большего числа) векторов не зависит от порядка расстановки скобок.

Для каждого вектора Вектор - определение и основные понятия с примерами решения (рис. 172) существует противоположный вектор Вектор - определение и основные понятия с примерами решения, имеющий ту же длину, но противоположное направление. По правилу параллелограмма, очевидно, имеем

Вектор - определение и основные понятия с примерами решения

где 0 — нуль-вектор.

Вектор - определение и основные понятия с примерами решения

Легко проверить, что а + 0 = а.

Разность векторов

Под разностью векторов Вектор - определение и основные понятия с примерами решения (рис. 173) понимается вектор

Вектор - определение и основные понятия с примерами решения

такой, что

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Отметим, что в параллелограмме, построенном на данных векторах Вектор - определение и основные понятия с примерами решения (см. рис. 170), их разностью является соответственно направленная вторая диагональ.

Легко проверить, что справедливо следующее правило вычитания:

Вектор - определение и основные понятия с примерами решения

Умножение вектора на скаляр

Определение: Произведением вектора а на скаляр k (рис. 174) называется вектор

Вектор - определение и основные понятия с примерами решения

имеющий длину b =Вектор - определение и основные понятия с примерами решения а, направление которого: 1) совпадает

Вектор - определение и основные понятия с примерами решения

с направлением вектора а, если k > 0; 2) противоположно ему, если k < 0; 3) произвольно, если k = 0.

Нетрудно убедиться, что эта векторная операция обладает следующими свойствами:

Вектор - определение и основные понятия с примерами решения

Пример:

Вектор - определение и основные понятия с примерами решения

Если ненулевой вектор а разделить на его длину a = |a| (т.е. умножить на скаляр 1 /а), то мы получим единичный вектор е, так называемый Вектор - определение и основные понятия с примерами решения, того же направления: е = а/а. Отсюда имеем стандартную формулу вектора

Вектор - определение и основные понятия с примерами решения

Формула (1) формально справедлива также и для нулевого вектора а = 0, где а = 0 и е — произвольный орт.

Коллинеарные векторы

Определение: Два вектора Вектор - определение и основные понятия с примерами решения (рис. 175) называются коллинеарными, если они параллельны в широком смысле (т. е. расположены или на параллельных прямых, или же на одной и той же прямой).

Вектор - определение и основные понятия с примерами решения

Так как направление нулевого вектора произвольно, то можно считать, что нулевой вектор коллинеарен любому вектору.

Теорема: Два ненулевых вектора Вектор - определение и основные понятия с примерами решения коллинеарны тогда и только тогда, когда они пропорциональны, т.е.

Вектор - определение и основные понятия с примерами решения

(k — скаляр).

Доказательство: 1) Пусть векторы Вектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения коллинеарны и е, е’ — их орты. Имеем

Вектор - определение и основные понятия с примерами решения

Очевидно,

Вектор - определение и основные понятия с примерами решения

где знак плюс соответствует векторам Вектор - определение и основные понятия с примерами решения одинакового направления, а знак минус— векторам Вектор - определение и основные понятия с примерами решения противоположного направления.

Из формул (2) и (3) получаем

Вектор - определение и основные понятия с примерами решения

Отсюда вытекает формула (1), где Вектор - определение и основные понятия с примерами решения

2) Если выполнено равенство (1), то коллинеарность векторов Вектор - определение и основные понятия с примерами решения непосредственно следует из смысла умножения векторов на скаляр.

Компланарные векторы

Определение: Три вектора a, b и с называются компланарны ми, если они параллельны некоторой плоскости в широком смысле (т. е. или параллельны плоскости, или лежат в ней).

Можно сказать также, что векторы а, b и с компланарны тогда и только тогда, когда после приведения их к общему началу они лежат в одной плоскости.

По смыслу определения тройка векторов, среди которых имеется хотя бы один нулевой, компланарна.

Теорема: Три ненулевых вектора а, b и с компланарны тогда и только тогда, когда один из них является линейной комбинацией других, т.е., например,

Вектор - определение и основные понятия с примерами решения

(k, I — скаляры).

Доказательство: 1) Пусть векторы а, b и с компланарны, расположены в плоскости Р (рис. 176) и имеют общую точку приложения О.

Вектор - определение и основные понятия с примерами решения

Предположим сначала, что эти векторы не все попарно коллинеарны, например векторы а и b неколлинеарны. Тогда, производя разложение вектора с в сумму векторов са и сь, коллинеарных соответственно векторам а и b, в силу будем иметь

Вектор - определение и основные понятия с примерами решения

где k и I — соответствующие скаляры.

Если векторы а, b, с попарно коллинеарны, то можно написать

Вектор - определение и основные понятия с примерами решения

таким образом, снова выполнено условие (1).

2) Обратно, если для векторов Вектор - определение и основные понятия с примерами решения (рис. 176) выполнено условие (1), то на основании смысла соответствующих векторных операций вектор с расположен в плоскости, содержащей векторы а и b, т. е. эти векторы компланарны.

Пример:

Векторы а, а + b, а – b компланарны, так как

Вектор - определение и основные понятия с примерами решения

Проекция вектора на ось

Осью называется направленная прямая. Направление прямой обычно обозначается стрелкой. Заданное направление оси будем считать положительным, противоположное — отрицательным.

Определение: Проекцией точки А на ось Вектор - определение и основные понятия с примерами решения(рис.177) называется основание А’ перпендикуляра АА’, опущенного из точки А на эту ось.

Здесь под перпендикуляром АА’ понимается прямая, пересекающая ось Вектор - определение и основные понятия с примерами решения и составляющая с ней прямой угол. Таким образом, проекция А есть пересечение плоскости, проходящей через точку А и перпендикулярной оси с этой осью.

Определение: Под ком-по не н той (составляющей) вектора Вектор - определение и основные понятия с примерами решения относительно оси Вектор - определение и основные понятия с примерами решения (рис. 177) понимается вектор а’ = АВ’, начало которого А есть проекция на ось Вектор - определение и основные понятия с примерами решения начала А вектора а, а конец которого В’ есть проекция на ось Вектор - определение и основные понятия с примерами решения конца В этого вектора.

Определение: Под проекцией вектора а на ось Вектор - определение и основные понятия с примерами решения понимается скаляр Вектор - определение и основные понятия с примерами решения, равный длине {модулю) его компоненты а’ относительно оси Вектор - определение и основные понятия с примерами решения, взятой со знаком плюс.

Напомним, что все геометрические объекты мы здесь рассматриваем в трехмерном пространстве.

Если направление компоненты совпадает с направлением оси Вектор - определение и основные понятия с примерами решения, и со знаком минус, если направление компоненты противоположно направлению оси Вектор - определение и основные понятия с примерами решения

Если а = О, то полагаютВектор - определение и основные понятия с примерами решения = О.

Заметим, что если е — единичный вектор оси Вектор - определение и основные понятия с примерами решения, то для компоненты а’ справедливо равенство

Вектор - определение и основные понятия с примерами решения

Теорема: Проекция вектора а на ось Вектор - определение и основные понятия с примерами решения равна произведению длины а вектора на косинус угла между направлением вектора и направлением оси, т.е.

Вектор - определение и основные понятия с примерами решения

Доказательство: Так как вектор Вектор - определение и основные понятия с примерами решения свободный (рис. 178), то можно предположить, что начало его О лежит на оси Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решения

1) Если угол ф между вектором a и осью Вектор - определение и основные понятия с примерами решения острый Вектор - определение и основные понятия с примерами решения, то направление компоненты Вектор - определение и основные понятия с примерами решения вектора а совпадает с направлением оси Вектор - определение и основные понятия с примерами решения (рис. 178, а). В этом случае имеем

Вектор - определение и основные понятия с примерами решения

2) Если угол ф между вектором а и осью Вектор - определение и основные понятия с примерами решения тупой Вектор - определение и основные понятия с примерами решения(рис. 178, б), то направление компоненты Вектор - определение и основные понятия с примерами решения вектора а противоположно направлению оси Вектор - определение и основные понятия с примерами решения Тогда получаем

Вектор - определение и основные понятия с примерами решения

3) Если же ф = Вектор - определение и основные понятия с примерами решения, то формула (2), очевидно, выполняется, так как при этом Вектор - определение и основные понятия с примерами решения.

Таким образом, формула (2) доказана.

Следствие 1. Проекция вектора на ось: 1) положительна, если вектор образует с осью острый угол; 2) отрицательна, если этот угол — тупой, и 3) равна нулю, если этот угол — прямой.

Следствие 2. Проекции равных векторов на одну и ту же ось равны между собой.

Теорема: Проекция суммы нескольких векторов на данную ось равна сумме их проекций на эту ось.

Доказательство: Пусть, например, s = a + b + с,

где (рис. 179) Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решения Вектор - определение и основные понятия с примерами решения и, следовательно, Вектор - определение и основные понятия с примерами решения.

Вектор - определение и основные понятия с примерами решения

Обозначая проекции точек Вектор - определение и основные понятия с примерами решения на ось Вектор - определение и основные понятия с примерами решения через Вектор - определение и основные понятия с примерами решения и учитывая направления компонент (рис. 179), имеем

Вектор - определение и основные понятия с примерами решения

что и требовалось доказать.

Следствие. Проекция замкнутой векторной линии на любую ось равна нулю.

Теорема: При умножении вектора на скаляр его проекция на данную ось умножается на этот скаляр, т.е.

Вектор - определение и основные понятия с примерами решения

Формула (4) следует из теоремы 1 и смысла умножения вектора на скаляр.

Следствие. Проекция линейной комбинации векторов равна такой же линейной комбинации проекций этих векторов, т.е.

Вектор - определение и основные понятия с примерами решения

Прямоугольные декартовы координаты в пространстве

Пусть (рис. 180) Ox, Оу, Oz — три взаимно перпендикулярные оси в трехмерном пространстве (оси координат), исходящие из общей точки О (начало координат) и образующие правую тройку (правая система координат), т. е. ориентированные по правилу правого буравчика. Иными словами, для наблюдателя, направленного по оси Oz, кратчайший поворот оси Ох к оси Оу происходит против хода часовой стрелки.

Вектор - определение и основные понятия с примерами решения

Три взаимно перпендикулярные плоскости Oyz, Ozx и Оху, проходящие через соответствующие оси, называются координатными плоскостями; они делят все пространство на восемь октантов.

Для каждой точки М пространства (рис. 180) существует ее радиус-вектор г = ОМ, начало которого есть начало координат О и конец которого есть данная точка М.

Определение: Под декартовыми прямоугольными координатами х, у, z точки М понимаются проекции ее радиуса вектора г на соответствующие оси координат, т. е.

Вектор - определение и основные понятия с примерами решения

В дальнейшем для краткости декартовы прямоугольные координаты мы будем называть просто прямоугольными координатами.

Точка М с координатами х, у, z обозначается через М (х, у, z), причем первая координата называется абсциссой, вторая — ординатой, а третья — аппликатой точки М.

Для нахождения этих координат через точку М проведем три плоскости МА, MB, МС, перпендикулярные соответственно осям Ox, Оу, Oz (рис. 180). Тогда на этих осях получатся направленные отрезки

Вектор - определение и основные понятия с примерами решения

численно равные координатам точки М.

Радиус-вектор г является диагональю параллелепипеда П с измерениями Вектор - определение и основные понятия с примерами решения, образованного плоскостями МА, МБ, МС и координатными плоскостями. Поэтому

Вектор - определение и основные понятия с примерами решения

Если обозначить через Вектор - определение и основные понятия с примерами решения углы, образованные радиусом-вектором г с координатными осями, то будем иметь

Вектор - определение и основные понятия с примерами решения

Косинусы cos а, cos р, cos у называются направляющими косинусами радиуса-вектора г. Из (4), учитывая (3), получаем

Вектор - определение и основные понятия с примерами решения

т. е. сумма квадратов направляющих косинусов радиуса-век-тора точки пространства равна 1.

Из формулы (4) следует, что координата точки М положительна, если радиус-вектор этой точки образует острый угол с соответствующей координатной осью, и отрицательна, если этот угол тупой. В частности, в I октанте пространства, ребра которого составляют положительные полуоси координат, все координаты точек положительны- В остальных октантах пространства отрицательными координатами точек будут те, которые соответствуют отрицательно направленным ребрам октанта.

Измерения Вектор - определение и основные понятия с примерами решения параллелепипеда П равны расстояниям точки М соответственно от координатных плоскостей Oyz, Ozx, Оху. Таким образом, декартовы прямоугольные координаты точки М пространства представляют собой расстояния от этой точки до координатных плоскостей, взятые с надлежащими знаками,

В частности, если точка Вектор - определение и основные понятия с примерами решения лежит на плоскости Oyz, то х = 0; если на плоскости Ozx, то у = 0; если же на плоскости Оху, то z = 0, и обратно.

Длина и направление вектора

Пусть в пространстве Oxyz задан вектор а. Проекции этого вектора на оси координат

Вектор - определение и основные понятия с примерами решения

называются координатами вектора а; при этом вектор мы будем записывать так: Вектор - определение и основные понятия с примерами решения

Так как вектор а свободный, то его можно рассматривать как радиус-вектор точки Вектор - определение и основные понятия с примерами решения. Отсюда получаем длину вектора

Вектор - определение и основные понятия с примерами решения

т.е. модуль вектора равен корню квадратному из суммы квадратов его координат.

Направляющие косинусы вектора а определяются из уравнений

Вектор - определение и основные понятия с примерами решения

причем

Вектор - определение и основные понятия с примерами решения

т.е. сумма квадратов направляющих косинусов вектора равна единице. Направляющие косинусы ненулевого вектора однозначно определяют его направление. Следовательно, вектор полностью характеризуется своими координатами.

Пример №24

Найти длину и направление вектора а = {1, 2, -2}.

Решение:

Имеем

Вектор - определение и основные понятия с примерами решения

Отсюда

Вектор - определение и основные понятия с примерами решения

Таким образом, вектор а образует острые углы с координатными осями Ох и Оу и тупой угол с координатной осью Ог.

Расстояние между двумя точками пространства

Пусть Вектор - определение и основные понятия с примерами решения — начальная точка отрезка Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения— конечная точка его. Точки Вектор - определение и основные понятия с примерами решения можно задать их радиусами-векторами Вектор - определение и основные понятия с примерами решения и Вектор - определение и основные понятия с примерами решения (рис. 181).

Вектор - определение и основные понятия с примерами решения

Рассматривая вектор Вектор - определение и основные понятия с примерами решения, из Вектор - определение и основные понятия с примерами решения будем иметь

Вектор - определение и основные понятия с примерами решения

Проецируя это векторное равенство на оси координат и учитывая свойства проекций, получаем

Вектор - определение и основные понятия с примерами решения

Таким образом, проекции направленного отрезка на оси координат равны разностям соответствующих координат конца и начала отрезка.

Из формул (2) получаем длину отрезка (или, иначе, расстояние между двумя точками Вектор - определение и основные понятия с примерами решения)

Вектор - определение и основные понятия с примерами решения

Итак, расстояние между двумя точками пространства равно корню квадратному из квадратов разностей одноименных координат этих точек.

Пример №25

Ракета из пункта М1 (10, -20, 0) прямолинейно переместилась в пункт М2 (-30, -50, 40) (расстояния даны в километрах). Найти путь пройденный ракетой.

Решение:

На основании формулы (3) имеем

Вектор - определение и основные понятия с примерами решения

Заметим, что, найдя направляющие косинусы вектора перемещения Вектор - определение и основные понятия с примерами решения, нетрудно определить направление движения ракеты.

Действие над векторами, заданными в координатной форме

Пусть вектор Вектор - определение и основные понятия с примерами решения задан своими проекциями на оси координат Ox, Оу, Oz.

Построим параллелепипед (рис. 182), диагональю которого является вектор а, а ребрами служат компоненты его Вектор - определение и основные понятия с примерами решения относительно соответствующих координатных осей. Имеем разложение

Вектор - определение и основные понятия с примерами решения

Вектор - определение и основные понятия с примерами решения

Если ввести единичные векторы (орты) i, j, k, направленные по осям координат, то на основании связи между компонентами вектора и его проекциями будем иметь

Вектор - определение и основные понятия с примерами решения

Подставляя эти выражения в равенство (1), получаем координатную форму вектора

Вектор - определение и основные понятия с примерами решения

Заметим, что разложение (3) для вектора а единственно. Действительно, пусть

Вектор - определение и основные понятия с примерами решения

Отсюда, вычитая из равенства (3) равенство (3′) и пользуясь перемести -тельным и сочетательным свойствами суммы векторов, а также свойствами разности векторов, будем иметь

Вектор - определение и основные понятия с примерами решения

Если хотя бы один из коэффициентов при ортах i, j и k был отличен от нуля, то векторы i, j и k были бы компланарны, что неверно. Поэтому Вектор - определение и основные понятия с примерами решения и единственность разложения (3) доказана.

Если Вектор - определение и основные понятия с примерами решения то, очевидно, также имеем

Вектор - определение и основные понятия с примерами решения

Рассмотренные выше линейные операции над векторами можно теперь записать в следующем виде:

Вектор - определение и основные понятия с примерами решения

или короче: Вектор - определение и основные понятия с примерами решения. Таким образом, при умножении вектора на скаляр координаты вектора умножаются на этот скаляр;

Вектор - определение и основные понятия с примерами решения

или кратко: Вектор - определение и основные понятия с примерами решения

Таким образом, при сложении (или вычитании) векторов их одноименные координаты складываются (или вычитаются):

Пример №26

Найти равнодействующую F двух сил

Вектор - определение и основные понятия с примерами решения

и ее направление.

Решение:

Имеем Вектор - определение и основные понятия с примерами решения. Отсюда

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения — направляющие косинусы равнодействующей F.

Скалярное произведение векторов

Определение: Под скалярным произведением двух векторов а и b понимается число, равное произведению длин этих векторов на косинус угла между ними, т. е. в обычных обозначениях:

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения

Заметим, что в формуле (1) скалярное произведение можно еще записывать как ab, опуская точку. Так как (рис. 183)

Вектор - определение и основные понятия с примерами решения

то можно записать

Вектор - определение и основные понятия с примерами решения

т.е. скалярное произведение двух векторов равно длине одного из них, умноженной на проекцию другого на ось с направлением первого.

Вектор - определение и основные понятия с примерами решения

Физический смысл скалярного произведения

Пусть постоянная сила F обеспечивает прямолинейное перемещение Вектор - определение и основные понятия с примерами решения материальной точки. Если сила F образует угол ф с перемещением s (рис. 184), то из физики известно, что работа силы F при перемещении s равна

Вектор - определение и основные понятия с примерами решения

На основании формулы (1) имеем

Вектор - определение и основные понятия с примерами решения

Таким образом, работа постоянной силы при прямолинейном перемещении ее м точки приложения равна скалярному произведению вектора силы на вектор перемещения.

Вектор - определение и основные понятия с примерами решения

Скалярное произведение векторов обладает следующими основными свойствами.

1)Скалярное произведение двух векторов не зависит от порядка этих сомножителей (переместительное свойство):

Вектор - определение и основные понятия с примерами решения

Эта формула непосредственно следует из формулы (1).

2)Для трех векторов а, b и с справедливо распределительное свойство

Вектор - определение и основные понятия с примерами решения

т. е. при скалярном умножении суммы векторов на вектор можно «раскрыть скобки».

Действительно, на основании формул (2), учитывая свойства проекций векторов, имеем

Вектор - определение и основные понятия с примерами решения

3)Скалярный квадрат вектора равен квадрату модуля этого вектора, т.е.

Вектор - определение и основные понятия с примерами решения

Действительно,

Вектор - определение и основные понятия с примерами решения

Отсюда для модуля вектора получаем формулу

Вектор - определение и основные понятия с примерами решения

4)Скалярный множитель можно выносить за знак скалярного произведения, т.е.

Вектор - определение и основные понятия с примерами решения

Это свойство также легко получается из (1).

5)Скалярное произведение линейной комбинации векторов на произвольный вектор равно такой же линейной комбинации данных векторов на этот вектор, т.е.

Вектор - определение и основные понятия с примерами решения

(Вектор - определение и основные понятия с примерами решения — скаляры).

Это — очевидное следствие 2) и 4).

Из определения (1) вытекает, что косинус угла Вектор - определение и основные понятия с примерами решения между двумя ненулевыми векторами а и b равен

Вектор - определение и основные понятия с примерами решения

Из формулы (8) получаем, что два вектора а и b перпендикулярны (ортогональны), т. е. Вектор - определение и основные понятия с примерами решения, тогда и только тогда, когда

Вектор - определение и основные понятия с примерами решения

Это утверждение справедливо также и в том случае, когда хотя бы один из векторов а или b нулевой.

Пример №27

Найти проекцию вектора а на вектор b. Обозначая через Вектор - определение и основные понятия с примерами решения угол между этими векторами, имеем

Вектор - определение и основные понятия с примерами решения

где е =Вектор - определение и основные понятия с примерами решения— орт вектора b

Скалярное произведение векторов в координатной форме

Пусть

Вектор - определение и основные понятия с примерами решения

Перемножая эти векторы как многочлены и учитывая соотношения

Вектор - определение и основные понятия с примерами решения

будем иметь

Вектор - определение и основные понятия с примерами решения

Таким образом, скалярное произведение векторов равно сумме парных произведений их одноименных координат. Отсюда, обозначая через ф угол между векторами а и b, получаем

Вектор - определение и основные понятия с примерами решения

Пример:

Определить угол ф между векторами а = { 1,+2, 3} и b ={-3, 2,-1}. На основании формулы (4) имеем

Вектор - определение и основные понятия с примерами решения

Отсюда Вектор - определение и основные понятия с примерами решения

Пусть векторы а и b коллинеарны (параллельны). Согласно условию коллинеарности,

Вектор - определение и основные понятия с примерами решения

где k — скаляр, что эквивалентно Вектор - определение и основные понятия с примерами решения или

Вектор - определение и основные понятия с примерами решения

Таким образом, векторы коллинеарны тогда и только тогда, когда их одноименные координаты пропорциональны.

Для перпендикулярных (ортогональных) векторов а и b имеем Вектор - определение и основные понятия с примерами решения и, следовательно, cos ф = 0 или, согласно формуле (4),

Вектор - определение и основные понятия с примерами решения

Таким образом, два вектора перпендикулярны тогда и только тогда, когда сумма парных произведений их одноименных координат равна нулю.

Векторное произведение векторов

Напомним, что тройка а, b и с некомпланарных векторов называется правой (рис. 185, а) или левой (рис. 185, б), если она ориентирована по правилу правого винта или соответственно по правилу левого винта.

Вектор - определение и основные понятия с примерами решения

Заметим, что если в тройке некомпланарных векторов а, b, с переставить два вектора, то она изменит свою ориентацию, т. е. из правой сделается левой или наоборот.

В дальнейшем правую тройку мы будем считать стандартной.

Определение: Под векторным произведением двух векторов а и b понимается вектор

Вектор - определение и основные понятия с примерами решения

для которого:

1)модуль равен площади параллелограмма, построенного на данных векторах, т. е.

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения (рис. 186);

2)этот вектор перпендикулярен перемножаемым векторам (иначе говоря, перпендикулярен плоскости построенного на них параллелограмма), т. е. Вектор - определение и основные понятия с примерами решения;

3)если векторы неколлинеарны, то векторы а, b, с образуют правую тройку векторов.

Укажем основные свойства векторного произведения.

1)При изменении порядка сомножителей векторное произведение меняет свой знак на обратный, сохраняя модуль, т. е.

Вектор - определение и основные понятия с примерами решения

Действительно, при перестановке векторов а и b площадь построенного на них параллелограмма остается неизменной, т. е. Вектор - определение и основные понятия с примерами решения. Однако тройка векторов Вектор - определение и основные понятия с примерами решения является левой. Поэтому направление вектора Вектор - определение и основные понятия с примерами решения противоположно направлению вектора Вектор - определение и основные понятия с примерами решения (а и b неколлинеарны). Если а и b коллинеарны, то равенство (3) очевидно.

Таким образом, векторное произведение двух векторов не обладает переместительным свойством.

2)Векторный квадрат равен нуль-вектору, т.е.

Вектор - определение и основные понятия с примерами решения

Это — очевидное следствие свойства 1).

3)Скалярный множитель можно выносить за знак векторного произведения, т.е. если Вектор - определение и основные понятия с примерами решения — скаляр, то

Вектор - определение и основные понятия с примерами решения

Это свойство непосредственно вытекает из смысла произведения вектора на скаляр и определения векторного произведения.

4)Для любых трех векторов а, b, с справедливо равенство

Вектор - определение и основные понятия с примерами решения

т.е. векторное произведение обладает распределительным свойством.

Пример:

Вектор - определение и основные понятия с примерами решения

Отсюда, в частности, имеем

Вектор - определение и основные понятия с примерами решения

т. е. площадь параллелограмма, построенного на диагоналях данного параллелограмма, равна удвоенной площади этого параллелограмма.

С помощью векторного произведения удобно формулировать легко проверяемый критерий коллинеарности двух векторов а и b:

Вектор - определение и основные понятия с примерами решения

Векторное произведение в координатной форме

Пусть

Вектор - определение и основные понятия с примерами решения

Перемножая векторно эти равенства и используя свойства векторного произведения, получим сумму девяти слагаемых:

Вектор - определение и основные понятия с примерами решения

Из определения векторного произведения следует, что для ортов Вектор - определение и основные понятия с примерами решения справедлива следующая «таблица умножения»:

Вектор - определение и основные понятия с примерами решения

Поэтому из формулы (3) получаем

Вектор - определение и основные понятия с примерами решения (с сохранением порядка следования букв Вектор - определение и основные понятия с примерами решения).

Для удобства запоминания формула (4) записывается в виде определителя третьего порядка (см. гл. XVII) Вектор - определение и основные понятия с примерами решения

Из формулы (4) вытекает, что

Вектор - определение и основные понятия с примерами решения

Геометрически формула (6) дает квадрат площади параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения.

Пример №28

Найти площадь треугольника с вершинами А (1, 1, 0), В (1,0, 1) и С (0, 1, 1).

Решение:

Площадь S треугольника ABC равна 1/2 площади параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения (рис. 187). Используя формулы для проекций направленных отрезков, имеем Вектор - определение и основные понятия с примерами решенияВектор - определение и основные понятия с примерами решенияотсюда Вектор - определение и основные понятия с примерами решения

Следовательно,Вектор - определение и основные понятия с примерами решения

Смешанное произведение векторов

Определение: Под смешанным (или векторно-скалярным) произведением векторов Вектор - определение и основные понятия с примерами решения понимается число

Вектор - определение и основные понятия с примерами решения

Построим параллелепипед П (рис. 188), ребрами которого, исходящими из общей вершины О, являются векторы Вектор - определение и основные понятия с примерами решения.

Тогда Вектор - определение и основные понятия с примерами решения представляет собой площадь параллелограмма, построенного на векторах Вектор - определение и основные понятия с примерами решения, т.е. площадь основания параллелепипеда. Вектор - определение и основные понятия с примерами решения

Высота этого параллелепипеда Вектор - определение и основные понятия с примерами решения, очевидно, равна

Вектор - определение и основные понятия с примерами решения

где Вектор - определение и основные понятия с примерами решения и знак плюс соответствует острому углу Вектор - определение и основные понятия с примерами решения, а знак минус — тупому углу ф. В первом случае векторы Вектор - определение и основные понятия с примерами решения образуют правую тройку, а во втором — левую тройку.

На основании определения скалярного произведения имеем

Вектор - определение и основные понятия с примерами решения

где V — объем параллелепипеда, построенного на векторах Вектор - определение и основные понятия с примерами решения. Отсюда

Вектор - определение и основные понятия с примерами решения

т. е. смешанное произведение трех векторов равно объему V параллелепипед а у построенного на этих векторах, взятому со знаком плюсу если эти векторы образуют правую тройку, и со знаком минус, если они образуют левую тройку.

Справедливы следующие основные свойства смешанного произведения векторов.

1)Смешанное произведение не меняется при циклической перестановке его сомножителей, т.е.

Вектор - определение и основные понятия с примерами решения

Действительно, в этом случае не изменяется ни объем параллелепипеда П, ни ориентация его ребер.

2)При перестановке двух соседних множителей смешанное произведение меняет свой знак на обратный, т. е.

Вектор - определение и основные понятия с примерами решения

Это следует из того, что перестановка соседних множителей, сохраняя объем параллелепипеда, изменяет ориентацию тройки векторов, т.е. правая тройка переходит в левую, а левая — в правую.

С помощью смешанного произведения получаем необходимое и достаточное условие компланарности трех векторов Вектор - определение и основные понятия с примерами решения:

abc = 0

(объем параллелепипеда равен нулю). Если

Вектор - определение и основные понятия с примерами решения

то, используя выражения в координатах для векторного и скалярного  произведений векторов, получаем

Вектор - определение и основные понятия с примерами решения т. e. Вектор - определение и основные понятия с примерами решения

  • Прямая – понятие, виды и её свойства
  • Плоскость – определение, виды и правила
  • Кривые второго порядка
  • Евклидово пространство
  • Логарифм – формулы, свойства и примеры
  • Корень из числа – нахождение и вычисление
  • Теория множеств – виды, операции и примеры
  • Числовые множества

Вектор: определение и основные понятия

Определение вектора

рис. 1

Обозначение вектора

Вектор началом которого есть точка А, а концом – точка В, обозначается AB (рис.1). Также вектора обозначают одной маленькой буквой, например a .

Длина вектора

Для обозначения длины вектора используются две вертикальные линии слева и справа | AB |.

Нулевой вектор

Нулевой вектор обычно обозначается как 0 .

Длина нулевого вектора равна нулю.

Коллинеарные вектора

рис. 2

Сонаправленные вектора

рис. 3

Противоположно направленные вектора

рис. 4

Компланарные вектора

рис. 5

Всегда возможно найти плоскости параллельную двум произвольным векторам, по этому любые два вектора всегда компланарные.

Равные вектора

рис. 6

То есть, два вектора равны, если они коллинеарные, сонаправленые и имеют равные длины:

a = b , если a ↑↑ b и | a | = | b |.

Единичный вектор

Любые нецензурные комментарии будут удалены, а их авторы занесены в черный список!

Добро пожаловать на OnlineMSchool.
Меня зовут Довжик Михаил Викторович. Я владелец и автор этого сайта, мною написан весь теоретический материал, а также разработаны онлайн упражнения и калькуляторы, которыми Вы можете воспользоваться для изучения математики.

Знакомимся с вектором

Основы линейной алгебры для тех, кого это миновало в универе.

Вы наверняка слышали много историй о программистах, которые учились в технических вузах, изучали высшую математику и теперь пользуются этими знаниями в программировании. И если кого-то это не коснулось, может быть ощущение, что он пропустил в жизни что-то важное.

Будем это исправлять. Попробуем разобрать некоторые базовые понятия из математики за пределами школьной программы. И заодно покажем, как оно связано с программированием и для каких задач полезно.

⚠️ Математики, помогайте. Мы тут многое упростили, поэтому будем рады увидеть ваши уточнения и замечания в комментариях.

Линейная алгебра

Есть математика: она изучает абстрактные объекты и их взаимосвязи. Благодаря математике мы знаем, что если сложить два объекта с ещё двумя такими же объектами, то получится четыре объекта. И неважно, что это были за объекты: яблоки, козы или ракеты. Математика берёт наш вещественный мир и изучает его более абстрактные свойства.

Внутри математики есть алгебра: если совсем примитивно, то в алгебре мы вместо чисел начинаем подставлять буквы и изучать ещё более абстрактные свойства объектов.

Например, мы знаем, что если a + b = c , то a = c − b . Мы не знаем, что стоит на местах a, b или c, но для нас это такой абстрактный закон, который подтверждается практикой.

Внутри алгебры есть линейная алгебра — она изучает векторы, векторные пространства и другие абстрактные понятия, которые в целом относятся к некой упорядоченной информации. Например, координаты ракеты в космосе, биржевые котировки, расположение пикселей в изображении — всё это примеры упорядоченной информации, которую можно описывать векторами. И вот их изучает линейная алгебра.

В программировании линейная алгебра нужна в дата-сайенс, где из упорядоченной информации создаются алгоритмы машинного обучения.

Если представить линейную алгебру в виде дома, то вектор — это кирпич, из которого всё состоит. Сегодня разберёмся, что такое вектор и как его понимать.

Что такое вектор

Вы наверняка помните вектор из школьной программы — это такая стрелочка. Она направлена в пространство и измеряется двумя параметрами: длиной и направлением. Пока длина и направление не меняются, вектор может перемещаться в пространстве.

Физическое представление вектора: есть длина, направление и нет начальной точки отсчёта. Такой вектор можно как угодно двигать в пространстве

У аналитиков вектор представляется в виде упорядоченного списка чисел: это может быть любая информация, которую можно измерить и последовательно записать. Для примера возьмём рынок недвижимости, который нужно проанализировать по площади и цене домов — получаем вектор, где первая цифра отвечает за площадь, а вторая — за цену. Аналогично можно сортировать любые данные.

Аналитическое представление вектора: данные можно перевести в числа

Математики обобщают оба подхода и считают вектор одновременно стрелкой и числом — это связанные понятия, перетекающие друг в друга в зависимости от задачи. В одних случаях удобней считать, а в других — показать всё графически. В обоих случаях перед нами вектор.

Математическое представление вектора: данные можно перевести в числа или график

В дата-сайенс используется математическое представление вектора — программист может обработать данные и визуализировать результат. В отличие от физического представления, стрелки векторов в математике привязаны к системе координат Х и У — они не блуждают в пространстве, а исходят из нулевой точки.

Векторная система координат с базовыми осями Х и Y. Место их пересечения — начало координат и корень любого вектора. Засечки на осях — это отрезки одной длины, которые мы будем использовать для определения векторных координат

👉 Получается, вектор – это такой способ записывать, хранить и обрабатывать не одно число, а какое-то организованное множество чисел. Благодаря векторам мы можем представить это множество как единый объект и изучать его взаимодействие с другими объектами.

Например, можно взять много векторов с ценами на недвижимость, как-то их проанализировать, усреднить и обучить на них алгоритм. Без векторов это были бы просто «рассыпанные» данные, а с векторами — порядок.

Как записывать

Вектор можно записать в строку или в столбец. Для строчной записи вектор обозначают одной буквой, ставят над ней черту, открывают круглые скобки и через запятую записывают координаты вектора. Для записи в столбец координаты вектора нужно взять в круглые или квадратные скобки — допустим любой вариант.

Строгий порядок записи делает так, что каждый набор чисел создаёт только один вектор, а каждый вектор ассоциируется только с одним набором чисел. Это значит, что если у нас есть координаты вектора, то мы их не сможем перепутать.

Способы записи вектора

Скаляр

Помимо понятия вектора есть понятие скаляра. Скаляр — это просто одно число. Можно сказать, что скаляр — это вектор, который состоит из одной координаты.

Помните физику? Есть скалярные величины и есть векторные. Скалярные как бы описывают просто состояние, например, температуру. Векторные величины ещё и описывают направление.

Как изображать

Вектор из одного числа (скаляр) отображается в виде точки на числовой прямой.

Графическое представление скаляра. Записывается в круглых скобках

Вектор из двух чисел отображается в виде точки на плоскости осей Х и Y. Числа задают координаты вектора в пространстве — это такая инструкция, по которой нужно перемещаться от хвоста к стрелке вектора. Первое число показывает расстояние, которое нужно пройти вдоль оси Х; второе — расстояние по оси Y. Положительные числа на оси Х обозначают движение вправо; отрицательные — влево. Положительные числа на оси Y — идём вверх; отрицательные — вниз.

Представим вектор с числами −5 и 4. Для поиска нужной точки нам необходимо пройти влево пять шагов по оси Х, а затем подняться на четыре этажа по оси Y.

Графическое представление числового вектора в двух измерениях

Вектор из трёх чисел отображается в виде точки на плоскости осей Х, Y и Z. Ось Z проводится перпендикулярно осям Х и У — это трёхмерное измерение, где вектор с упорядоченным триплетом чисел: первые два числа указывают на движение по осям Х и У, третье — куда нужно двигаться вдоль оси Z. Каждый триплет создаёт уникальный вектор в пространстве, а у каждого вектора есть только один триплет.

Если вектор состоит из четырёх и более чисел, то в теории он строится по похожему принципу: вы берёте координаты, строите N-мерное пространство и находите нужную точку. Это сложно представить и для обучения не понадобится.

Графическое представление числового вектора в трёх измерениях. Для примера мы взяли координаты −5, 2, 4

Помните, что все эти записи и изображения с точки зрения алгебры не имеют отношения к нашему реальному трёхмерному пространству. Вектор — это просто какое-то количество абстрактных чисел, собранных в строгом порядке. Вектору неважно, сколько там чисел и как их изображают люди. Мы же их изображаем просто для наглядности и удобства.

Например, в векторе спокойно может быть 99 координат. Для его изображения нам понадобилось бы 99 измерений, что очень проблематично на бумаге. Но с точки зрения вектора это не проблема: перемножать и складывать векторы из двух координат можно так же, как и векторы из 9999999 координат, принципы те же.

И зачем нам это всё

Вектор — это «кирпичик», из которого строится дата-сайенс и машинное обучение. Например:

  • На основании векторов получаются матрицы. Если вектор — это как бы линия, то матрица — это как бы плоскость или таблица.
  • Машинное обучение в своей основе — это перемножение матриц. У тебя есть матрица с данными, которые машина знает сейчас; и тебе нужно эту матрицу «дообучить». Ты умножаешь существующую матрицу на какую-то другую матрицу и получаешь новую матрицу. Делаешь так много раз по определённым законам, и у тебя обученная модель, которую на бытовом языке называют искусственным интеллектом.

Кроме того, векторы используются в компьютерной графике, работе со звуком, инженерном и просто любом вычислительном софте.

И давайте помнить, что вектор — это не какая-то сложная абстрактная штука, а просто сумка, в которой лежат числа в определённом порядке. То, что мы называем это вектором, — просто нюанс терминологии.

Что дальше

В следующий раз разберём операции с векторами. Пока мы готовим материал — рекомендуем почитать интервью с Анастасией Никулиной. Анастасия ведёт ютуб-канал по дата-сайнс и работает сеньором дата-сайентистом в Росбанке.

Векторная алгебра — основные понятия с примерами решения и образцами выполнения

Вектором называется направленный отрезок. Вектор обозначается либо символом ( — точка начала, — точка конца вектора), либо . В математике обычно рассматриваются свободные векторы, то есть векторы, точка приложения которых может быть выбрана произвольно.

2. Длиной (модулем) вектора называется длина отрезка . Модуль вектора обозначается .

3.Вектор называется единичным, если его длина равна «1»; единичный вектор направления вектора называется ортом вектора и определяется по формуле .

4. Вектор называется нулевым, если его начало и конец совпадают ; любое направление можно считать направлением нулевого вектора.

5. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарность векторов обозначается: . Необходимым и достаточным условием коллинеарности векторов и является существование такого числа , что .

6. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и направление.

7. Вектор называется противоположным вектору , если модули их равны, а направления противоположны.

8. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Для решения задач необходимо уметь выполнять линейные операции над вектором в геометрической форме, то есть над вектором, как над
направленным отрезком: сложение, вычитание векторов и умножение вектора на число.

9. Сложение двух векторов можно выполнить по правилу параллелограмма (рис. 1) или по правилу треугольника (рис. 2).

При сложении более двух векторов, лежащих в одной плоскости, используется правило «замыкающей линии многоугольника» (рис. 3).

При сложении трех некомпланарных векторов удобно пользоваться правилом «параллелепипеда» (рис. 4).

10. Действие вычитания двух векторов связано с действием сложения (рис.5).

Разностью двух векторов называется вектор, проведенный из конца вычитаемого в конец уменьшаемого. Заметим, что разностью является вектор, служащий второй диагональю параллелограмма.

Разность можно также представить в виде сложения с противоположным вектором (рис. 6).

11. Произведением вектора на число называется вектор , который имеет :

12. Для решения задач полезно знать также следующие законы и свойства:

  • переместительный:
  • сочетательный:
  • распределительный:

Примеры задач решаемых с применением векторной алгебры

Задача:

Пусть даны точки

1) Найти координаты векторов

2) Написать разложение этих векторов по базису

3) Найти длины этих векторов

4) Найти скалярное произведение

5) Найти угол между векторами и .

6) Найти разложение вектора по базису и

Решение:

1) Вычислим координаты векторов и (нужно из координат точки его конца вычесть координаты его начала):

, аналогично,

и

2)

4) Для вычисления угла между векторами воспользуемся формулой:

5) Разложить вектор по векторам и — это значит представить вектор в виде линейной комбинации векторов и , т. е.

, где . Имеем , но у равных векторов соответственно равны координаты, следовательно, получим систему, из которой найдем и .

Задача:

а). Даны векторы и в некотором базисе. Показать, что векторы образуют базис и найти координаты вектора в этом базисе.

Решение:

Три вектора образуют базис, если .

Найдем координаты вектора в базисе и .

Два вектора равны, если их соответствующие координаты равны.

Решим систему методом Крамера:

Ответ: .

Задача:

Даны координаты вершин тетраэдра и . Найти: 1) координаты точки пересечения медиан треугольника ; 2) уравнение прямой, проходящей через вершину параллельно медиане, проведенной из вершины треугольника ; 3) координаты точки, симметричной точке относительно плоскости . Сделать чертёж.

Решение:

1) Найдем координаты т. середины отрезка (рис. 16):

Точка пересечения медиан треугольника делит медиану в отношении , считая от вершины . Найдем координаты точки :

2) Найдем направляющий вектор прямой . Уравнение прямой, проходящей через вершину параллельно прямой :

3) Найдем уравнение плоскости :

Найдем каноническое уравнение прямой, перпендикулярной плоскости и проходящей через т. : . Запишем каноническое уравнение прямой в параметрическом виде: .

Найдем координаты точки пересечения плоскости и найденной прямой:

Координаты точки симметричной точке относительно плоскости .

Ответ: 1) координаты точки пересечения медиан уравнение прямой ; 3) координаты симметричном точки .

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Возможно вам будут полезны эти страницы:

Векторная алгебра — решение заданий и задач по всем темам с вычислением

Понятие вектора. Линейные операции над векторами

1°. Любые две точки пространства, если они упорядочены (например, А является первой, а В — второй точкой), определяют отрезок вместе с выбранным направлением (а именно, от A к В). Направленный отрезок называется вектором. Вектор с началом в A и концом в В обозначается или Длина вектора, обозначаемая , АВ или а, называется также модулем вектора. Чтобы найти координаты вектора, нужно из координат конца вектора вычесть одноименные координаты начала: Тогда длина вектора найдется так:

Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.

Два вектора называются равными, если они коллинеарны, имеют одинаковые модули и направления. В этом случае пишут Равные векторы имеют равные координаты.

Векторы называются противоположными, если они коллинеарны, имеют одинаковые длины и противоположные направления:

Вектор называется нулевым, если его модуль равен нулю, и обозначается

2°. Линейными называются действия сложения, вычитания векторов и умножения вектора на число.

1.Если начало совмещено с концом то начало совпадает с началом а конец — с концом (рис. 3.1).

2.Если начала векторов совмещены, то начало совпадает с концом , а конец совпадает с концом (рис. 3.2).

3.При умножении вектора на число (скаляр) длина вектора умножается на , а направление сохраняется, если и изменяется на противоположное, если (рис. 3.3).

Вектор называется ортом, или единичным вектором вектора его длина равна единице:

3°. Запись ci — означает, что вектор имеет координаты или разложен по базису — орты осей Ох, Оу и Oz пространственной системы координат Oxyz). При этом

4°. Числа называются направляющими косинусами вектора — углы между вектором и координатными осями Ох, Оу, Oz соответственно. Единичный вектор — орт вектора . Для любого вектора справедливо:

5°. Линейные операции над векторами, которые заданы своими координатами, определяются так: пусть тогда

Следовательно, при сложении векторов складываются их соответствующие координаты, а при умножении вектора на число умножаются на число все координаты вектора.

6°. Необходимое и достаточное условие коллинеарности векторов , устанавливаемое равенством может быть записано соотношениями из которых следует пропорциональность их координат:

Если один из членов какого-нибудь из этих отношений равен нулю, то и второй член того же отношения должен быть нулем. Геометрически это значит, что в этом случае оба вектора перпендикулярны соответствующей координатной оси (например, если то векторы ).

7°. Система векторов называется линейно независимой, если равенство

( — действительные числа) возможно только при Если же равенство (1) возможно при некотором нетривиальном наборе то система этих векторов называется линейно зависимой. Любой вектор линейно зависимой системы линейно выражается через остальные.

Примеры с решениями

Пример:

Доказать, что треугольник с вершинами в точках A(1,2), B(2,5), С(3,4) прямоугольный.

Решение:

Построим векторы, совпадающие со сторонами треугольника (см. п. 1°): (рис. 3.4).

Найдем длины сторон:
Нетрудно видеть, что Следовательно, треугольник ABC прямоугольный с гипотенузой и катетами

Пример:

Проверить, что точки А( 2,-4,3), В(5, —2,9), С( 7,4,6) и D(6,8, -3) являются вершинами трапеции.

Решение:

Составим векторы-стороны с целью обнаружения коллинеарности векторов (в трапеции ВС || AD) (рис. 3.5):

Имеем значит, ABCD — трапеция.

Пример:

Найти орт и направляющие косинусы вектора

Решение:

Имеем В соответствии с п. 3°, 4°

и направляющие косинусы вектора причем

Пример:

Определить точку В, которая является концом вектора , если его начало совпадает с точкой

Решение:

Пусть точка В имеет координаты B(x,y,z) (рис. 3.6). Тогда координа- ^ ты вектора (п. 1°)

Следовательно, Ответ. В(5, -5,3).

Пример:

Вектор разложить по векторам

Решение:

Необходимо найти такие числа х, у, z, что т.е.

Имея в виду, что при сложении векторов складываются их координаты и равные векторы имеют равные координаты, приходим к системе уравнений

Ответ.

Пример:

Показать, что система векторов линейно независима.

Решение:

В данном случае равенство (1) имеет вид , или Отсюда получаем систему уравнений

из которой следует, что Это подтверждает линейную независимость данных векторов.

Пример:

Показать, что система векторов линейно зависима.

Решение:

Равенство (1) равносильно системе уравнений

Она имеет ненулевое решение, например, Таким образом, Отсюда видно, что т.е. вектор линейно выражается через Очевидно, что можно выразить через — через

Скалярное произведение векторов

1°. Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению их длин на косинус угла между ними:

Из (рис. 3.7) имеем ( — проекция вектора на направление вектора ).

Итак,

т.е. скалярное произведение векторов равно сумме произведений одноименных координат этих векторов.

При этом если же , т. е. поскольку cos 90° = 0 (условие перпендикулярности двух векторов).

3°. Из определения скалярного произведения следует формула для вычисления угла между двумя векторами:

Примеры с решениями

Пример:

Перпендикулярны ли векторы если

Решение:

Условие перпендикулярности векторов (п. 2°) в нашем случае

Пример:

Найти проекцию вектора на направление вектора

Решение:

Имеем (п. 1°). Подставив сюда выражение для из п. 3°, получим

Ответ

Пример:

Зная векторы, совпадающие с двумя сторонами: и найти внутренние углы треугольника ABC.

Решение:

При помощи таблиц находим Для нахождения других углов нам понадобится вектор который является суммой : поэтому

Ответ. 123° 10′, 19°29′, 37°21′.

Пример:

Найти координаты вектора если где и

Решение:

На рис. 3.9 имеем Из условий перпендикулярности векторов (п. 2°) имеем Положим Условие задачи перепишем в виде Рис. 3.9 системы

Векторное произведение векторов

1°. Векторы приведенные к одному началу, образуют правую (левую) тройку при условии: если смотреть из конца вектора на плоскость векторов то кратчайший поворот от совершается против (по) часовой стрелки (рис. 3.10).

2°. Векторным произведением ненулевых векторов называется вектор , обозначаемый удовлетворяющий следующим трем условиям.

1) вектор перпендикулярен плоскости векторов

2) Вектор направлен так, что векторы образуют правую тройку.

3) т.е. его длина численно равна площади параллелограмма, построенного на векторах (рис. 3.11), таким образом,

Если векторы коллинеарны, то под понимается нулевой вектор:

3°. Если известны координаты векторов-сомножителей то для отыскания координат векторного произведения служит формула

в которой определитель следует разложить по элементам первой строки.

Примеры с решениями

Пример:

Найти площадь треугольника, вершины которого находятся в точках А(1,2,3), В<3,2,1), С(1,0,1).

Решение:

Найдем координаты векторов Определим координаты векторного произведения (рис. 3.12):

Найдем длину этого вектора, которая равна численно площади параллелограмма S (п. 2°): Площадь треугольника равна

Пример:

Построить параллелограмм на векторах и вычислить его площадь и высоту, опущенную на .

Сделаем чертеж (рис. 3.13). Имеем Отдельно вычисляем векторное произведение:

Смешанное произведение векторов

1°. Смешанным произведением трех ненулевых векторов называется число, равное скалярному произведению двух векторов, один из которых — векторное произведение , а другой — вектор . Обозначение: Если образуют правую тройку, то Если образуют левую тройку, то

Модуль смешанного произведения векторов равен объему параллелепипеда (рис. 3.14), построенного на этих векторах, Условие равносильно тому, что векторы расположены в одной плоскости, т.е. компланарны. Имеет место равенство

Объем тетраэдра с вершинами в точках можно вычислить по формуле где

2°. Условие равносильно условию линейной независимости , а тогда любой вектор линейно выражается через них, т. е. Для определения х, у, z следует решить соответствующую систему линейных уравнений

Примеры с решениями

Пример:

Найти объем параллелепипеда, построенного на векторах

Решение:

Искомый объем Поскольку

Пример:

В точках 0(0,0,0), А(5,2,0), В(2,5,0) и С(1,2,4) находятся вершины пирамиды. Вычислить ее объем, площадь грани ABC и высоту пирамиды, опущенную на эту грань.

Решение:

1) Сделаем схематический чертеж (рис. 3.15).

2) Введем векторы .Объем пирамиды ОАВС (тетраэда) равен

3) Площадь грани ABC

4) Объем пирамиды отсюда
Ответ.

Основные понятия векторной алгебры

Прямоугольные декартовы координаты

Координатная ось

Пусть на плоскости или в пространстве задана произвольная прямая L: Ясно, что по этой прямой L сы можем перемещаться в oднoм из двух противоположных направлений. Выбор любого (одного) из этих направлений будем называть ориентацией прямой L.

Оnределение:

Прямая с заданной на ней ориентацией называется осью. На чертеже ориентация оси указывается стрелкой (рис. 1 ) . Фиксируем на оси некоторую точку О и выберем какой-нибудь отрезок а, доложив по определению его длину равной единице (рис. 2).

Пусть М — произвольная точка оси . Поставим этой точке в соответствие число х по следующему прав илу: х равно расстоюiию между точками О и М, взятому со знаком плюс или со знаком минус н зависимости от того, совпадает ли направление движения от точки О к точке М с заданным направлением или противоположно ему (рис. 3).

Оnределение:

Ось с точкой начала отсчета О и масштабными отрезками а называется координатной осью, а число х, вычисляемое по указанному правилу, называется координатой точки М. Обозначение: М (х).

Прямоугольные декартовы координаты на плоскости

Пусть П — произвольная плоскость. Возьмем на ней некоторую точку О и проведем через эту точку взаимно перпендикулярные прямые L 1 и L 2. Зададим на каждой из nрямых L 1 и L 2 ориентацию и выберем единый масштабный отрезок а. Тогда эти прямые nревратятся в координатные оси с общей точкой отсчета О (рис. 4).

Назовем одну из координатных осей осью абсцисс (осью Ох), друrую —осью ординат (осью Оу) (рис. 5). Точка О называется началом координат. Пусть М — произвольная точка плоскости П (рис. 6). Проведем через точку М прямые, перпендикулярные координатным осям, и поставим ей в соответствие упорядоченную пару чисел (х, у) по следующему nравилу:

Числа х и у называются прямоугольными декартовыми при этом х называется ее абсциссой, а у — ординатой. координатами точки М; Обозначение: М(х, у). Чтобы кратко охарактеризовать описанную конструкцию, говорят, что на плоскости П задана прямоугольная декартова система координат Ох у. Координатные оси разбивают плоскость на четыре части, называемые четвертями или квадрантами. На рисунке и в таблице показано, как эти квадранты нумеруются (рис. 7).

Замечание:

Масштабные от резки на координатных осях могут быть и разной длины. В этом случае координатная система называется просто прямоугольной.

Прямоугольные декартовы координаты в пространстве

Возьмем в пространстве некоторую точку О и проведем через нее три взаимно перпендикулярные прямые L 1 , L 2 и L 3 . Выберем на каждой из nрямых ориентацию и единый масштаб. Прямые L 1 , L 2 и L 3 превратятся в координатные оси с общей точкой отсчета О (рис. 8).

Назовем одну из этих осей осью абсцисс (осью Ох), вторую — осью ординат (осью Оу) и третью — осью аппликат (осью Oz) (рис. 9). Точка О называется началом координат. Пусть М — nроизвольная точка (рис. 10). Проведем через точку М nлоскости, перпендикулярные координатным осям, и поставим ей в соответстnие упорядоченную тройку чисел (х, у, z) по следующему правилу:

Числа х, у и z называются прямоугольными декартовыми координатами точки М; при этом х называется абсциссой точки М, у — ее ординатой, а z —аппликатой. Обозначение: М(х, у, z). Таким образом, в пространстве введена прямоугольная декартова система координат.

Оnределение:

Плоскость, проходящая через любую пару координатных осей, называется координатной плоскостью.

Координатных плоскостей три: Оху, Oyz и Oxz. Эти плоскости разбивают пространство на восемь частей — октантов. 1 .4. Простейшие задачи аналитической геометрии А. Расстояние между точками Пусть М 11 ) и М 22 )- две точки на координатной оси. Тогда расстояние d между ними вычисляется по формуле

Если на плоскости задана прямоугольная декартова система координат Оху, то расстояние d между любыми двумя точками М 11 , у1 и М22 , y2) вычисляется по следующей формуле

Рассмотрим прямоугольный треугольник ∆MM1M2 (pиc. l l). По теореме Пифагора

,и извлекая из обеих частей равенства квадратный корень, приходим к требуемой формуле .

Замечание:

Расстояние между точками в пространстве вычисляется по следующей формуле

Задача:

Написать уравнение окружности радиуса т с центром в точке Р(а, b).

Пусть М(х, у) — точка окружности (рис. 12). Это означает, что |M P| = r. Заменим |M P|его выражением

и возведем обе части полученного равенства в квадрат:

Это есть каноническое уравнение окружности радиуса r с центром в точке Р(а, b) .

Задача:

Пусть F л (-с, 0) и F n (c, 0) -фиксированные точки плоскости, а -заданное число (а > с ≥ 0). Найти условие, которому удовлетворяют координаты х и у точки М, обладающей следующим свойством: сумма расстояний от точки М до Fл и до F n равна 2а.

Вычислим расстояния между точками М и F л и между точками М и F n . Имеем

Перенесем второй корень в правую часть

Возводя обе части в квадрат, после простых преобразований получим

С целью дальнейших упрощений вновь возводим обе части в квадрат. В результате nриходим к равенству

Полагая b 2 = а 2 — с 2 и деля обе части nоследнего соотноwения на а 2 b 2 , nолучаем уравнение эллипса

Деление отрезка в данном отношении:

Требуется выразить координаты х и у этой точки через координаты концов отрезка М1М2 и числа λ 1 и λ 2 . Предположим сначала, что отрезок М1М2 не параллелен оси ординат Оу (рис. 14). Тогда

то из последних двух соотношений получаем, что

Точка М лежит между точками М1 и М2 , поэтому либо х 1 х > х 2 . В любом из этих случаев разности х1 — х и х — х 2 имеют одинаковые знаки. Это позволяет переписать последнее равенство в следующей форме

В случае, когда отрезок М1М2 параллелен оси Оу, х 1 = х 2 = х. Заметим, что тот же результат дает формула (*), если nоложить в ней х 1 = х 2 . Справедливость формулы

доказывается аналогичным рассуждением .

Задача:

Найти координаты центра тяжести М треугольника с вершинами в точках . М1 ( х 1 , у 1 ), М2 ( х 2 , у 2 ) и М3 ( х 3 , у 3 ). Восnользуемся тем, что центр тяжести треугольника совпадает с точкой пересечения его медиан. Точка М делит каждую медиану в отношении 2 : 1, считая от вершины (рис. 15). Тем самым, ее координаты х и у можно найти по формулам

где х’ и у’ — координаты второго конца М’ медианы М3 М’. Так как М’ — середина отрезка М1М2, то

Полученные соотношения позволяют выразить координаты z и у центра тяжести М треугольника ∆М1М2М3 через координаты его вершин:

Замечание:

Полярные координаты

Предположим, что задана точка О, ось .содержащая точку О, и масштабный отрезок (эталон длины) (рис. 16).

Пусть М — произвольная точка плоскости, отличная от точки О (рис.17). Ее положение на плоскости однозначно определяется двумя числами: расстоянием г между точками О и М и отсчитываемым против часовой стрелки углом φ между положительным лучом оси и лучом ОМ с началом в точке О. Пару (г, φ) называют полярными координатами точки М; г — полярный радиус точки М , φ — полярный угол.

Точка О называется полюсом, — полярной осью.

Ясно, чтоЕсли точка М совпадаете полюсом, то считаем г = 0; полярный угол φ в этом случае не определен.

Таким образом, на плоскости можно задать еще одну координатную систему — полярную.

Прямоугольную декартову систему координат Оху будем называть согласованной с заданной полярной, если начало координат 0(0, 0) — полюс, ось Ох — полярная ось, а ось Оу составляете осью Ох угол, равный. Тогда

(рис.18). В свою очередь

Пример:

Пусть R > О — заданное число. Множество точек плоскости, полярные координаты (г,

Определители 2-го и 3-го порядков

Определителем второго порядка называется число

Обозначение:

Тем самым, для вычисления определителя второго порядка нужно из произведения а11, а22 элементов главной диагонали вычесть произведение а12, а21 элементов его побочной диагонали (рис. 20).

Пример:

По правилу (1) имеем

С определителями второго порядка мы встречаемся уже при отыскании решения системы двух линейных алгебраических уравнений с двумя неизвестными

Решая эту систему методом исключения неизвестных при условии, что

Пусгь теперь даны девять чисел aij (i = I, 2, 3; j = I, 2, 3).

Определителем третьего порядка называется число, обозначаемое символом

и вычисляемое по следующему правилу:

Первый индекс i элемента aij указывает номер строки, в которой он расположен, а второй индекс j — номер столбца.

Чтобы разобраться с распределением знаков в правой части формулы (2), обратим внимание на следующее: произведение элементов а11, а22, а33 главной диагонали входит в формулу со своим знаком, также как и произведение а11, а22, а33 и а11, а22, а33 элементов, расположенных в вершинах треугольников, основания которых параллельны главной диагонали (рис. 21); с другой стороны, произведение а13, а22, а31 элементов побочной диагонали, а также произведения а12, а21, а33 и а11, а23, а32 — с противоположным знаком (рис.22). Такой подход к вычислению определителя третьего порядка называется правилом треугольника.

Пример:

Применяя правило треугольника, находим

Установим некоторые свойства определителей 3-го порядка, легко проверяемые при помощи разложений (1) и (2).

Свойство:

Величина определителя не изменится, если все его строки заменить его столбцами с теми же номерами

Свойство:

При перестановке любых двух строк (или любых двух столбцов) определителя он изменяет свой знак на противоположный.

Свойство:

Общий множитель всех элементов одной строки (или одного столбца) определителя можно вынести за знак определителя

Следующие три свойства определителя вытекают из свойств 1-3. Впрочем, в их справедливости можно убедиться и непосредственно, пользуясь формулами (1) и (2).

Свойство:

Если определитель имеет две равные строки (или дна равных столбца), то он равен нулю.

Свойство:

Если все элементы некоторой строки (или некоторого столбца) равны нулю, то и сам определитель равен нулю.

Свойство:

Если соответствующие элементы двух строк (или двух столбцов) пропорциональны, то определитель равен нулю.

Укажем еще один способ вычисления определителя 3-го порядка

Минором Mij элемента aij определителя ∆ называется определитель, получаемый изданного путем вычеркивания элементов i-й строки и j-ro столбца, на пересечении которых находится этот элемент. Например, минором элемента a23 будет определитель

Алгебраическим дополнением элемента Aij называется минор Mij — этого элемента, взятый со своим знаком, если сумма i + j номеров строки и столбца, на пересечении которых расположен элемент aij, есть число четное, и с противоположным знаком, если это число нечетное:

Теорема:

Определитель равен сумме произведений элементов любой его строки (любого его столбца) на их алгебраические дополнения, так что имеют место следующие равенства

Покажем, например, что

Пользуясь формулой (2), получаем, что

Правило (3) называется разложением определителя по элементам i-й строки, а правило (4) — разложением определителя по элементам j -го столбца.

Пример:

Раскладывая определитель по элементам 1-ой строки, получим

Понятия связанного и свободного векторов

Рассмотрим две точки А и В. По соединяющему их отрезку можно перемещаться в любом из двух противоположных направлений. Если считать, например, точку А начальной, а точку В конечной, то тогда получаем направленный отрезок АВ, в другом случае — направленный отрезок В А. Направленные отрезки часто называют связанными или закрепленными векторами. На чертеже заданное направление указывается стрелкой (рис. 1).

В случае, когда начальная и конечная точки совпадают, А = В, связанный вектор называется нулевым.

Определение:

Будем говорить, что связанные векторы АВ и CD равны, если середины отрезков AD и ВС совпадают (рис. 2).

Обозначение:

Заметим, что в случае, когда точки А, В, С и D не лежат на одной прямой, это равносильно тому, что четырехугольник ABCD — параллелограмм. Ясно, что равные связанные векторы имеют равные длины.

Пример:

Рассмотрим квадрат и выберем векторы, как указано на рис.3. Векторы АВ и DC равны, а векторы ВС и DA не равны.

Укажем некоторые свойства равных связанных векторов:

  1. Каждый связанный вектор равен самому себе: АВ = АВ.
  2. Если АВ = CD, той CD = АВ.
  3. Если АВ = CD и CD = EF,то АВ = EF (рис.4).

Пусть АВ — заданный связанный вектор и С — произвольная точка. Ясно, что, опираясь на определение, всегда можно построить точку D так, чтобы

CD = АВ.

Тем самым, от каждой точки можно отложить связанный вектор, равный исходному (рис. 5).

Мы будем рассматривать свободные векторы, т. е. такие векторы, начальную точку которых можно выбирать произвольно, или, что то же самое, которые можно произвольно переносить параллельно самим себе. Ясно, что свободный вектор однозначно определяется заданием связанного вектора АВ.

Если в качестве начальных выбирать лишь те точки, которые лежат на прямой, определяемой заданным (ненулевым) связанным вектором, то мы приходим к понятию скользящего вектора (рис. 6).

Связанные и скользящие векторы широко используются в теоретической механике.

Для обозначен ия свободных векторов будем пользоваться полужирными строчными латинскими буквами — а, b, с,… ; нулевой вектор обозначается через 0.

Пусть заданы вектор а и точка А. Существует ровно одна точка В, для которой

= а

(рис.7). Операция построения связанного вектора АВ, для которого выполняется это равенство, называется откладыванием свободного вектора а от точки А.

Заметим, что связанные векторы, получаемые в результате описанной операции откладывания, равны между собой и, значит, имеют одинаковую дли ну. Это позволяет ввести длину свободного вектора а, которую мы будем обозначать символом |а. Длина нулевого вектора равна нулю. Если а = b, то |а| = |b; обратное неверно.

Линейные операции над векторами

Сложение векторов

Пусть заданы два вектора а и b. Возьмем какую-нибудь точку О и отложим от нее вектор a: = а. От полученной точки А отложим вектор b: = b. Полученный в результате вектор называется суммой векторов а и b и обозначается через a + b (рис. 8). Этот способ построения суммы векторов называется правилом треугольника.

Нетрудно заметить, что сложение векторов коммутативно, т. е. для любых векторов а и b справедливо равенство

а + b = b + а

Если отложить векторы а и 1» от обшей точки О и построить на них как на сторонах параллелограмм, то вектор , идущий из общего начала О в противоположную вершину параллелограмма, будет их суммой а + b (или b +а) (рис. 10). Этот способ построения суммы векторов называется правилом параллелограмма.

Пусть заданы три вектора, например, a, b и с. Отложим от произвольной точки О вектор a: = а; от полученной точки А отложим вектор b: = b; отточки В — вектор с: = с (рис. 11). По определению суммы — а + b и = (а + b) + с (рис. 12). С другой стороны, АС = b + с и, значит, ОС = а + (Ь + с) (рис. 13). Тем самым, для любых векторов a, b и с выполняется равенство

(а +b) + с = а + (b + с),

т. е. сложение векторов ассоциативно. Опуская скобки, можно говорить о сумме трех векторов и записывать ее так:

а + b + с.

Аналогично определяется сумма любого числа векторов: это есть вектор, который замыкает ломаную, построенную из заданных векторов. На рис. 14 показан», как построить сумму семи векторов:

Приведенный способ сложения произвольного числа векторов называется правилом замыкающего ломаную.

Пример:

Найти сумму векторов, идущих из центра правильного шестиугольника в его вершины.

По правилу замыкающего ломаную получаем

Умножение вектора на число

Определение:

Свободные векторы а и b называются коллинеарными, если определяющие их связанные векторы лежат на параллельных или на совпадающих прямых (рис. 16).

Обозначение: а||b.

Замечание:

Из определения следует, что если хотя бы один из векторов a и b нулевой, то они коллинеарны.

Если отложить коллинеарные векторы а и b от обшей точки О, = n, = Ь, то точки О, А н В будут лежать на одной прямой. При этом возможны два случая: точки А и В располагаются на этой прямой: 1) по одну сторону от точки О, 2) по разные стороны (рис. 17). В первом случае векторы а и b называются одинаково направленными, а во втором — противоположно направленными.

Если векторы имеют равные длины и одинаково направлены, то они равны. Пусть а — вектор, λ — вещественное число.

Определение:

Произведением вектора а на число λ называется вектор b такой, что

2) векторы а и b одинаково (соответственно, противоположно) направлены, если λ > 0 (соответственно, λ

(здесь λ и μ — любые действительные числа, а и Ь — произвольные векторы).
Определение:

Вектор, длина которого равна единице, называется единичным вектором, или ортом, и обозначается а° (читается: а с нуликом), |а°| = 1.
Если а ≠ 0, то вектор

есть единичный вектор (орт) направления вектора а (рис. 18).

Координаты и компоненты вектора

Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ox, Оу, Oz (рис. 19). Рассмотрим произвольный вектор п, начало которого лежит в начале координат О, а конец — в точке А. Проведем через точку А плоскости, перпендикулярные осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Р, Q и R соответственно. Из рис. 20 видно, что

Векторы коллинеарны соответственно единичным векторам i, j, k,

поэтому найдутся числа х, у, z такие, что

а = xi + yj + zk. (2)

Формула (2) называется разложением вектора а по векторам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k.

Векторы i, j, к попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).

Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. е. коэффициенты х, у, z в разложении вектора а по векторам i, j, к определены однозначно. Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки А — конца вектора а. Мы пишем в этом случае

а = <х, y,z>.

Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы xi, yj, zk, сумма которых равна вектору а, называются компонентами вектора а.

Из вышеизложенного следует, что два вектора а = < х1, у1, z1 > и b = <х2, у2, z2> равны тогда и только тогда, когда соответственно равны их координаты, т. е.

Радиус-вектором точки М(х,у, z) называется вектор г = xi + yj + zk, идущий из начала координат О в точку М (рис. 21).

Линейные операции над векторами в координатах

— при сложении векторов их координаты попарно складываются. Аналогично получаем

— при умножении вектора на число все его координаты умножаются на это число.
Пусть а = < х1, у1, z1>, b = < х2, у2, z2 > — коллинеарные векторы, причем b ≠ 0. Тогда а = μb, т.е.

Обратно, если выполняются соотношения (3), то а = μb, т. е. векторы a и b коллинеарны.

Таким образом, векторы а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Пример:

Найти координаты вектора начало которого находится в точке М1 ( х1, у1, z1 ). а конец — в точке M2 (х2, у2, z2).
Из рис. 22 видно, что = r2 — r1 , где r2, r1 — радиус-векторы точек М1 и M2 соответственно. Поэтому

— координаты вектора ММг равны разностям одноименных координат конечной М2 и начальной М точек этого вектора.

Проекция вектора на ось

Рассмотрим на оси l ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси l называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси l, и со знаком «-», если эти направления противоположны.

Рассмотрим теперь произвольный вектор , определяемый связанным вектором АВ. Опуская из его начала и конца перпендикуляры на заданную ось l, построим на ней направленный отрезок CD (рис. 24).

Определение:

Проекцией вектора на ось l называется величина направленного отрезка CD, построенного указанным выше способом.

Обозначение:

Основные свойства проекций

  1. Проекция вектора АВ на какую-либо ось l равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25)
  2. Проекция суммы векторов на какую-либо ось l равна сумме проекций векторов на ту же ось.

Скалярное произведение векторов

Пусть имеем два вектора a и b.

Определение:

Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а, b) и определяемое равенством

(1)
где φ, или в иной записи (), есть угол между векторами а и b (рис. 27 а).
Заметив, что |b| cos φ есть проекция вектора b на направление вектора а, можем написать

(рис. 27 б) и, аналогично,’ (2)

(рис. 27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или b — нулевой, будем считать, что

(a, b) = 0.

Свойства скалярного произведения

  1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и b ортогональны, a ⊥ b.

Это следует из формулы (1), определяющей скалярное произведение.

Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так:

2. Скалярное произведение коммутативно:

(а, b) = (b, а).

Справедливость утверждения вытекает из формулы (I), если учесть четность функции cos φ: cos(- φ) = cos φ.

3. Скалярное произведение обладает распределительным свойством относительно сложения:

(а + b, с) = (а, с) + (b, c).

4. Числовой множитель А можно выносить за знак скалярного произведения

(λа, b) = (а, λb) = λ (а, b).

  • Действительно, пусть λ > 0. Тогда

поскольку при λ > 0 углы () и (λ) равны (рис.28).

Аналогично рассматривается случай λ

Замечание:

В общeм случае (а, b)c ≠ a(b, c).

Скалярное произведение векторов, заданных координатами

Пусть векторы а и b заданы своими координатами в ортонормированном базисе i, j, k:

Рассмотрим скалярное произведение векторов а и b:

Пользуясь распределительным свойством скалярного произведения, находим

То есть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат.

Пример:

Найти скалярное произведение векторов n = 4i — 2j + k и b = 6i + 3j + 2k.

(a, b) = 4 • 6 + (-2) • 3 + 1 • 2 = 20.

Скалярное произведение вектора на себя называется скалярным квадратом:

(а, а) = а 2 .

Применяя формулу (4) при b = а, найдем (5)

С другой стороны,

так что из (5) следует, что (6)

— в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат.

Косинус угла между векторами. Направляющие косинусы

Согласно определению

(а, b) = |а| • |b| • cos φ,

где φ — у гол между векторами а и b. Из этой формулы получаем
(7)

(предполагается, что векторы а и b — ненулевые).

Пример:

Найти угол между векторами a = <2, -4,4,>и d = <-3,2,6>. Пользуясь формулой (8), находим

или, в координатной записи, (9)

где а есть угол, образованный вектором я с осью Ох. Аналогично получаем формулы

Формулы (9)-(11) определяют направляющие косинусы вектора а, т. е. косинусы углов, образуемых вектором n с осями координат (рис. 29).

Пример:

Найти координаты единичного вектора n°. По условию | n°| = 1. Пусть n° = zi+ yj+ zk. Тогда

Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат:

Пример:

Пусть единичный вектор n° ортогонален оси z:

(рис. 30). Тогда его координаты г и у соответственно равны

x=cos φ, y = sin φ.

Векторное произведение векторов

Определение:

Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [a, b] (или a х b), такой, что

1) длина вектора [а, b] равна |а| • |Ь| • sin φ, где φ — угол между векторами а и b (рис.31);

2) вектор [а, b] перпендикулярен векторам а и b, т.е. перпендикулярен плоскости этих векторов;

3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от л к Ь виден происходящим против часовой стрелки (рис. 32).

Иными словами, векторы я, b и [a, b] образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы a и b коллинеарны, будем считать, что [a, b] = 0.

По определению длина векторного произведения (1)

численно равна площади параллелограмма (рис.33), построенного на перемножаемых векторах a и b как на сторонах:

|[a, b]| = .

Свойства векторного произведения

  1. Векторное произведение равно нулевому вектору тогда и только тогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы я и b коллинеарны, то угол между ними равен либо 0, либо тг).

Это легко получить из того, что |[a, b]| = |a| • |b| • sin φ.

Если считать нулевой вектор коллинеарным любому вектору, то условие коллинеарности векторов a и b можно выразить так

2. Векторное произведение антикоммутативно, т. е. всегда (2)

В самом деле, векторы [а, b] и [b, а] имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [a, b] кратчайший поворот от a к b будет виден происходящим против часовой стрелки, а из конца вектора [b, a] — почасовой стрелке (рис. 34).

3. Векторное произведение обладает распределительным свойством по отношению к сложению

4. Числовой множитель λ можно выносить за знак векторного произведения

Векторное произведение векторов, заданных координатами

Пусть векторы a и b заданы своими координатами в базисе i,j, k: а = < х1, у1, z1>, b = < х2, у2, z2 >. Пользуясь распределительным свойством векторного произведения, находим (3)

Выпишем векторные произведения координатных ортов (рис. 35):

Поэтому для векторного произведения векторов a и b получаем из формулы (3) следующее выражение (4)

Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: (5)

Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры:

  1. Найти площадь параллелограмма, построенного на векторах а = i + j- k, b = 2i + j- k.

Искомая площадь = |[а, b]. Поэтому находим

2. Найти площадь треугольника ОАВ (рис.36).

Ясно, что площадь S∆ треугольника ОАВ равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение [a, b] векторов a= и b = , получаем

Замечание:

Векторное произведение не ассоциативно, т.е. равенство [[а, b], с] = [а, b,с]] в общем случае неверно. Например, при а = i, b = j. c= j имеем

Смешанное произведение векторов

Пусть имеем три вектора а, b и с. Перемножим векторы а и b векторно. В результате получим вектор [а, b). Умножим его скалярно на вектор с:

([a, b], с).

Число ([а, b], с) называется смешанным произведением векторов а, b, с и обозначается символом (а, b, с).

Геометрический смысл смешанного произведения

Отложим векторы а, b и с от общей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, b], с) = 0. Это следует из того, что вектор [а, b] перпендикулярен плоскости, в которой лежат векторы а и b, а значит, и вектору с.

Если же точки О, А, В, С не лежат в одной плоскости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем

где — площадь параллелограмма OADB, а с — единичный вектор, перпендикулярный векторам а и b и такой, что тройка а, b, с — правая, т. е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 6).

Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что

Число ргe с равно высоте h построенного параллелепипеда, взятого со знаком « + », если угол ip между векторами с и с острый (тройка а, b, с — правая), и со знаком «-», если угол — тупой (тройка а, b, с — левая), так что

Тем самым, смешанное произведение векторов a, b и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, b, с — правая, и -V, если тройка а, b, с — левая.

Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая те же векторы a, b и с в любом другом порядке, мы всегда будем О получать либо +V, либо -V. Знак произведения будет зависеть лишь от того, какую тройку образуют перемножаемые векторы — правую или левую. Если векторы а, b, с образуют правую тройку, то правыми будут также тройки b, с, а и с, а, b. В то же время все три тройки b, а, с; а, с, b и с, b, а — левые. Тем самым,

(а, b, с) = (b, с, а) = (с, a,b) = -(b, а, с) = -(а, с, b) = -(с, b, а).

Еще раз подчеркнем, что смешанное произведение векторов равно нулю тогда и только тогда, когда перемножаемые векторы а, b, с компланарны:

Смешанное произведение в координатах

Пусть векторы а, b, с заданы своими координатами в базисе i, j, k:

Найдем выражение для их смешанного произведения (а, b, с). Имеем

— смешанное произведение векторов, заданных своими координатами в базисе i, j, k, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов.

Пример:

Проверить, компланарны ли векторы

Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель

Разлагая его по элементам первой строки, получим

Двойное векторное произведение

Двойное векторное произведение [а, [b, с]] представляет собой вектор, перпендикулярный к векторам а и [b, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула

[а, [b, с]] = b(а, с) — с(а, b).

Решение заданий и задач по предметам:

Дополнительные лекции по высшей математике:

Образовательный сайт для студентов и школьников

Копирование материалов сайта возможно только с указанием активной ссылки «www.lfirmal.com» в качестве источника.

© Фирмаль Людмила Анатольевна — официальный сайт преподавателя математического факультета Дальневосточного государственного физико-технического института

[spoiler title=”источники:”]

http://lfirmal.com/vektornaya-algebra-osnovnyie-ponyatiya-i-opredeleniya/

[/spoiler]

Содержание:

  • Формула
  • Примеры нахождения координат вектора по точкам

Формула

Чтобы найти координаты вектора $overline{A B}$ на плоскости, если он задан координатами своих начала $Aleft(x_{1} ; y_{1}right)$ и конца $Bleft(x_{2} ; y_{2}right)$, необходимо от координат конца отнять соответствующие координаты начала, то есть

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1}right)$$

Чтобы найти координаты вектора $overline{A B}$, заданного в пространстве координатами $Aleft(x_{1} ; y_{1} ; z_{1}right)$ и $Bleft(x_{2} ; y_{2} ; z_{2}right)$, необходимо, по аналогии с плоским случаем, из координат конца вычесть координаты начала:

$$overline{A B}=left(x_{2}-x_{1} ; y_{2}-y_{1} ; z_{2}-z_{1}right)$$

Примеры нахождения координат вектора по точкам

Пример

Задание. Даны точки
$A(4;-1)$ и $B(2;1)$. Найти координаты векторов $overline{A B}$ и
$overline{B A}$

Решение. Для вектора $overline{A B}$ точка $A$ является началом, а точка $B$ – концом. Тогда координаты вектора $overline{A B}$ равны

$$overline{A B}=(2-4 ; 1-(-1))=(-2 ; 2)$$

Для вектора точка
$B$ является началом, а точка
$A$ – концом. Тогда координаты вектора $overline{B A}$ равны

$$overline{B A}=(4-2 ;-1-1)=(2 ;-2)$$

Ответ. $overline{A B}=(-2 ; 2), overline{B A}=(2 ;-2)$

Пример

Задание. Даны три точки в пространстве точки $A(1;-2;0,5)$, $B(3;2;1,5)$ и $C(0;-1;1)$. Найти координаты векторов
$overline{A B}$,
$overline{A C}$,
$overline{B C}$

Решение. Для искомого вектора
$overline{A B}$ точка
$A$ является началом, а точка
$B$ – концом. Тогда координаты вектора
$overline{A B}$ соответственно равны:

$$overline{A B}=(3-1 ; 2-(-2) ; 1,5-0,5)=(2 ; 4 ; 1)$$

Для вектора $overline{A C}$ точка
$A$ является началом, а точка
$C$ – концом. Тогда его координаты соответственно равны

$$overline{A C}=(0-1 ;-1-(-2) ; 1-0,5)=(-1 ; 1 ; 0,5)$$

Для вектора $overline{B C}$ точка
$B$ является началом, а точка
$C$ – концом. Его координаты равны

$$overline{B C}=(0-3 ;-1-2 ; 1-1,5)=(-3 ;-3 ;-0,5)$$

Ответ. $overline{A B}=(2 ; 4 ; 1), overline{A C}=(-1 ; 1 ; 0,5), overline{B C}=(-3 ;-3 ;-0,5)$

Читать дальше: как найти сумму векторов.

  • Как найти сумму векторов
  • Как найти скалярное произведение векторов
  • Как найти векторное произведение векторов
  • Как найти смешанное произведение векторов
  • Как найти вектор коллинеарный вектору
  • Как найти вектор перпендикулярный вектору
  • Как найти орт вектора
  • Как найти разность векторов
  • Как найти проекцию вектора
  • Как найти длину вектора
  • Как найти модуль вектора
  • Как найти координаты вектора
  • Как найти направляющие косинусы вектора
  • Как найти угол между векторами
  • Как найти косинус угла между векторами

Вектором называется направленный отрезок. Вектор обозначается либо символом Векторная алгебра: основные понятия и определения (Векторная алгебра: основные понятия и определения — точка начала, Векторная алгебра: основные понятия и определения — точка конца вектора), либо Векторная алгебра: основные понятия и определения. В математике обычно рассматриваются свободные векторы, то есть векторы, точка приложения которых может быть выбрана произвольно.

Векторная алгебра: основные понятия и определения

2. Длиной (модулем) вектора Векторная алгебра: основные понятия и определения называется длина отрезка Векторная алгебра: основные понятия и определения. Модуль вектора обозначается Векторная алгебра: основные понятия и определения.

3.Вектор называется единичным, если его длина равна «1»; единичный вектор Векторная алгебра: основные понятия и определения направления вектора Векторная алгебра: основные понятия и определения называется ортом вектора Векторная алгебра: основные понятия и определения и определяется по формуле Векторная алгебра: основные понятия и определения.

4. Вектор называется нулевым, если его начало и конец совпадают Векторная алгебра: основные понятия и определения; любое направление можно считать направлением нулевого вектора.

5. Векторы называются коллинеарными, если они лежат либо на одной прямой, либо на параллельных прямых. Коллинеарность векторов обозначается: Векторная алгебра: основные понятия и определения. Необходимым и достаточным условием коллинеарности векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения является существование такого числа Векторная алгебра: основные понятия и определения, что Векторная алгебра: основные понятия и определения.

6. Два вектора называются равными, если они коллинеарны, имеют одинаковую длину и направление.

7. Вектор Векторная алгебра: основные понятия и определения называется противоположным вектору Векторная алгебра: основные понятия и определения, если модули их равны, а направления противоположны.

8. Векторы называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.

Для решения задач необходимо уметь выполнять линейные операции над вектором в геометрической форме, то есть над вектором, как над
направленным отрезком: сложение, вычитание векторов и умножение вектора на число.

9. Сложение двух векторов можно выполнить по правилу параллелограмма (рис. 1) или по правилу треугольника (рис. 2).

Векторная алгебра: основные понятия и определения

При сложении более двух векторов, лежащих в одной плоскости, используется правило «замыкающей линии многоугольника» (рис. 3).

Векторная алгебра: основные понятия и определения

При сложении трех некомпланарных векторов удобно пользоваться правилом «параллелепипеда» (рис. 4).

Векторная алгебра: основные понятия и определения

10. Действие вычитания двух векторов связано с действием сложения (рис.5).

Векторная алгебра: основные понятия и определения

Разностью двух векторов называется вектор, проведенный из конца вычитаемого в конец уменьшаемого. Заметим, что разностью является вектор, служащий второй диагональю параллелограмма.

Разность можно также представить в виде сложения с противоположным вектором (рис. 6).

Векторная алгебра: основные понятия и определения

11. Произведением вектора Векторная алгебра: основные понятия и определения на число Векторная алгебра: основные понятия и определения называется вектор Векторная алгебра: основные понятия и определения, который имеет :

12. Для решения задач полезно знать также следующие законы и свойства:

  • переместительный: Векторная алгебра: основные понятия и определения
  • сочетательный: Векторная алгебра: основные понятия и определения
  • распределительный: Векторная алгебра: основные понятия и определения

Примеры задач решаемых с применением векторной алгебры

Задача:

Пусть даны точки Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

1) Найти координаты векторов

Векторная алгебра: основные понятия и определения

2) Написать разложение этих векторов по базису Векторная алгебра: основные понятия и определения

3) Найти длины этих векторов

4) Найти скалярное произведение Векторная алгебра: основные понятия и определения

5) Найти угол между векторами Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

6) Найти разложение вектора Векторная алгебра: основные понятия и определения по базису Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

Решение:

1) Вычислим координаты векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения (нужно из координат точки его конца вычесть координаты его начала):

Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения, аналогично, Векторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения

2) Векторная алгебра: основные понятия и определения

3)

Векторная алгебра: основные понятия и определения

4) Для вычисления угла между векторами воспользуемся формулой:

Векторная алгебра: основные понятия и определения

5) Разложить вектор Векторная алгебра: основные понятия и определения по векторам Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения — это значит представить вектор Векторная алгебра: основные понятия и определения в виде линейной комбинации векторов Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения, т. е.

Векторная алгебра: основные понятия и определения, где Векторная алгебра: основные понятия и определения. Имеем Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения, но у равных векторов соответственно равны координаты, следовательно, получим систему, из которой найдем Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

а). Даны векторы Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения в некотором базисе. Показать, что векторы Векторная алгебра: основные понятия и определения образуют базис и найти координаты вектора Векторная алгебра: основные понятия и определения в этом базисе.

Решение:

Три вектора образуют базис, если Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Найдем координаты вектора Векторная алгебра: основные понятия и определения в базисе Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Два вектора равны, если их соответствующие координаты равны.

Векторная алгебра: основные понятия и определения

Решим систему методом Крамера:

Векторная алгебра: основные понятия и определения

Ответ: Векторная алгебра: основные понятия и определения.

Векторная алгебра: основные понятия и определения

Задача:

Даны координаты вершин тетраэдра Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения и Векторная алгебра: основные понятия и определения. Найти: 1) координаты точки пересечения медиан треугольника Векторная алгебра: основные понятия и определения; 2) уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно медиане, проведенной из вершины Векторная алгебра: основные понятия и определения треугольника Векторная алгебра: основные понятия и определения; 3) координаты точки, симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определения. Сделать чертёж.

Решение:

1) Найдем координаты т. Векторная алгебра: основные понятия и определения середины отрезка Векторная алгебра: основные понятия и определения (рис. 16): Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения

Векторная алгебра: основные понятия и определения

Точка Векторная алгебра: основные понятия и определения пересечения медиан треугольника делит медиану Векторная алгебра: основные понятия и определения в отношении Векторная алгебра: основные понятия и определения, считая от вершины Векторная алгебра: основные понятия и определения. Найдем координаты точки Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

2) Найдем направляющий вектор прямой Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения. Уравнение прямой, проходящей через вершину Векторная алгебра: основные понятия и определения параллельно прямой Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

3) Найдем уравнение плоскости Векторная алгебра: основные понятия и определения:

Векторная алгебра: основные понятия и определения

Найдем каноническое уравнение прямой, перпендикулярной плоскости Векторная алгебра: основные понятия и определения и проходящей через т. Векторная алгебра: основные понятия и определения: Векторная алгебра: основные понятия и определения. Запишем каноническое уравнение прямой в параметрическом виде: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения.

Найдем координаты точки Векторная алгебра: основные понятия и определения пересечения плоскости Векторная алгебра: основные понятия и определения и найденной прямой: Векторная алгебра: основные понятия и определения Векторная алгебра: основные понятия и определения

Координаты точки Векторная алгебра: основные понятия и определения симметричной точке Векторная алгебра: основные понятия и определения относительно плоскости Векторная алгебра: основные понятия и определенияВекторная алгебра: основные понятия и определения.

Ответ: 1) координаты точки пересечения медиан Векторная алгебра: основные понятия и определения уравнение прямой Векторная алгебра: основные понятия и определения; 3) координаты симметричном точки Векторная алгебра: основные понятия и определения.

На этой странице размещён краткий курс лекций по высшей математике для заочников с теорией, формулами и примерами решения задач:

Высшая математика краткий курс лекций для заочников

Возможно вам будут полезны эти страницы:

Векторная алгебра — решение заданий и задач по всем темам с вычислением

Понятие вектора. Линейные операции над векторами

1°. Любые две точки Векторная алгебра пространства, если они упорядочены (например, А является первой, а В — второй точкой), определяют отрезок вместе с выбранным направлением (а именно, от A к В). Направленный отрезок называется вектором. Вектор с началом в A и концом в В обозначается Векторная алгебра или Векторная алгебра Длина вектора, обозначаемая Векторная алгебра , АВ или Векторная алгебра а, называется также модулем вектора. Чтобы найти координаты вектора, нужно из координат конца вектора вычесть одноименные координаты начала: Векторная алгебра Тогда длина вектора найдется так:

Векторы, расположенные на одной прямой или на параллельных прямых, называются коллинеарными.

Два вектора Векторная алгебра называются равными, если они коллинеарны, имеют одинаковые модули и направления. В этом случае пишутВекторная алгебра Равные векторы имеют равные координаты.

Векторы Векторная алгебраназываются противоположными, если они коллинеарны, имеют одинаковые длины и противоположные направления: Векторная алгебра

Вектор называется нулевым, если его модуль равен нулю, и обозначается Векторная алгебра

2°. Линейными называются действия сложения, вычитания векторов и умножения вектора на число.

1.Если начало Векторная алгебра совмещено с концом Векторная алгебра то начало Векторная алгебрасовпадает с началом Векторная алгебра а конец — с концом Векторная алгебра (рис. 3.1).

2.Если начала векторов Векторная алгебра совмещены, то начало Векторная алгебра совпадает с концом Векторная алгебра, а конец Векторная алгебра совпадает с концом Векторная алгебра (рис. 3.2).

3.При умножении вектораВекторная алгебра на число (скаляр) Векторная алгебрадлина вектора умножается на Векторная алгебра, а направление сохраняется, еслиВекторная алгебра и изменяется на противоположное, если Векторная алгебра (рис. 3.3).

Вектор Векторная алгебраназывается ортом, или единичным вектором вектора Векторная алгебра его длина равна единице:Векторная алгебра

3°. Запись ci — Векторная алгебра означает, что вектор Векторная алгебраимеет координатыВекторная алгебра или Векторная алгебра разложен по базису Векторная алгебра — орты осей Ох, Оу и Oz пространственной системы координат Oxyz). При этом

Векторная алгебра

4°. Числа Векторная алгебра называются направляющими косинусами вектора Векторная алгебра — углы между вектором Векторная алгебра и координатными осями Ох, Оу, Oz соответственно. Единичный вектор Векторная алгебра — орт вектора Векторная алгебра. Для любого вектора справедливо: Векторная алгебра

5°. Линейные операции над векторами, которые заданы своими координатами, определяются так: пусть Векторная алгебратогда

Векторная алгебра

Следовательно, при сложении векторов складываются их соответствующие координаты, а при умножении вектора на число умножаются на число все координаты вектора.

6°. Необходимое и достаточное условие коллинеарности векторов Векторная алгебра, устанавливаемое равенством Векторная алгебра может быть записано соотношениями Векторная алгебра из которых следует пропорциональность их координат: Векторная алгебра

Если один из членов какого-нибудь из этих отношений равен нулю, то и второй член того же отношения должен быть нулем. Геометрически это значит, что в этом случае оба вектора перпендикулярны соответствующей координатной оси (например, если Векторная алгебра то векторы Векторная алгебра).

7°. Система векторов Векторная алгебра называется линейно независимой, если равенство

Векторная алгебра

(Векторная алгебра — действительные числа) возможно только при Векторная алгебра Если же равенство (1) возможно при некотором нетривиальном наборе Векторная алгебра то система этих векторов называется линейно зависимой. Любой вектор линейно зависимой системы линейно выражается через остальные.

Примеры с решениями

Пример:

Доказать, что треугольник с вершинами в точках A(1,2), B(2,5), С(3,4) прямоугольный.

Решение:

Построим векторы, совпадающие со сторонами треугольника (см. п. 1°): Векторная алгебра (рис. 3.4).

Векторная алгебра

Найдем длины сторон: Векторная алгебра Векторная алгебра
Нетрудно видеть, что Векторная алгебра Следовательно, треугольник ABC прямоугольный с гипотенузой Векторная алгебра и катетами Векторная алгебра

Пример:

Проверить, что точки А( 2,-4,3), В(5, —2,9), С( 7,4,6) и D(6,8, -3) являются вершинами трапеции.

Решение:

Составим векторы-стороны с целью обнаружения коллинеарности векторов (в трапеции ВС || AD) (рис. 3.5):

Векторная алгебра

Имеем Векторная алгебра значит, ABCD — трапеция.

Пример:

Найти орт и направляющие косинусы вектора Векторная алгебра

Решение:

Имеем Векторная алгебра В соответствии с п. 3°, 4°

Векторная алгебраи направляющие косинусы вектора Векторная алгебраВекторная алгебра причем Векторная алгебра

Пример:

Определить точку В, которая является концом вектора Векторная алгебра, если его начало совпадает с точкой

Решение:

Пусть точка В имеет координаты B(x,y,z) (рис. 3.6). Тогда координа- ^ ты вектора (п. 1°)

Векторная алгебра

Векторная алгебра

Следовательно, Векторная алгебра Ответ. В(5, -5,3).

Пример:

Вектор Векторная алгебра разложить по векторам

Векторная алгебра

Решение:

Необходимо найти такие числа х, у, z, что Векторная алгебрат.е.

Векторная алгебра

Имея в виду, что при сложении векторов складываются их координаты и равные векторы имеют равные координаты, приходим к системе уравнений

Векторная алгебра

из которой

Векторная алгебра

Ответ. Векторная алгебра

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно независима.

Решение:

В данном случае равенство (1) имеет вид Векторная алгебра, или Векторная алгебра Отсюда получаем систему уравнений

Векторная алгебра

из которой следует, что Векторная алгебра Это подтверждает линейную независимость данных векторов.

Пример:

Показать, что система векторов Векторная алгебраВекторная алгебра линейно зависима.

Решение:

Равенство (1) равносильно системе уравнений

Векторная алгебра

Она имеет ненулевое решение, например, Векторная алгебра Таким образом, Векторная алгебра Отсюда видно, что Векторная алгебрат.е. вектор Векторная алгебра линейно выражается через Векторная алгебра Очевидно, что Векторная алгебра можно выразить через Векторная алгебра— через Векторная алгебра

Скалярное произведение векторов

1°. Скалярным произведением двух ненулевых векторов а и b называется число, равное произведению их длин на косинус угла Векторная алгебра между ними:

Векторная алгебра

Из Векторная алгебра (рис. 3.7) имеемВекторная алгебра (Векторная алгебра — проекция вектораВекторная алгебра на направление вектора Векторная алгебра).

Итак, Векторная алгебра

2°. Если

Векторная алгебра

т.е. скалярное произведение векторов равно сумме произведений одноименных координат этих векторов.

При этом Векторная алгебра если же Векторная алгебра, т. е. Векторная алгебрапоскольку cos 90° = 0 (условие перпендикулярности двух векторов).

3°. Из определения скалярного произведения следует формула для вычисления угла между двумя векторами:

Векторная алгебра

Примеры с решениями

Пример:

Перпендикулярны ли векторы Векторная алгебра если Векторная алгебра

Решение:

Условие перпендикулярности векторов (п. 2°) Векторная алгебра в нашем случае

Векторная алгебра

Ответ. Да.

Пример:

Найти проекцию вектора Векторная алгебра на направление вектора Векторная алгебра

Решение:

Имеем Векторная алгебра (п. 1°). Подставив сюда выражение для Векторная алгебра из п. 3°, получим

Векторная алгебра

Ответ Векторная алгебра

Пример:

Зная векторы, совпадающие с двумя сторонами: Векторная алгебра и Векторная алгебра найти внутренние углы треугольника ABC.

Решение:

Имеем (рис. 3.8)

Векторная алгебра

Векторная алгебра

Векторная алгебра

При помощи таблиц находим Векторная алгебра Для нахождения других углов нам понадобится вектор Векторная алгебракоторый является суммой Векторная алгебра : Векторная алгебра поэтому Векторная алгебра

Векторная алгебра

Ответ. 123° 10′, 19°29′, 37°21′.

Пример:

Найти координаты вектора Векторная алгебра если Векторная алгебра где Векторная алгебраи Векторная алгебра

Решение:

На рис. 3.9 имеем Векторная алгебра Из условий перпендикулярности векторов (п. 2°) имеем Векторная алгебраПоложим Векторная алгебра Условие задачи перепишем в виде Рис. 3.9 системы

Векторная алгебра

Векторная алгебра

Векторное произведение векторов

1°. Векторы Векторная алгебра приведенные к одному началу, образуют правую (левую) тройку при условии: если смотреть из конца вектора Векторная алгебра на плоскость векторов Векторная алгебра то кратчайший поворот от Векторная алгебра совершается против (по) часовой стрелки (рис. 3.10).

Векторная алгебра

2°. Векторным произведением ненулевых векторов Векторная алгебра называется вектор Векторная алгебра, обозначаемый Векторная алгебра удовлетворяющий следующим трем условиям.

1)Векторная алгебра вектор Векторная алгебра перпендикулярен плоскости векторов Векторная алгебра

2) Вектор Векторная алгебра направлен так, что векторы Векторная алгебра образуют правую тройку.

3) Векторная алгебра т.е. его длина численно равна площади параллелограмма, построенного на векторах Векторная алгебра (рис. 3.11), таким образом, Векторная алгебра

Если векторы Векторная алгебра коллинеарны, то под Векторная алгебра понимается нулевой вектор:Векторная алгебра

3°. Если известны координаты векторов-сомножителей Векторная алгебра то для отыскания координат векторного произведения служит формула

Векторная алгебра

в которой определитель следует разложить по элементам первой строки.

Примеры с решениями

Пример:

Найти площадь треугольника, вершины которого находятся в точках А(1,2,3), В{3,2,1), С(1,0,1).

Решение:

Найдем координаты векторов Векторная алгебраОпределим координаты векторного произведения Векторная алгебра (рис. 3.12):

Векторная алгебра

Найдем длину этого вектора, которая равна численно площади параллелограмма S (п. 2°): Векторная алгебра Площадь треугольника Векторная алгебра равна Векторная алгебра

Векторная алгебра

Пример:

Построить параллелограмм на векторах Векторная алгебра и Векторная алгебра вычислить его площадь и высоту, опущенную на Векторная алгебра.

Сделаем чертеж (рис. 3.13). Имеем Векторная алгебра Отдельно вычисляем векторное произведение:

Векторная алгебра

Следовательно,

Векторная алгебра

Векторная алгебра

Смешанное произведение векторов

1°. Смешанным произведением трех ненулевых векторов Векторная алгебра называется число, равное скалярному произведению двух векторов, один из которых — векторное произведение Векторная алгебра, а другой — вектор Векторная алгебра. Обозначение: Векторная алгебра Если Векторная алгебра образуют правую тройку, то Векторная алгебра ЕслиВекторная алгебра образуют левую тройку, то Векторная алгебра

Модуль смешанного произведения векторовВекторная алгебра равен объему параллелепипеда (рис. 3.14), построенного на этих векторах,Векторная алгебра Условие Векторная алгебра равносильно тому, что векторы Векторная алгебра расположены в одной плоскости, т.е. компланарны. Имеет место равенство

Векторная алгебра

Объем тетраэдра с вершинами в точках Векторная алгебраВекторная алгебра можно вычислить по формуле Векторная алгебрагде

Векторная алгебра

Векторная алгебра

2°. Условие Векторная алгебра равносильно условию линейной независимости Векторная алгебра, а тогда любой вектор Векторная алгебра линейно выражается через них, т. е. Векторная алгебра Для определения х, у, z следует решить соответствующую систему линейных уравнений

Примеры с решениями

Пример:

Найти объем параллелепипеда, построенного на векторах Векторная алгебра

Решение:

Искомый объем Векторная алгебра Поскольку

Векторная алгебра

Пример:

В точках 0(0,0,0), А(5,2,0), В(2,5,0) и С(1,2,4) находятся вершины пирамиды. Вычислить ее объем, площадь грани ABC и высоту пирамиды, опущенную на эту грань.

Решение:

1) Сделаем схематический чертеж (рис. 3.15).

2) Введем векторы Векторная алгебра Векторная алгебра.Объем пирамиды ОАВС (тетраэда) равен

Векторная алгебра

3) Площадь грани ABC

Векторная алгебра

4) Объем пирамиды Векторная алгебра отсюда Векторная алгебра
Ответ. Векторная алгебра

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Основные понятия векторной алгебры

Прямоугольные декартовы координаты

Координатная ось

Пусть на плоскости или в пространстве задана произвольная прямая L: Ясно, что по этой прямой L сы можем перемещаться в oднoм из двух противоположных направлений. Выбор любого (одного) из этих направлений будем называть ориентацией прямой L.

Оnределение:

Прямая с заданной на ней ориентацией называется осью. На чертеже ориентация оси указывается стрелкой (рис. 1 ) . Фиксируем на оси Векторная алгебра некоторую точку О и выберем какой-нибудь отрезок а, доложив по определению его длину равной единице (рис. 2).

Пусть М — произвольная точка оси Векторная алгебра. Поставим этой точке в соответствие число х по следующему прав илу: х равно расстоюiию между точками О и М, взятому со знаком плюс или со знаком минус н зависимости от того, совпадает ли направление движения от точки О к точке М с заданным направлением или противоположно ему (рис. 3).

Векторная алгебра

Оnределение:

Ось Векторная алгебра с точкой начала отсчета О и масштабными отрезками а называется координатной осью, а число х, вычисляемое по указанному правилу, называется координатой точки М. Обозначение: М (х).

Прямоугольные декартовы координаты на плоскости

Пусть П — произвольная плоскость. Возьмем на ней некоторую точку О и проведем через эту точку взаимно перпендикулярные прямые L 1 и L 2. Зададим на каждой из nрямых L 1 и L 2 ориентацию и выберем единый масштабный отрезок а. Тогда эти прямые nревратятся в координатные оси с общей точкой отсчета О (рис. 4).

Векторная алгебра

Назовем одну из координатных осей осью абсцисс (осью Ох), друrую —осью ординат (осью Оу) (рис. 5). Точка О называется началом координат. Пусть М — произвольная точка плоскости П (рис. 6). Проведем через точку М прямые, перпендикулярные координатным осям, и поставим ей в соответствие упорядоченную пару чисел (х, у) по следующему nравилу:

Векторная алгебра

Числа х и у называются прямоугольными декартовыми при этом х называется ее абсциссой, а у — ординатой. координатами точки М; Обозначение: М(х, у). Чтобы кратко охарактеризовать описанную конструкцию, говорят, что на плоскости П задана прямоугольная декартова система координат Ох у. Координатные оси разбивают плоскость на четыре части, называемые четвертями или квадрантами. На рисунке и в таблице показано, как эти квадранты нумеруются (рис. 7).

Векторная алгебра

Замечание:

Масштабные от резки на координатных осях могут быть и разной длины. В этом случае координатная система называется просто прямоугольной.

Прямоугольные декартовы координаты в пространстве

Возьмем в пространстве некоторую точку О и проведем через нее три взаимно перпендикулярные прямые L 1 , L 2 и L 3 . Выберем на каждой из nрямых ориентацию и единый масштаб. Прямые L 1 , L 2 и L 3 превратятся в координатные оси с общей точкой отсчета О (рис. 8).

Векторная алгебра

Назовем одну из этих осей осью абсцисс (осью Ох), вторую — осью ординат (осью Оу) и третью — осью аппликат (осью Oz) (рис. 9). Точка О называется началом координат. Пусть М — nроизвольная точка (рис. 10). Проведем через точку М nлоскости, перпендикулярные координатным осям, и поставим ей в соответстnие упорядоченную тройку чисел (х, у, z) по следующему правилу:

Векторная алгебра

Числа х, у и z называются прямоугольными декартовыми координатами точки М; при этом х называется абсциссой точки М, у — ее ординатой, а z —аппликатой. Обозначение: М(х, у, z). Таким образом, в пространстве введена прямоугольная декартова система координат.

Оnределение:

Плоскость, проходящая через любую пару координатных осей, называется координатной плоскостью.

Координатных плоскостей три: Оху, Oyz и Oxz. Эти плоскости разбивают пространство на восемь частей — октантов. 1 .4. Простейшие задачи аналитической геометрии А. Расстояние между точками Пусть М 11 ) и М 22 )- две точки на координатной оси. Тогда расстояние d между ними вычисляется по формуле

Векторная алгебра

Если на плоскости задана прямоугольная декартова система координат Оху, то расстояние d между любыми двумя точками М 11 , у1 и М22 , y2) вычисляется по следующей формуле

Векторная алгебра

Рассмотрим прямоугольный треугольник ∆MM1M2 (pиc. l l). По теореме Пифагора

Векторная алгебра

Так как расстояние d между точками M 1 и M 2 равно длине отрезка M1M2 а |M1M| = |x 2 — x 1|, |MM2| = |y 2 — y 1|, то отсюда получаем, что

Векторная алгебра

Замечая, что

Векторная алгебра

,и извлекая из обеих частей равенства квадратный корень, приходим к требуемой формуле .

Замечание:

Расстояние между точками Векторная алгебра в пространстве вычисляется по следующей формуле

Векторная алгебра

Векторная алгебра

Задача:

Написать уравнение окружности радиуса т с центром в точке Р(а, b).

Пусть М(х, у) — точка окружности (рис. 12). Это означает, что |M P| = r. Заменим |M P|его выражением

Векторная алгебра

и возведем обе части полученного равенства в квадрат:

Векторная алгебра

Это есть каноническое уравнение окружности радиуса r с центром в точке Р(а, b) .

Задача:

Пусть F л (-с, 0) и F n (c, 0) -фиксированные точки плоскости, а -заданное число (а > с ≥ 0). Найти условие, которому удовлетворяют координаты х и у точки М, обладающей следующим свойством: сумма расстояний от точки М до Fл и до F n равна 2а.

Вычислим расстояния между точками М и F л и между точками М и F n . Имеем

Векторная алгебра

(рис. 13). Отсюда

Векторная алгебра

Перенесем второй корень в правую часть

Векторная алгебра

Возводя обе части в квадрат, после простых преобразований получим

Векторная алгебра

С целью дальнейших упрощений вновь возводим обе части в квадрат. В результате nриходим к равенству

Векторная алгебра

Полагая b 2 = а 2 — с 2 и деля обе части nоследнего соотноwения на а 2 b2 , nолучаем уравнение эллипса

Векторная алгебра

(см. главу 111) .

Деление отрезка в данном отношении:

Пусть М11 , y1) и М22 , y2) — различные точки плоскости. Пусть, далее, точка М(х, у) лежит на отрезке М1М2 и делит его в отношении λ 1 : λ 2 , т. е.

Векторная алгебра

Требуется выразить координаты х и у этой точки через координаты концов отрезка М1М2 и числа λ 1 и λ 2 . Предположим сначала, что отрезок М1М2 не параллелен оси ординат Оу (рис. 14). Тогда

Векторная алгебра

Так как

Векторная алгебра

то из последних двух соотношений получаем, что

Векторная алгебра
Векторная алгебра

Точка М лежит между точками М1 и М2 , поэтому либо х 1 < х < х 2 , либо х 1 > х > х 2 . В любом из этих случаев разности х1 — х и х — х 2 имеют одинаковые знаки. Это позволяет переписать последнее равенство в следующей форме

Векторная алгебра

Отсюда

Векторная алгебра

В случае, когда отрезок М1М2 параллелен оси Оу, х 1 = х 2 = х. Заметим, что тот же результат дает формула (*), если nоложить в ней х 1 = х 2 . Справедливость формулы

Векторная алгебра

доказывается аналогичным рассуждением .

Задача:

Найти координаты центра тяжести М треугольника с вершинами в точках . М1 ( х 1 , у 1 ), М2 ( х 2 , у 2 ) и М3 ( х 3 , у 3 ). Восnользуемся тем, что центр тяжести треугольника совпадает с точкой пересечения его медиан. Точка М делит каждую медиану в отношении 2 : 1, считая от вершины (рис. 15). Тем самым, ее координаты х и у можно найти по формулам

Векторная алгебра

где х’ и у’ — координаты второго конца М’ медианы М3 М’. Так как М’ — середина отрезка М1М2, то

Векторная алгебра
Векторная алгебра

Полученные соотношения позволяют выразить координаты z и у центра тяжести М треугольника ∆М1М2М3 через координаты его вершин:

Векторная алгебра

Замечание:

Если точка М(х,у,z ) делит отрезок с концами М1( х1, у1, z1) и М2( х2, у2, z2) в отношении λ1 : λ2, то ее координаты вычисляются по формулам

Векторная алгебра

Полярные координаты

Предположим, что задана точка О, ось Векторная алгебра.содержащая точку О, и масштабный отрезок (эталон длины) (рис. 16).

Пусть М — произвольная точка плоскости, отличная от точки О (рис.17). Ее положение на плоскости однозначно определяется двумя числами: расстоянием г между точками О и М и отсчитываемым против часовой стрелки углом φ между положительным лучом оси Векторная алгебра и лучом ОМ с началом в точке О. Пару (г, φ) называют полярными координатами точки М; г — полярный радиус точки М , φ — полярный угол.

Точка О называется полюсом, Векторная алгебра — полярной осью.

Ясно, чтоВекторная алгебраЕсли точка М совпадаете полюсом, то считаем г = 0; полярный угол φ в этом случае не определен.

Таким образом, на плоскости можно задать еще одну координатную систему — полярную.

Прямоугольную декартову систему координат Оху будем называть согласованной с заданной полярной, если начало координат 0(0, 0) — полюс, ось Ох — полярная ось, а ось Оу составляете осью Ох угол, равныйВекторная алгебра. Тогда

Векторная алгебра

Векторная алгебра

(рис.18). В свою очередь Векторная алгебра

Пример:

Пусть R > О — заданное число. Множество точек плоскости, полярные координаты (г, <р) которых удовлетворяют равенству

r = R,

является окружностью радиуса R с центром в полюсе (рис. 19)

Векторная алгебра

Определители 2-го и 3-го порядков

Пусть имеем четыре числа а11, а12, а21, а22 (читается — «а-один-один», «а-один-два», «а-два-один», «а-два-два»).

Определителем второго порядка называется число

Векторная алгебра

Обозначение:

Векторная алгебра

Числа а11, а12, а21, а22 называются элементами определителя; пары элементов а11, а12 и а21, а22 образуют строки определителя, а пары элементов а11, а21 и а12, а22 — его столбцы; пара элементов а11, а22 образует главную диагональ определителя, а пара а12, а21побочную диагональ.

Тем самым, для вычисления определителя второго порядка нужно из произведения а11, а22 элементов главной диагонали вычесть произведение а12, а21 элементов его побочной диагонали (рис. 20).

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

По правилу (1) имеем

Векторная алгебра

С определителями второго порядка мы встречаемся уже при отыскании решения системы двух линейных алгебраических уравнений с двумя неизвестными

Векторная алгебра

Решая эту систему методом исключения неизвестных при условии, что

Векторная алгебра

находим

Векторная алгебра

Пусгь теперь даны девять чисел aij (i = I, 2, 3; j = I, 2, 3).

Определителем третьего порядка называется число, обозначаемое символом

Векторная алгебра

и вычисляемое по следующему правилу:

Векторная алгебра

Первый индекс i элемента aij указывает номер строки, в которой он расположен, а второй индекс j — номер столбца.

Элементы а11, а22, а33 образуют главную диагональ определителя ∆, элементы а13, а22, а31 — побочную диагональ, элементы а13, а22, а31 — побочную диагональ.

Чтобы разобраться с распределением знаков в правой части формулы (2), обратим внимание на следующее: произведение элементов а11, а22, а33 главной диагонали входит в формулу со своим знаком, также как и произведение а11, а22, а33 и а11, а22, а33 элементов, расположенных в вершинах треугольников, основания которых параллельны главной диагонали (рис. 21); с другой стороны, произведение а13, а22, а31 элементов побочной диагонали, а также произведения а12, а21, а33 и а11, а23, а32 — с противоположным знаком (рис.22). Такой подход к вычислению определителя третьего порядка называется правилом треугольника.

Векторная алгебра

Пример:

Вычислить определитель

Векторная алгебра

Применяя правило треугольника, находим

Векторная алгебра

Установим некоторые свойства определителей 3-го порядка, легко проверяемые при помощи разложений (1) и (2).

Свойство:

Величина определителя не изменится, если все его строки заменить его столбцами с теми же номерами

Векторная алгебра

Свойство:

При перестановке любых двух строк (или любых двух столбцов) определителя он изменяет свой знак на противоположный.

Свойство:

Общий множитель всех элементов одной строки (или одного столбца) определителя можно вынести за знак определителя

Векторная алгебра

Следующие три свойства определителя вытекают из свойств 1-3. Впрочем, в их справедливости можно убедиться и непосредственно, пользуясь формулами (1) и (2).

Свойство:

Если определитель имеет две равные строки (или дна равных столбца), то он равен нулю.

Свойство:

Если все элементы некоторой строки (или некоторого столбца) равны нулю, то и сам определитель равен нулю.

Свойство:

Если соответствующие элементы двух строк (или двух столбцов) пропорциональны, то определитель равен нулю.

Укажем еще один способ вычисления определителя 3-го порядка

Векторная алгебра

Минором Mij элемента aij определителя ∆ называется определитель, получаемый изданного путем вычеркивания элементов i-й строки и j-ro столбца, на пересечении которых находится этот элемент. Например, минором элемента a23 будет определитель

Векторная алгебра

Алгебраическим дополнением элемента Aij называется минор Mij — этого элемента, взятый со своим знаком, если сумма i + j номеров строки и столбца, на пересечении которых расположен элемент aij, есть число четное, и с противоположным знаком, если это число нечетное:

Векторная алгебра

Теорема:

Определитель равен сумме произведений элементов любой его строки (любого его столбца) на их алгебраические дополнения, так что имеют место следующие равенства

Векторная алгебра

Покажем, например, что

Векторная алгебра

Пользуясь формулой (2), получаем, что

Векторная алгебра

Правило (3) называется разложением определителя по элементам i-й строки, а правило (4) — разложением определителя по элементам j -го столбца.

Пример:

Вычислить определитель

Векторная алгебра

Раскладывая определитель по элементам 1-ой строки, получим

Векторная алгебра

Понятия связанного и свободного векторов

Рассмотрим две точки А и В. По соединяющему их отрезку можно перемещаться в любом из двух противоположных направлений. Если считать, например, точку А начальной, а точку В конечной, то тогда получаем направленный отрезок АВ, в другом случае — направленный отрезок В А. Направленные отрезки часто называют связанными или закрепленными векторами. На чертеже заданное направление указывается стрелкой (рис. 1).

Векторная алгебра

В случае, когда начальная и конечная точки совпадают, А = В, связанный вектор называется нулевым.

Определение:

Будем говорить, что связанные векторы АВ и CD равны, если середины отрезков AD и ВС совпадают (рис. 2).

Обозначение:

А В = CD.

Заметим, что в случае, когда точки А, В, С и D не лежат на одной прямой, это равносильно тому, что четырехугольник ABCD — параллелограмм. Ясно, что равные связанные векторы имеют равные длины.

Пример:

Рассмотрим квадрат и выберем векторы, как указано на рис.3. Векторы АВ и DC равны, а векторы ВС и DA не равны.

Укажем некоторые свойства равных связанных векторов:

  1. Каждый связанный вектор равен самому себе: АВ = АВ.
  2. Если АВ = CD, той CD = АВ.
  3. Если АВ = CD и CD = EF,то АВ = EF (рис.4).

Пусть АВ — заданный связанный вектор и С — произвольная точка. Ясно, что, опираясь на определение, всегда можно построить точку D так, чтобы

CD = АВ.

Тем самым, от каждой точки можно отложить связанный вектор, равный исходному (рис. 5).

Мы будем рассматривать свободные векторы, т. е. такие векторы, начальную точку которых можно выбирать произвольно, или, что то же самое, которые можно произвольно переносить параллельно самим себе. Ясно, что свободный вектор Векторная алгебра однозначно определяется заданием связанного вектора АВ.

Если в качестве начальных выбирать лишь те точки, которые лежат на прямой, определяемой заданным (ненулевым) связанным вектором, то мы приходим к понятию скользящего вектора (рис. 6).

Векторная алгебра

Связанные и скользящие векторы широко используются в теоретической механике.

Для обозначен ия свободных векторов будем пользоваться полужирными строчными латинскими буквами — а, b, с,… ; нулевой вектор обозначается через 0.

Пусть заданы вектор а и точка А. Существует ровно одна точка В, для которой

Векторная алгебра = а

(рис.7). Операция построения связанного вектора АВ, для которого выполняется это равенство, называется откладыванием свободного вектора а от точки А.

Векторная алгебра

Заметим, что связанные векторы, получаемые в результате описанной операции откладывания, равны между собой и, значит, имеют одинаковую дли ну. Это позволяет ввести длину свободного вектора а, которую мы будем обозначать символом |а. Длина нулевого вектора равна нулю. Если а = b, то |а| = |b; обратное неверно.

Линейные операции над векторами

Сложение векторов

Пусть заданы два вектора а и b. Возьмем какую-нибудь точку О и отложим от нее вектор a: Векторная алгебра= а. От полученной точки А отложим вектор b: Векторная алгебра = b. Полученный в результате векторВекторная алгебра называется суммой векторов а и b и обозначается через a + b (рис. 8). Этот способ построения суммы векторов называется правилом треугольника.

Нетрудно заметить, что сложение векторов коммутативно, т. е. для любых векторов а и b справедливо равенство

Векторная алгебра

Если отложить векторы а и 1» от обшей точки О и построить на них как на сторонах параллелограмм, то вектор Векторная алгебра, идущий из общего начала О в противоположную вершину параллелограмма, будет их суммой а + b (или b +а) (рис. 10). Этот способ построения суммы векторов называется правилом параллелограмма.

Векторная алгебра

Пусть заданы три вектора, например, a, b и с. Отложим от произвольной точки О вектор a: Векторная алгебра = а; от полученной точки А отложим вектор b: Векторная алгебра = b; отточки В — вектор с: Векторная алгебра= с (рис. 11). По определению суммы Векторная алгебра— а + b и Векторная алгебра = (а + b) + с (рис. 12). С другой стороны, АС = b + с и, значит, ОС = а + (Ь + с) (рис. 13). Тем самым, для любых векторов a, b и с выполняется равенство

(а +b) + с = а + (b + с),

т. е. сложение векторов ассоциативно. Опуская скобки, можно говорить о сумме трех векторов и записывать ее так:

а + b + с.

Векторная алгебра

Аналогично определяется сумма любого числа векторов: это есть вектор, который замыкает ломаную, построенную из заданных векторов. На рис. 14 показан», как построить сумму семи векторов:

Векторная алгебра

Приведенный способ сложения произвольного числа векторов называется правилом замыкающего ломаную.

Пример:

Найти сумму векторов, идущих из центра правильного шестиугольника в его вершины.

По правилу замыкающего ломаную получаем

Векторная алгебра

(рис. 15).

Векторная алгебра

Умножение вектора на число

Определение:

Свободные векторы а и b называются коллинеарными, если определяющие их связанные векторы лежат на параллельных или на совпадающих прямых (рис. 16).

Векторная алгебра

Обозначение: а||b.

Замечание:

Из определения следует, что если хотя бы один из векторов a и b нулевой, то они коллинеарны.

Если отложить коллинеарные векторы а и b от обшей точки О, Векторная алгебра = n, Векторная алгебра = Ь, то точки О, А н В будут лежать на одной прямой. При этом возможны два случая: точки А и В располагаются на этой прямой: 1) по одну сторону от точки О, 2) по разные стороны (рис. 17). В первом случае векторы а и b называются одинаково направленными, а во втором — противоположно направленными.

Векторная алгебра

Если векторы имеют равные длины и одинаково направлены, то они равны. Пусть а — вектор, λ — вещественное число.

Определение:

Произведением вектора а на число λ называется вектор b такой, что

  1. |Ь| = |λ| • |а|;

2) векторы а и b одинаково (соответственно, противоположно) направлены, если λ > 0 (соответственно, λ < 0).
Обозначение: b = λа.

При λ = 0 положим λа = 0.

Таким образом, векторы а и Ь = λа коллинеарны по определению. Верной обратное: если векторы а(а ≠ 0) и Ь коллинеарны, то можно найти число А такое, что h = λа.

Укажем основные свойства этой операции умножения вектора на число:

Векторная алгебра

(здесь λ и μ — любые действительные числа, а и Ь — произвольные векторы).
Определение:

Вектор, длина которого равна единице, называется единичным вектором, или ортом, и обозначается а° (читается: а с нуликом), |а°| = 1.
Если а ≠ 0, то вектор

Векторная алгебра

есть единичный вектор (орт) направления вектора а (рис. 18).

Векторная алгебра

Координаты и компоненты вектора

Выберем в пространстве прямоугольную декартову систему координат. Обозначим через i, j, к единичные векторы (орты) положительных направлений осей Ox, Оу, Oz (рис. 19). Рассмотрим произвольный вектор п, начало которого лежит в начале координат О, а конец — в точке А. Проведем через точку А плоскости, перпендикулярные осям Ох, Оу и Oz. Эти плоскости пересекут координатные оси в точках Р, Q и R соответственно. Из рис. 20 видно, что

Векторная алгебра

Векторы Векторная алгебра коллинеарны соответственно единичным векторам i, j, k,

Векторная алгебра

поэтому найдутся числа х, у, z такие, что

Векторная алгебра

и, следовательно,

а = xi + yj + zk. (2)

Формула (2) называется разложением вектора а по векторам i, j, к. Указанным способом всякий вектор может быть разложен по векторам i, j, k.

Векторы i, j, к попарно ортогональны, и их длины равны единице. Тройку i, j, k называют ортонормированным (координатным) базисом (ортобазисом).

Можно показать, что для каждого вектора а разложение (2) по базису i, j, к единственно, т. е. коэффициенты х, у, z в разложении вектора а по векторам i, j, к определены однозначно. Эти коэффициенты называются координатами вектора а. Они совпадают с координатами х, у, z точки А — конца вектора а. Мы пишем в этом случае

а = {х, y,z}.

Эта запись означает, что свободный вектор а однозначно задастся упорядоченной тройкой своих координат. Векторы xi, yj, zk, сумма которых равна вектору а, называются компонентами вектора а.

Векторная алгебра

Из вышеизложенного следует, что два вектора а = { х1, у1, z1 } и b = {х2, у2, z2} равны тогда и только тогда, когда соответственно равны их координаты, т. е.

Векторная алгебра

Радиус-вектором точки М(х,у, z) называется вектор г = xi + yj + zk, идущий из начала координат О в точку М (рис. 21).

Линейные операции над векторами в координатах

Пусть имеем два вектора а = { х1, у1, z1} и b = { х2, у2, z2 },так что а = х1i, у1j+ z1k. b = х2i+ у2j+z2k. На основании правила сложения векторов имеем

Векторная алгебра

или, что то же,

Векторная алгебра

— при сложении векторов их координаты попарно складываются. Аналогично получаем

Векторная алгебра

Далее,

Векторная алгебра

или, что то же,

Векторная алгебра

— при умножении вектора на число все его координаты умножаются на это число.
Пусть а = { х1, у1, z1}, b = { х2, у2, z2 } — коллинеарные векторы, причем b ≠ 0. Тогда а = μb, т.е.

Векторная алгебра

или (3)

Векторная алгебра

Обратно, если выполняются соотношения (3), то а = μb, т. е. векторы a и b коллинеарны.

Таким образом, векторы а и b коллинеарны тогда и только тогда, когда их координаты пропорциональны.

Векторная алгебра

Пример:

Найти координаты вектора Векторная алгебраначало которого находится в точке М1 ( х1, у1, z1 ). а конец — в точке M2 (х2, у2, z2).
Из рис. 22 видно, что Векторная алгебра = r2 — r1 , где r2, r1 — радиус-векторы точек М1 и M2 соответственно. Поэтому

Векторная алгебра

— координаты вектора ММг равны разностям одноименных координат конечной М2 и начальной М точек этого вектора.

Проекция вектора на ось

Рассмотрим на оси l ненулевой направленный отрезок АВ (рис.23). Величиной направленного отрезка АВ на оси l называется число, равное длине отрезка АВ, взятой со знаком «+», если направление отрезка АВ совпадаете направлением оси l, и со знаком «-», если эти направления противоположны.

Рассмотрим теперь произвольный вектор Векторная алгебра, определяемый связанным вектором АВ. Опуская из его начала и конца перпендикуляры на заданную ось l, построим на ней направленный отрезок CD (рис. 24).

Векторная алгебра

Определение:

Проекцией вектора Векторная алгебрана ось l называется величина направленного отрезка CD, построенного указанным выше способом.

Обозначение: Векторная алгебра

Основные свойства проекций

  1. Проекция вектора АВ на какую-либо ось l равна произведению длины вектора на косинус угла между осью и этим вектором (рис. 25)Векторная алгебра
  2. Проекция суммы векторов на какую-либо ось l равна сумме проекций векторов на ту же ось.

Например,

Векторная алгебра

(рис. 26).

Векторная алгебра

Скалярное произведение векторов

Пусть имеем два вектора a и b.

Определение:

Скалярным произведением вектора а на вектор b называется число, обозначаемое символом (а, b) и определяемое равенством

Векторная алгебра

(1)
где φ, или в иной записи (Векторная алгебра), есть угол между векторами а и b (рис. 27 а).
Заметив, что |b| cos φ есть проекция вектора b на направление вектора а, можем написать

Векторная алгебра

(рис. 27 б) и, аналогично,’ (2)

Векторная алгебра
Векторная алгебра

(рис. 27 в), т.е. скалярное произведение двух векторов равно длине одного из них, помноженной на проекцию на него другого вектора. В случае, если один из векторов а или b — нулевой, будем считать, что

(a, b) = 0.

Свойства скалярного произведения

  1. Скалярное произведение обращается в нуль в том и только в том случае, когда по крайней мере один из перемножаемых векторов является нулевым или когда векторы а и b ортогональны, a ⊥ b.

Это следует из формулы (1), определяющей скалярное произведение.

Поскольку направление нулевого вектора не определено, мы можем его считать ортогональным любому вектору. Поэтому указанное свойство скалярного произведения можно сформулировать так:

Векторная алгебра

2. Скалярное произведение коммутативно:

(а, b) = (b, а).

Справедливость утверждения вытекает из формулы (I), если учесть четность функции cos φ: cos(- φ) = cos φ.

3. Скалярное произведение обладает распределительным свойством относительно сложения:

(а + b, с) = (а, с) + (b, c).

Действительно,

Векторная алгебра

4. Числовой множитель А можно выносить за знак скалярного произведения

(λа, b) = (а, λb) = λ (а, b).

  • Действительно, пусть λ > 0. Тогда
Векторная алгебра

поскольку при λ > 0 углы (Векторная алгебра) и (λВекторная алгебра) равны (рис.28).

Аналогично рассматривается случай λ < 0. При λ = 0 свойство 4 очевидно.

Векторная алгебра

Замечание:

В общeм случае (а, b)c ≠ a(b, c).

Скалярное произведение векторов, заданных координатами

Пусть векторы а и b заданы своими координатами в ортонормированном базисе i, j, k:

Векторная алгебра

Рассмотрим скалярное произведение векторов а и b:

Векторная алгебра

Пользуясь распределительным свойством скалярного произведения, находим

Векторная алгебра

Учитывая, что

Векторная алгебра

получаем (4)

Векторная алгебра

То есть, если векторы а и b заданы своими координатами в ортонормированном базисе, то их скалярное произведение равно сумме произведений одноименных координат.

Пример:

Найти скалярное произведение векторов n = 4i — 2j + k и b = 6i + 3j + 2k.

(a, b) = 4 • 6 + (-2) • 3 + 1 • 2 = 20.

Скалярное произведение вектора на себя называется скалярным квадратом:

(а, а) = а2.

Применяя формулу (4) при b = а, найдем (5)

Векторная алгебра

С другой стороны,

Векторная алгебра

так что из (5) следует, что (6)

Векторная алгебра

— в ортонормированном базисе длина вектора равна квадратному корню из суммы квадратов его координат.

Косинус угла между векторами. Направляющие косинусы

Согласно определению

(а, b) = |а| • |b| • cos φ,

где φ — у гол между векторами а и b. Из этой формулы получаем
(7)

Векторная алгебра

(предполагается, что векторы а и b — ненулевые).

Пусть а = { х1, у1, z1}, b = { х2, у2, z2 }. Тогда формула (7) примет следующий вид

Векторная алгебра

Пример:

Найти угол между векторами a = {2, -4,4,} и d = {-3,2,6}. Пользуясь формулой (8), находим

Векторная алгебра

Пусть b = i, T.e. b = {1,0,0}. Тогда для всякого вектора а = { х1, у1, z1} ≠ 0 имеем

Векторная алгебра

или, в координатной записи, (9)

Векторная алгебра

где а есть угол, образованный вектором я с осью Ох. Аналогично получаем формулы

Векторная алгебра
Векторная алгебра

Формулы (9)-(11) определяют направляющие косинусы вектора а, т. е. косинусы углов, образуемых вектором n с осями координат (рис. 29).

Пример:

Найти координаты единичного вектора n°. По условию | n°| = 1. Пусть n° = zi+ yj+ zk. Тогда

Векторная алгебра

Таким образом, координатами единичного вектора являются косинусы углов, образованных этим вектором с осями координат:

Векторная алгебра

Отсюда получаем

Векторная алгебра
Векторная алгебра

Пример:

Пусть единичный вектор n° ортогонален оси z:

Векторная алгебра

(рис. 30). Тогда его координаты г и у соответственно равны

x=cos φ, y = sin φ.

Тем самым,

Векторная алгебра

Векторное произведение векторов

Определение:

Векторным произведением вектора а на вектор b называется вектор, обозначаемый символом [a, b] (или a х b), такой, что

1) длина вектора [а, b] равна |а| • |Ь| • sin φ, где φ — угол между векторами а и b (рис.31);

2) вектор [а, b] перпендикулярен векторам а и b, т.е. перпендикулярен плоскости этих векторов;

3) вектор [а, Ь] направлен так, что из конца этого вектора кратчайший поворот от л к Ь виден происходящим против часовой стрелки (рис. 32).

Векторная алгебра

Иными словами, векторы я, b и [a, b] образуют правую тройку векторов, т.е. расположены так, как большой, указательный и средний пальцы правой руки. В случае, если векторы a и b коллинеарны, будем считать, что [a, b] = 0.

Векторная алгебра

По определению длина векторного произведения (1)

Векторная алгебра

численно равна площади Векторная алгебра параллелограмма (рис.33), построенного на перемножаемых векторах a и b как на сторонах:

|[a, b]| = Векторная алгебра.

Свойства векторного произведения

  1. Векторное произведение равно нулевому вектору тогда и только тогда, когда по крайней мере один из перемножаемых векторов является нулевым или когда эти векторы коллинеарны (если векторы я и b коллинеарны, то угол между ними равен либо 0, либо тг).

Это легко получить из того, что |[a, b]| = |a| • |b| • sin φ.

Если считать нулевой вектор коллинеарным любому вектору, то условие коллинеарности векторов a и b можно выразить так

Векторная алгебра

2. Векторное произведение антикоммутативно, т. е. всегда (2)

Векторная алгебра

В самом деле, векторы [а, b] и [b, а] имеют одинаковую длину и коллинеарны. Направления же этих векторов противоположны, так как из конца вектора [a, b] кратчайший поворот от a к b будет виден происходящим против часовой стрелки, а из конца вектора [b, a] — почасовой стрелке (рис. 34).

Векторная алгебра

3. Векторное произведение обладает распределительным свойством по отношению к сложению

Векторная алгебра

4. Числовой множитель λ можно выносить за знак векторного произведения

Векторная алгебра

Векторное произведение векторов, заданных координатами

Пусть векторы a и b заданы своими координатами в базисе i,j, k: а = { х1, у1, z1}, b = { х2, у2, z2 }. Пользуясь распределительным свойством векторного произведения, находим (3)

Векторная алгебра

Выпишем векторные произведения координатных ортов (рис. 35):

Векторная алгебра
Векторная алгебра
Векторная алгебра

Поэтому для векторного произведения векторов a и b получаем из формулы (3) следующее выражение (4)

Векторная алгебра

Формулу (4) можно записать в символической, легко запоминающейся форме, если воспользоваться определителем 3-го порядка: (5)

Векторная алгебра

Разлагая этот определитель по элементам 1-й строки, получим (4). Примеры:

  1. Найти площадь параллелограмма, построенного на векторах а = i + j- k, b = 2i + j- k.

Искомая площадь Векторная алгебра = |[а, b]. Поэтому находим

Векторная алгебра

откуда

Векторная алгебра
Векторная алгебра

2. Найти площадь треугольника ОАВ (рис.36).

Ясно, что площадь S∆ треугольника ОАВ равна половине площади S параллелограмма О АС В. Вычисляя векторное произведение [a, b] векторов a=Векторная алгебра и b = Векторная алгебра, получаем

Векторная алгебра

Отсюда

Векторная алгебра

Замечание:

Векторное произведение не ассоциативно, т.е. равенство [[а, b], с] = [а, b,с]] в общем случае неверно. Например, при а = i, b = j. c= j имеем

Векторная алгебра

Смешанное произведение векторов

Пусть имеем три вектора а, b и с. Перемножим векторы а и b векторно. В результате получим вектор [а, b). Умножим его скалярно на вектор с:

([a, b], с).

Число ([а, b], с) называется смешанным произведением векторов а, b, с и обозначается символом (а, b, с).

Геометрический смысл смешанного произведения

Отложим векторы а, b и с от общей точки О (рис. 37). Если все четыре точки О, А, В, С лежат в одной плоскости (векторы a, b и с называются в этом случае компланарными), то смешанное произведение ([а, b], с) = 0. Это следует из того, что вектор [а, b] перпендикулярен плоскости, в которой лежат векторы а и b, а значит, и вектору с.

Векторная алгебра

Если же точки О, А, В, С не лежат в одной плоскости (векторы a, b и с некомпланарны), построим на ребрах OA, OB и ОС параллелепипед (рис. 38 а). По определению векторного произведения имеем

Векторная алгебра

где Векторная алгебра — площадь параллелограмма OADB, а с — единичный вектор, перпендикулярный векторам а и b и такой, что тройка а, b, с — правая, т. е. векторы a, b и с расположены соответственно как большой, указательный и средний пальцы правой руки (рис. 38 6).

Векторная алгебра

Умножая обе части последнего равенства справа скалярно на вектор с, получаем, что

Векторная алгебра

Число ргe с равно высоте h построенного параллелепипеда, взятого со знаком « + », если угол ip между векторами с и с острый (тройка а, b, с — правая), и со знаком «-», если угол — тупой (тройка а, b, с — левая), так что

Векторная алгебра

Тем самым, смешанное произведение векторов a, b и с равно объему V параллелепипеда, построенного на этих векторах как на ребрах, если тройка а, b, с — правая, и -V, если тройка а, b, с — левая.

Исходя из геометрического смысла смешанного произведения, можно заключить, что, перемножая те же векторы a, b и с в любом другом порядке, мы всегда будем О получать либо +V, либо -V. Знак произведения будет зависеть лишь от того, какую тройку образуют перемножаемые векторы — правую или левую. Если векторы а, b, с образуют правую тройку, то правыми будут также тройки b, с, а и с, а, b. В то же время все три тройки b, а, с; а, с, b и с, b, а — левые. Тем самым,

(а, b, с) = (b, с, а) = (с, a,b) = -(b, а, с) = -(а, с, b) = -(с, b, а).

Еще раз подчеркнем, что смешанное произведение векторов равно нулю тогда и только тогда, когда перемножаемые векторы а, b, с компланарны:

{а, b, с компланарны} <=> (а, b, с) = 0.

Смешанное произведение в координатах

Пусть векторы а, b, с заданы своими координатами в базисе i, j, k:

Векторная алгебра

Найдем выражение для их смешанного произведения (а, b, с). Имеем

Векторная алгебра

Откуда

Векторная алгебра

Итак,

Векторная алгебра

— смешанное произведение векторов, заданных своими координатами в базисе i, j, k, равно определителю третьего порядка, строки которого составлены соответственно из координат первого, второго и третьего из перемножаемых векторов.

Необходимое и достаточное условие компланарности векторов а = { х1, у1, z1}, b = { х2, у2, z2 }, c = { х3, у3, z3} запишется в следующем виде

Векторная алгебра

Пример:

Проверить, компланарны ли векторы

a = {7, 4,-6}, b = {2, 1,1}, с ={19, 11,17}.

Рассматриваемые векторы будут компланарны или некомпланарны в зависимости от того, будет равен нулю или нет определитель

Векторная алгебра

Разлагая его по элементам первой строки, получим

Векторная алгебра

Двойное векторное произведение

Двойное векторное произведение [а, [b, с]] представляет собой вектор, перпендикулярный к векторам а и [b, с]. Поэтому он лежит в плоскости векторов b и с и может быть разложен по этим векторам. Можно показать, что справедлива формула

[а, [b, с]] = b(а, с) — с(а, b).

Решение заданий и задач по предметам:

  • Математика
  • Высшая математика
  • Математический анализ
  • Линейная алгебра

Дополнительные лекции по высшей математике:

  1. Тождественные преобразования алгебраических выражений
  2. Функции и графики
  3. Преобразования графиков функций
  4. Квадратная функция и её графики
  5. Алгебраические неравенства
  6. Неравенства
  7. Неравенства с переменными
  8. Прогрессии в математике
  9. Арифметическая прогрессия
  10. Геометрическая прогрессия
  11. Показатели в математике
  12. Логарифмы в математике
  13. Исследование уравнений
  14. Уравнения высших степеней
  15. Уравнения высших степеней с одним неизвестным
  16. Комплексные числа
  17. Непрерывная дробь (цепная дробь)
  18. Алгебраические уравнения
  19. Неопределенные уравнения
  20. Соединения
  21. Бином Ньютона
  22. Число е
  23. Непрерывные дроби
  24. Функция
  25. Исследование функций
  26. Предел
  27. Интеграл
  28. Двойной интеграл
  29. Тройной интеграл
  30. Интегрирование
  31. Неопределённый интеграл
  32. Определенный интеграл
  33. Криволинейные интегралы
  34. Поверхностные интегралы
  35. Несобственные интегралы
  36. Кратные интегралы
  37. Интегралы, зависящие от параметра
  38. Квадратный трехчлен
  39. Производная
  40. Применение производной к исследованию функций
  41. Приложения производной
  42. Дифференциал функции
  43. Дифференцирование в математике
  44. Формулы и правила дифференцирования
  45. Дифференциальное исчисление
  46. Дифференциальные уравнения
  47. Дифференциальные уравнения первого порядка
  48. Дифференциальные уравнения высших порядков
  49. Дифференциальные уравнения в частных производных
  50. Тригонометрические функции
  51. Тригонометрические уравнения и неравенства
  52. Показательная функция
  53. Показательные уравнения
  54. Обобщенная степень
  55. Взаимно обратные функции
  56. Логарифмическая функция
  57. Уравнения и неравенства
  58. Положительные и отрицательные числа
  59. Алгебраические выражения
  60. Иррациональные алгебраические выражения
  61. Преобразование алгебраических выражений
  62. Преобразование дробных алгебраических выражений
  63. Разложение многочленов на множители
  64. Многочлены от одного переменного
  65. Алгебраические дроби
  66. Пропорции
  67. Уравнения
  68. Системы уравнений
  69. Системы уравнений высших степеней
  70. Системы алгебраических уравнений
  71. Системы линейных уравнений
  72. Системы дифференциальных уравнений
  73. Арифметический квадратный корень
  74. Квадратные и кубические корни
  75. Извлечение квадратного корня
  76. Рациональные числа
  77. Иррациональные числа
  78. Арифметический корень
  79. Квадратные уравнения
  80. Иррациональные уравнения
  81. Последовательность
  82. Ряды сходящиеся и расходящиеся
  83. Тригонометрические функции произвольного угла
  84. Тригонометрические формулы
  85. Обратные тригонометрические функции
  86. Теорема Безу
  87. Математическая индукция
  88. Показатель степени
  89. Показательные функции и логарифмы
  90. Множество
  91. Множество действительных чисел
  92. Числовые множества
  93. Преобразование рациональных выражений
  94. Преобразование иррациональных выражений
  95. Геометрия
  96. Действительные числа
  97. Степени и корни
  98. Степень с рациональным показателем
  99. Тригонометрические функции угла
  100. Тригонометрические функции числового аргумента
  101. Тригонометрические выражения и их преобразования
  102. Преобразование тригонометрических выражений
  103. Комбинаторика
  104. Вычислительная математика
  105. Прямая линия на плоскости и ее уравнения
  106. Прямая и плоскость
  107. Линии и уравнения
  108. Прямая линия
  109. Уравнения прямой и плоскости в пространстве
  110. Кривые второго порядка
  111. Кривые и поверхности второго порядка
  112. Числовые ряды
  113. Степенные ряды
  114. Ряды Фурье
  115. Преобразование Фурье
  116. Функциональные ряды
  117. Функции многих переменных
  118. Метод координат
  119. Гармонический анализ
  120. Вещественные числа
  121. Предел последовательности
  122. Аналитическая геометрия
  123. Аналитическая геометрия на плоскости
  124. Аналитическая геометрия в пространстве
  125. Функции одной переменной
  126. Высшая алгебра
  127. Векторный анализ
  128. Векторы
  129. Скалярное произведение векторов
  130. Векторное произведение векторов
  131. Смешанное произведение векторов
  132. Операции над векторами
  133. Непрерывность функций
  134. Предел и непрерывность функций нескольких переменных
  135. Предел и непрерывность функции одной переменной
  136. Производные и дифференциалы функции одной переменной
  137. Частные производные и дифференцируемость функций нескольких переменных
  138. Дифференциальное исчисление функции одной переменной
  139. Матрицы
  140. Линейные и евклидовы пространства
  141. Линейные отображения
  142. Дифференциальные теоремы о среднем
  143. Теория устойчивости дифференциальных уравнений
  144. Функции комплексного переменного
  145. Преобразование Лапласа
  146. Теории поля
  147. Операционное исчисление
  148. Системы координат
  149. Рациональная функция
  150. Интегральное исчисление
  151. Интегральное исчисление функций одной переменной
  152. Дифференциальное исчисление функций нескольких переменных
  153. Отношение в математике
  154. Математическая логика
  155. Графы в математике
  156. Линейные пространства
  157. Первообразная и неопределенный интеграл
  158. Линейная функция
  159. Выпуклые множества точек
  160. Система координат

    Основные определения.

  • Вектор (геометрический вектор) — это направленный отрезок (отрезок, у которого одна граничная точка считается начальной, другая – конечной).
    На чертеже вектор обозначается стрелкой
    Геометрический вектор
    над буквенным обозначением вектора также ставится стрелка overline{AB},~overline{a}.
    Вектор, фигурирующий в определении, носит название связанного, или закрепленного вектора.
  • Закрепленный вектор overline{AB} — это направленный отрезок АВ, началом которого является точка А, а концом — точка В.
    Свободный вектор — это множество всех закрепленных векторов, получающихся из фиксированного закрепленного вектора с помощью параллельного переноса. Обозначается overline{a}.
    Если же точка приложения вектора (точка A для вектора overline{AB}) может быть выбрана произвольно, вектор называется свободным.
    Если точка приложения может двигаться по линии действия вектора, говорят о скользящем векторе. Иначе говоря, свободный вектор является представителем бесконечного множества связанных или скользящих векторов.
  • Нулевой вектор — это вектор, у которого начало и конец совпадают: overline{0}=delim{|}{overline{0}}{|}=0
  • Коллинеарные векторы — это векторы, которые лежат на одной прямой, либо на параллельных прямых.
    Нулевой вектор коллинеарен любому вектору.
  • Три вектора называются компланарными, если они лежат в одной плоскости или в параллельных плоскостях.
    Если тройка векторов содержит нулевой вектор или пару коллинеарных векторов, то эти векторы компланарны.
  • Длина вектора (модуль) — это расстояние между началом и концом вектора. Обозначение: delim{|}{overline{AB}}{|} или delim{|}{overline{a}}{|}
  • Два вектора равны, если они коллинеарны, имеют одинаковую длину и направление. Например, overline{a}=overline{b}
    Вектор a=b
    Алгебраические операции над векторами.

  • Операция сложения.
    Суммой двух свободных векторов overline{a} и overline{b} называется свободный вектор overline{c}, начало которого совпадает с началом первого, а конец — с концом второго, если совмещены конец вектора overline{a} и начало вектора overline{b}.
    Сумма двух векторов overline{a} и overline{b} (overline{a}+overline{b}) — это вектор, идущий из начала вектора overline{a} в конец вектора overline{b} при условии, что начало вектора overline{b} приложено к концу вектора overline{a} (правило треугольника).
    Сумма векторов a+b
    Свойства операции сложения векторов:
    1) Переместительное свойство: overline{a}+overline{b}=overline{b}+overline{a} (коммутативность).
    2) Сочетательное свойство: (overline{a}+overline{b})+overline{c}=overline{a}+(overline{b}+overline{c}) (ассоциативность).
    3) Существует нулевой вектор overline{0}, такой, что overline{a}+overline{0}=overline{a} для любого вектора overline{a} (особая роль нулевого вектора).
    Нулевой вектор overline{0} порождается нулевым закрепленным вектором, то есть точкой.
    4) Для каждого вектора overline{a} существует противоположный ему вектор {overline{a}}{prime}={-{overline{a}}}, такой, что overline{a}+({-}overline{a})=overline{0}. Вектор -{overline{a}} называется вектором, противоположным вектору overline{a}.
    Правило параллелограмма (правило сложения векторов): если векторы overline{a} и overline{b} приложены к общему началу и на них построен параллелограмм, то сумма overline{a}{+}overline{b} этих векторов представляет собой диагональ параллелограмма, идущую из общего начала векторов overline{a} и overline{b}
    Правило параллелограмма (правило сложения векторов)
    Вычитание векторов определяется через сложение: overline{a}{-}overline{b}={overline{a}}+({-}overline{b}).
    Другими словами, если векторы overline{a} и overline{b} приложены к общему началу, то разностью векторов overline{a} и overline{b} будет вектор overline{a}{-}overline{b}, идущий из конца вектора overline{b} к концу вектора overline{a}.
    Вычетание векторов
  • Операция умножения вектора на число.
    Умножение вектора на число
    Произведением вектора overline{a} на число {lambda}~{in}~{R} называется вектор overline{b}={lambda}{overline{a}} такой, что:
    1) если λ > 0, {overline{a}}{overline{0}}, то {lambda}{overline{a}} получается из {overline{a}} растяжением в λ раз: delim{|}{{lambda}{overline{a}}}{|}={lambda}delim{|}{{overline{a}}}{|};
    2) если λ < 0, {overline{a}}{overline{0}}, то {lambda}{overline{a}} получается из {overline{a}} растяжением в |λ| раз и последующим отражением: delim{|}{{lambda}{overline{a}}}{|}={delim{|}{lambda}{|}}{delim{|}{overline{a}}{|}};
    3) если λ = 0 или {overline{a}}=0, то {lambda}{overline{a}}={overline{0}}.
    Свойства операции умножения:
    1) Распределительное свойство относительно суммы чисел: ({{lambda}_1}+{{lambda}_2}){overline{a}}={{lambda}_1}{overline{a}}+{{lambda}_2}{overline{a}} для любых действительных {{lambda}_1},~{{lambda}_2} и всех overline{a} (дистрибутивность).
    2) Распределительное свойство относительно суммы векторов: {lambda}({overline{a_1}}+{overline{a_2}})={lambda}{overline{a_1}}+{lambda}{overline{a_2}} (дистрибутивность).
    3) Сочетательное свойство числовых сомножителей: ({{lambda}_1}{{lambda}_2}){overline{a}}={{lambda}_1}({{lambda}_2}{overline{a}}) (ассоциативность).
    4) Существование единицы: 1*{overline{a}}={overline{a}}.
    Ортонормированный базис. Декартова прямоугольная система координат.

  • Ортонормированный базис (ОНБ) — это три взаимно перпендикулярных вектора с длинами, равными единице.
    Декартова прямоугольная система координат
    Обозначения: delim{lbrace}{{overline{i}},~{overline{j}},~{overline{k}}}{rbrace},~delim{|}{overline{i}}{|}=delim{|}{overline{j}}{|}=delim{|}{overline{k}}{|}=1
  • Базисные орты — это векторы {overline{i}},~{overline{j}},~{overline{k}}.
  • Зафиксированная точка О – это начало координат.
    Отложим от точки O векторы {overline{i}},~{overline{j}},~{overline{k}}.
    Полученная система координат — это прямоугольная декартова система координат.
  • Декартовы координаты вектора — это координаты любого вектора в этом базисе:
    overline{a}=delim{lbrace}{{x},~{y},~{z}}{rbrace}=x{overline{i}}+y{overline{j}}+z{overline{k}}
    Пример 11.
  • Координатные оси — это прямые линии, проведенные через начало координат (точку O) по направлениям базисных векторов:
    overline{i} – порождает Ox;
    overline{j} – порождает Oy;
    overline{k} – порождает Oz.
  • Абсцисса — это координата точки M (вектора overline{OM} в декартовой системе координат по оси Ox.
    Ордината — это координата точки M (вектора overline{OM} в декартовой системе координат по оси Oy.
    Аппликата — это координата точки M (вектора overline{OM}) в декартовой системе координат по оси Oz.
  • Декартовы прямоугольные координаты x, y, z вектора overline{a} равны проекциям этого вектора на оси Ox, Oy, Oz, соответственно. Иначе:
    x=np_{OX}overline{a}=delim{|}{overline{a}}{|}cos{alpha},~y=np_{OY}overline{a}=delim{|}{overline{a}}{|}cos{beta},~z=np_{OZ}overline{a}=delim{|}{overline{a}}{|}cos{gamma},
    где α, β, γ – углы, которые составляет вектор overline{a} с координатными осями Ox, Oy, Oz, соответственно, при этом cosα, cosβ, cosγ называются направляющими косинусами вектора overline{a}. Пример 12.
    Для направляющих косинусов справедливо соотношение:
    cos^2{alpha}+cos^2{beta}+cos^2{gamma}=1
  • Орт направления — это вектор overline{a_0}={overline{a}}/{delim{|}{overline{a}}{|}}=delim{lbrace}{{cos{alpha}},~{cos{beta}},~{cos{gamma}}}{rbrace} единичной длины данного направления.

Формулы, уравнения, теоремы, примеры решения задач

Добавить комментарий