Как найти промежутки монотонности параболы

Возрастание и убывание квадратичной функции при (k>0)

 

Построим график функции y=x2 и исследуем её на монотонность.

(x)

(-2)

(-1)

(0)

(1)

(2)

(y)

(4)

(1)

(0)

(1)

(4)

 monotona5.png

Функция возрастает на промежутке 

0;+∞

 и убывает на промежутке 

−∞;0

.

Возрастание и убывание квадратичной функции при (k<0)

      

Построим график функции y=−x2 и исследуем её на монотонность.

График данной функции можно получить, отобразив симметрично график функции

y=x2

относительно оси (x), или построить по точкам.

(x)

(-2)

(-1)

(0)

(1)

(2)

(y)

(-4)

(-1)

(0)

(-1)

(-4)

monotona6.png

Функция возрастает на промежутке  

−∞;0

 и убывает на промежутке 

0;+∞

.

План урока:

Возрастание и убывание функций

Промежутки монотонности основных функций

Свойства монотонных функций

Четные и нечетные функции

Свойства четных и нечетных функций

Ограниченные и неограниченные функции

Квадратичная функция

Возрастание и убывание функций

Посмотрим на график произвольной функции:

1yrtghf

Видно, что область определения ф-ции – это промежуток [– 6; 4].

На графике сначала ф-ция как бы «поднимается». При увеличении х растет значение у. Так происходит до точки (1; 5). После этого ситуация меняется, при увеличении аргумента значение ф-ции начинает падать. В математике принято говорить, что ф-ция возрастает на промежутке [– 6; 1] и функция убывает на промежутке [1; 4]. Можно сказать и иначе – ф-ция у является возрастающей функцией на множестве [– 6; 1] и убывающей функцией на множестве [1; 4].

2gdfgd

Рассмотрим это определение возрастающей функции подробнее. Построим произвольную возрастающую ф-цию и выберем на ней две точки со значениями аргумента х1 и х2. Также отметим значения ф-ции в этих точках, у(х1) и у(х2):

3hfgghd

По определению, если х1 меньше х2, то и у(х1) <у(х2). Другими словами, из двух точек та, которая располагается левее (то есть имеет меньшее значение х), будет одновременно располагаться и ниже, (то есть иметь меньшее значение у).

Мы видим возрастание функции на промежутке [– 6; 5]. Однако она также будет возрастать и на любом другом промежутке, который является частью отрезка [– 6; 5]. Например, можно сказать, что она возрастает на промежутке [1; 3] или [– 2; 0].

Аналогично дается и определение убывающей ф-ции:

4dghd

По сравнению с определением возрастающей ф-ции изменился лишь один символ, в последнем неравенстве для у(х1) и у(х2) стоит знак «больше» а не меньше. Покажем пример убывания функции.

5fjgd

Заметим, что в приведенных определениях используются строгие неравенства со знаками «>»и «<». Однако в математике используются и нестрогие неравенства, содержащие знаки «≤» и «≥». С их использованием можно записать ещё 2 определения:

9 1 1

 9 1 2

Приведем пример неубывающей ф-ции:

8fsdg

Здесь х1<x2<x3<x4. Видно, что, например, у(х1) <у(х2). Однако у(х2) = у(х3). Получается, что на графике ф-ции есть плоская «площадка» на промежутке [1; 3]. Для всех значений х из этого промежутка у = 3,5. Из-за этой площадки ф-цию нельзя считать строго возрастающей.

Теперь покажем пример невозрастающей ф-ции:

9gfgs

Здесь также есть плоские «площадки», из-за которых ф-цию нельзя считать просто убывающей.

Ясно, что всякая возрастающая ф-ция является неубывающей, а каждая убывающая ф-ция одновременно считается и невозрастающей.

В математике часто вместо всех этих терминов используют понятие монотонности. Дадим определение монотонной функции:

10gfdfh

Если же ф-ция убывает или возрастает на промежутке (то есть не имеет плоской площадки), то говорят, что она строго монотонна.

11fdsdfa

Рассмотрим ф-цию, изображенную на рисунке:

12gfdgs

Ф-ция возрастает на промежутках [– 6; –2] и [3; 4,5], а также убывает на промежутках [– 2; 1,5] и [2,5; 3]. Значит, на каждом из этих промежутков ф-ция строго монотонна. На отрезке [-2; 3] ф-ция невозрастающая, поэтому здесь она просто монотонна. Любой промежуток, на котором ф-ция монотонна, называют промежутком монотонности.

13hgf

Различают как промежутки убывания функции, так и промежутки возрастания функции.

Понятно, что если ф-ция строго монотонна, то она и просто монотонна. В большинстве школьных задач не важна строгость монотонности, поэтому слово «строго» часто опускают.

Во всех данных определениях рассматривалось поведение ф-ции на каком-то отдельном числовом промежутке. Одна и та же ф-ция может на одном числовом промежутке возрастать, а на другом убывать. Однако некоторые ф-ции сохраняют свой характер на всей своей области определения. Например, линейная ф-ция у = 2х – 3 возрастает на протяжении всей числовой прямой, то есть на промежутке (– ∞; + ∞):

14gdfgd

В большинстве случаев промежутки монотонности ф-ции очевидны, исходя из графика ф-ции. Однако и без их построения можно аналитически доказывать монотонность ф-ции.

Пример. Докажите, что ф-ция у = 2х – 3 возрастает на промежутке (– ∞; + ∞).

Решение. Выберем произвольные числа х1 и х2, причем х1< х2. Разность (х2 – х1) будет, очевидно, положительным числом. Найдем теперь разность (у(х2) – у(х1)):

у(х2) – у(х1) = (2х2 – 3) – (2х1 – 3) = 2х2– 3 – 2х1+ 3 = 2х2 – 2х1 = 2(х2 – х1)

Так как (х2 – х1) – положительное число, то и 2(х2 – х1), а значит, и (у(х2) – у(х1)) – тоже положительное число. Если же разность двух числе положительна, то уменьшаемое больше вычитаемого. Значит, у(х2) > у(х1). По определению получаем, что у = 2х – 3 – возрастающая ф-ция.

Промежутки монотонности основных функций

Мы ранее уже изучили несколько видов ф-ций. Посмотрим, какие у них промежутки монотонности.

Поведение линейной ф-ции у = kх + b зависит исключительно от значение коэффициента k. Если он больше нуля, то функция возрастает на промежутке (– ∞; + ∞), то есть на всей числовой прямой. Если же k< 0, то ф-ция будет убывать. Если k = 0, то график будет выглядеть как горизонтальная линия. Её можно считать одновременно и неубывающей, и невозрастающей ф-цией. Приведем примеры на рисунке:

15gfdds

Поведение обратной пропорциональности у = k/х также зависит от значения k. Если он больше нуля, то ф-ция убывает на двух промежутках: (– ∞;0) и (0; + ∞).

16gfds

Здесь стоит обратить внимание, что, хотя у ф-ции нет ни одного участка, на котором бы она возрастала, нельзя утверждать, что обратная пропорциональность убывает на всей своей области определения (– ∞; 0)∪(0; + ∞). Например, сравним значение ф-ции у = 5/х при х1 = – 1 и х2 = 1:

у(– 1) = 5/(– 1) = – 5

у(1) = 5/1 = 5

Получили, что для этих значений х1<x2, а у(– 1) <у(1), поэтому ф-цию нельзя считать убывающей на всей области определения.

Если в обратной пропорциональности коэффициент k отрицательный, то ф-ция возрастает на промежутках (– ∞;0) и (0; + ∞):

17uytyu

Ф-ция

18jhfg

возрастает на всей своей области определения, то есть на промежутке [0; + ∞):

19hjfg

Поведение степенной ф-ции у = хn зависит от показателя n. Если он нечетный, то получается ф-ция, возрастающая на всей числовой прямой:

20gfdh

Если же число n четное, то степенная ф-ция будет убывать на промежутке (– ∞:0] и возрастать на промежутке [0; + ∞):

21hgfh

Пример. Найдите значения параметра a, при котором ф-ция

у = (5а – 2)х +16

является возрастающей.

Решение. Данная ф-ция является линейной ф-цией вида у = kx + b, где в роли коэффициента k выступает выражение (5а – 2). Ф-ция будет возрастать, если этот коэффициент будет больше нуля, то есть

5а – 2> 0

5а> 2

а > 0,4

Получаем, что ф-ция будет возрастающей при значениях а, больших 0,4, или, другими словами, при а∊(4; + ∞).

Ответ: а∊(4; + ∞).

Свойства монотонных функций

Монотонные функции имеют ряд примечательных свойств, которые могут помогать при решении задач. Вспомним, что некоторые ф-ции могут при различных значениях аргументов принимать одинаковое значение. Например, таковой является степенная ф-ция у = х2:

у(2) = 4

у(– 2) = 4

С точки зрения графиков это означает, что горизонтальная линия может пересекать график ф-ции в нескольких точках:

22gfdgd

С другой стороны, это значит, что уравнение х2 = 4 имеет два корня, 2 и ( – 2).

Если же ф-ция строго монотонна, то такая ситуация невозможна. Любое ее значение может быть получено только при одном значении аргумента.

23ghfdh

Действительно, если ф-ция монотонна, то любая горизонтальная прямая сможет пересечь ее график не более чем в одной точке:

24ghjkk

Это также означает, что, если у(х) – строго монотонная ф-ция, а b– произвольное число, то уравнение у(х) = b имеет не более одного корня. Так, у уравнения х3 = 8 есть только один корень (он равен 2), потому что х3 – монотонная ф-ция.

Рассмотрим следующее свойство монотонных функций.

25khjkhg

Действительно, ранее мы уже изучали сжатие и растягивание графиков. умножение ф-ции на постоянное число как раз и ведет к подобным преобразованиям. Ясно, что при этом не происходит изменение монотонности ф-ций:

26kjhjk

Например, парабола у = х2 возрастает на промежутке [0; + ∞), значит, и ф-ция у = 3х2 также возрастает на этом же промежутке:

27gfdfh

Проще говоря, при умножении ф-ции на положительное число ее промежутки монотонности не изменяются.

А что же произойдет при умножении ф-ции на отрицательное число. Она не только сожмется или растянется, но ещё и отобразится симметрично относительно оси Ох. В результате промежутки возрастания ф-ции превратятся в промежутки убывания, и наоборот.

28jhgj

Проиллюстрируем это на примере ф-ций у = х2 и у = – х2:

29jfhj

Видно, что на промежутке (– ∞; 0] ф-ция у = – х2 возрастает, в то время как обычная парабола убывает. На промежутке [0; + ∞)ситуация противоположная.

Если две ф-ции одновременно возрастают на одном промежутке, то и их сумма также будет возрастать на этом промежутке.

30safd

Например, ф-ции у = х5 и у = 4х возрастают на всей числовой прямой. Следовательно, возрастающей является и ф-ция у = х5 + 4х.

Пример. Решите уравнение

х7 + 2х – 3 = 0

Решение. Можно заметить, что число 1 является корнем этого уравнения. Действительно, подставим единицу в уравнение и получим верное равенство:

17 + 2•1 – 3 = 0

1 + 2 – 3 = 0

0 = 0

Докажем, что других корней уравнение не имеет. В его левой части стоит сумма двух возрастающих ф-ций, у = х7 и у = 2х – 3. Следовательно, и ф-ция у = х7 + 2х – 3 также является возрастающей на всей числовой прямой. Это значит, что исследуемое уравнение имеет не более 1 корня, то есть корень х = 1 – единственный.

Ответ: 1.

Пример. Докажите, что у уравнения

31hfhj

не более одного корня.

Решение.

Выражение в левой части имеет смысл только при положительных х. Ведь если х < 0, то под корнем окажется отрицательное число, а если х = 0, то ноль окажется в знаменателе. Другими словами, уравнение имеет смысл на промежутке (0; + ∞). При этом левая часть представляет собой сумму трех слагаемых:

32gfdfg

Первое и третье из них являются возрастающими ф-циями. Второе слагаемое – это взятая со знаком «минус» ф-ция у = 2/х. Так как у = 2/х убывает на промежутке (0; + ∞), то у = – 2/х на нем же возрастает. В итоге получаем, что в левой части сумма трех возрастающих ф-ций, значит, и всё это выражение – возрастающая ф-ция. Из этого следует, что у уравнения есть не более одного корня. Попробуйте сами подобрать его.

Четные и нечетные функции

При изучении степенных ф-ций мы заметили, что при четном показатели степени n их график симметричен относительно оси Оу:

33gfsfdg

Почему так происходит? Дело в том, что у этих ф-ций противоположным значениям аргументов соответствует одно и то же значение у. Убедимся в этом на примере у = х2:

  • у(1) = 12 = 1 и у(– 1) = (– 1)2 = 1;
  • у(2) = 22 = 4 и у(– 2) = (– 2)2 = 4;
  • у(3) = 32 = 9 и у(– 3) = (– 3)2 = 9.

В общем случае эту особенность можно доказать так:

у(– х) = (– х)2 = х2 = у(х)

В математике есть специальный термин для обозначения ф-ций, обладающих таким свойством. Их называют четным функциями.

34gdfgd

Определение четной функции можно записать и так, чтобы в нем фигурировали формулы:

35gfdfgd

Для проверки того, является ли функция четной, достаточно подставить в нее вместо аргумента х величину (– х).

Пример. Докажите, что ф-ция у = х4 + 3х2 является четной.

Решение. Подставим в ф-цию значение (– х):

у(– х) = (– х)4 + 3(– х)2 = х4 + 3х2

Получили исходную ф-цию у(х). Значит, исследуемая функция является четной.

Пример. Четна ли ф-ция

36hfgh

Решение снова подставим в ф-цию значение (– х):

37jkgjk

Получили изначальную ф-цию. Следовательно, она – четная.

Почему же четные ф-ции симметричны относительно оси Оу? Из определения следует, что если графику четной ф-ции принадлежит точка (х00), то ему же принадлежит точка (– х00). Посмотрим, как они располагаются на координатной плоскости:

38jghj

Они симметричны относительно оси Оу. Если же для каждой точки графика есть симметричная точка, также ему принадлежащая, то и в целом график симметричен относительно вертикальной оси.

Теперь посмотрим на степенные ф-ции, у которых нечетный показатель степени. В качестве примера можно привести у = х3 и у = х5. Видно, что они симметричны относительно центра координат:

39hgfgh

Такая симметрия (относительно точки), называется центральной. Геометрически она означает, каждой точке графика в I четверти с двумя положительными координатами соответствует точка графика в III четверти с такими же координатами, но взятыми со знаком «минус»:

40sdfs

Существует множество ф-ций, обладающих подобной симметрией. В математике их все называют нечетными функциями. У них противоположным значениям аргументов соответствуют противоположные значения ф-ции, а график нечетной функции всегда симметричен относительно начала координат.

41gfdfg

Чаще используется определение, содержащее формулу:

42gfdhd

Покажем это свойство у ф-ции у = х3:

  • у(1) = 13 = 1 и у(– 1) = (– 1)3 = – 1;
  • у(2) = 23 = 8 и у(– 2) = (– 2)3 = – 8;
  • у(3) = 33 = 27 и у(– 3) = (– 3)3 = – 27.

Для того, чтобы доказать нечетность ф-ции, надо поставить в нее (– х) вместо х. Если получилась исходная ф-ция с противоположным знаком, то это значит, что ф-ция нечетная.

Пример. Докажите, что ф-ция у = х5 + х – нечетная.

Решение: Подставим (– х):

у(– х) = (– х)5 + (– х) = –х5 – х = – (х5 + х) = – у(х)

Получили исходную ф-цию, но со знаком «минус», поэтому ф-ция является нечетной.

Пример. Докажите нечетность ф-ции у = 5/х + 4х.

Решение. Подставляем в ф-цию (– х):

у = 5/(– х) + 4(– х) = – 5/х – 4х = – (5/х + 4х) = – у(х)

Снова получили исходную ф-цию со знаком минус, следовательно, мы исследовали нечетную ф-цию.

Известно, что любое целое число либо четное, либо нечетное. Однако с ф-циями всё по-другому. Существует множество ф-ций, которые не относятся ни к тем, ни к другим. Чтобы доказать, что ф-ция не является ни четной, ни нечетной, достаточно продемонстрировать, что хотя бы для одного значения х не выполняются условия у(– х) = у(х) и у(– х) = – у(х).

Пример. Докажите, что у = х3 + х2 – ни четная, ни нечетная ф-ция.

Решение. Определим значение ф-ции при, например, х = 1 и х = –1

у(1) = 13 + 12 = 2

у(– 1) = (– 1)3 + (– 1)2 = 0

Получили, что при противоположных х значения у не являются ни одинаковыми, ни противоположными. Значит, рассматриваемая ф-ция не подходит под приведенные определения четности и нечетности.

Свойства четных и нечетных функций

Рассмотрим важные свойства, помогающие быстро определять четность и нечетность ф-ций.

43gkg

Например, так как четной является ф-ция у = х6, то также четными будут и ф-ции:

  • у = 2х6;
  • у = 3х6;
  • у = – х6;
  • у = – 12х6;
  • у = 0,135х6.

44fsdf

Так, ф-ции у = х3 и у = 1/х – нечетны. Значит, нечетна и их сумма у = х3 + 1/х.

45fdsdf

Другими словами, ф-цию можно «перевернуть», и она всё равно сохранит свою четность. Так, ф-ция 5х4 + х2 четная, поэтому и ф-ция

46gfgds

останется такой же.

Вообще рассматриваемое свойство ф-ции часто называют ее четностью. Так, про две рассматриваемые ф-ции у = х3 и у = х9 можно сказать, что они обладают одинаковой четностью (обе нечетные), а у = х5 и у = х7 обладают различной четностью (одна из них четная, а другая нечетная).

47safddf

Например, ф-ции у = 5х3 + 6х и у = 9х5 имеют одинаковую четность (обе нечетные), а потому их произведение у = 9х5(5х3 + 6х) является четным. С другой стороны, у = х5 и у = х8 + у6 имеют различную четность, следовательно, их произведение у = х58 + у6) нечетное.

Докажем справедливость этого правила. Пусть есть две ф-ции, у = у(х) и g = g(х), которые обладают какой-нибудь четностью. Определим четность их произведения у(х)•g(х). Для этого рассмотрим 3 различных случая:

  1. И у = у(х), и g = g(х) – четные. Тогда у(– х) = у(х), g(– х) = g(х), и мы получаем следующее:

у(– х)•g(– х) = у(х)•g(х).

  1. Обе рассматриваемые ф-ции – нечетные. Тогда у(– х) = – у(х), g(– х) = – g(х), и получается следующее:

у(– х)•g(– х) = (– у(х))•(– g(х)). = (– 1)(– 1)у(х)•g(х) = у(х)•g(х).

  1. Если же одна из ф-ций, например, у(х), будет четной, а вторая – нечетной, то их произведение будет следующим:

у(– х)•g(– х) = у(х)•(– g(х)) = – у(х)•g(х).

Пример. Определите четность ф-ции у = (8х4 + 3х2)(7х5 + 2х)

Решение. Ф-ция из условия представляет собой произведение двух других ф-ций: у = 8х4 + 3х2 и у = 7х5 + 2х. Первая из них является суммой двух четных и поэтому сама четная. Вторая ф-ция, наоборот, нечетная. Следовательно, их произведение – это тоже нечетная ф-ция.

Ответ: Нечетная ф-ция.

Пример. Определите четность ф-ции у = (х6 + х2)(х10 + х8)

Решение. Так как ф-ции у = х6 + х2 и у = х10 + химеют одинаковую четность (обе четные), то их произведение является четным.

Ответ: Четная ф-ция.

Для изучения следующего свойства ф-ций необходимо сначала рассмотреть понятие сложной ф-ции. Так называют ф-цию, которую получают подстановкой одной «простой» ф-ции в другую.Например, пусть есть ф-ции g = хи у = х3 + 2х. Подставив вторую в первую, получим

g = (х3 + 2х)2

Ещё пример сложной ф-ции:

у = 2(9х2 + 4х + 1)3 + 3(9х2 + 4х + 1)

Она получена путем подстановки выражения 9х2 + 4х + 1 в ф-цию у = х3 + 3х. В общем случае, если в ф-цию у = f (x) подставляют g(x), то используют запись у = f (g(x)). Иногда вместо термина «сложная функция» используют аналогичное понятие «композиция функций».

Итак, сформулируем ещё одно свойство четных функций:

48jhgfghj

Например, пусть есть четная ф-ция у = х2. Подставим ее в любую другую ф-цию, скажем, в у = 5х + 7 + 1/х. В итоге получим новую, сложную ф-цию

у = 5х2 + 7 + 1/(х2)

которая будет четной. При этом природа ф-ции у = 5х + 7 + 1/х не играет никакой роли. Мы могли бы взять любую другую ф-цию, например, у = 958,235х3 – 12,25х2 + 19х + 2/3, и подставив в нее х2 вместо х, получить ф-цию

у = 958,235(х2) 3 – 12,25(х2) 2 + 19х2+ 2/3

которая будет четной.

Ограниченные и неограниченные функции

Ещё раз рассмотрим ф-цию у = х2. Очевидно, что все точки ее графика лежат выше оси Ох (кроме точки (0;0), лежащей непосредственно на оси Ох). Ось Ох – это, по сути, горизонтальная прямая у = 0. Можно провести ряд других горизонтальных линий, каждая из которых лежит ниже параболы и не пересекает её:

49fdsdf

В математике говорят, что ф-ция у = х2 ограничена снизу. То есть для любого допустимого х выполняется неравенство у(х) ⩾ а, где а – это какое-то произвольное число. И действительно, неравенство х2⩾ 0 выполняется при всех значениях х. Также выполняются неравенства

х2⩾ – 1,5

х2⩾ – 3

х2⩾ – 5

Дадим определение функции, ограниченной снизу

50dfsg

Очевидно, что если неравенство у(х) ⩾ а выполняется хотя бы для одного числа а, то оно выполняется и для всех а, которые ещё меньше. Так, из справедливости неравенства х2⩾ 0 автоматически следует справедливость неравенства х2⩾ – 1,5, так как

– 1,5 ⩽ 0.

Аналогично в математике существует понятие функции, ограниченной сверху.

51gjhj

В качестве примера ограниченной сверху ф-ции можно привести у = 4 – х2:

52ghjg

Ясно, что неравенство 4 – х2⩽ 4 выполняется при всех х, то есть ни одна точка графика не лежит выше прямой у = 4.

Иногда бывает так, что функция ограничена одновременно и снизу, и сверху. Их называют ограниченными функциями.

53hfghf

Ф-ция, не попадающее под это определение, называется неограниченной функцией. В качестве примера неограниченной функции можно привести линейную ф-цию у = х + 1.

График ограниченной ф-ции находится в своеобразной «полосе» из горизонтальных линий, которые ограничивают его сверху и снизу. Примером ограниченной ф-ции является

54gfdfg

55gfdgd

С одной стороны, у этой дроби и числитель, и знаменатель – положительное число, поэтому она ограничена снизу прямой у = 0. С другой стороны, дробь тем больше, чем меньше ее знаменатель (если они оба положительны). Минимальное значение выражения х2 + 1 – это единица (при х = 0), а поэтому максимальное значение дроби равно 4/1 = 4. Поэтому график ограничен сверху прямой у = 4.

Пример. Ограничена ли ф-ция

56hgfgh

Решение. Выделим в ф-ции целую часть:

57gfdfg

Так как величина 5х2 + 5 всегда положительна, то и дробь

58hgfgh

а значит, и вообще вся ф-ция положительна, то есть ограничена снизу прямой у = 0

С другой стороны, дробь будет принимать максимальное значение при минимальном значении знаменателя, которое равно 5 (при х = 0) При х = 0 имеем

59ghdgh

Получается, что ф-ция ограничена сверху прямой у = 1,4.

Ответ: ограничена.

Пример. Ограничена ли ф-ция

60gfdfgg

Решение. Величина х2 всегда положительна, то есть х2⩾ 0. Преобразуем это неравенство, умножив его на (– 1) и добавив к нему 16:

х2⩾ 0

– х2⩽ 0

16 – х2⩽ 16

Получили, что подкоренное выражение не превосходит 16, а значит, и корень из него не больше, чем

61gfdgd

То есть график будет ограничен прямой у = 4 сверху. С другой стороны, арифметический квадратный корень не может быть отрицательным числом, а потому его график ограничен снизу прямой у = 0. Для наглядности покажем график исследуемой ф-ции:

62ngfghf

Ответ: ограничена.

Квадратичная функция

В качестве ф-ции можно использовать квадратный трехчлен, например:

у = 2х2 + 6х – 10

у = – 1,5х2 + 19х + 0,5

у = 0,005х2 + 654,25х – 124

Все эти ф-ции заданы с помощью выражения, представляющего собой квадратный трехчлен, поэтому в математике их называют квадратичными функциями.

9 1 3

Если коэффициент перед х2 окажется равным нулю, то ф-ция превратится из квадратичной в линейную:

2 + bx + c = bx + c

Попытаемся понять, как выглядит график квадратичной функции. Для этого начнем рассматривать частные случаи и использовать правило растяжения и сжатия, а также параллельного переноса графиков ф-ций.

Если в выражение для квадратичной ф-ции подставить значения

а =1

b= 0

с = 0

то получится уже известная нам степенная ф-ция у = х2:

2 + 0x + 0 = х2

Её графиком является парабола.

График ф-ции у = ах2 – это тоже парабола (где а – некоторое число), которая однако, получена из «обычной» параболы у = х2 путем сжатия или растяжения графика. Если коэффициент а является отрицательным, то парабола «перевернется» то есть отобразится симметрично относительно оси Ох. Покажем примеры нескольких графиков у = ах2:

64hfghf

Напомним, что при добавлении к ф-ции какого-нибудь постоянного числа n ее график переносится на единиц вверх. Зная это можно легко получить график ф-ции у = ах2 + с из графика у = ах2:

65jjhkg

Таким образом, графиком ф-ции у = ах2 + с является парабола, чья вершина поднята на с единиц вверх.

Как изменится график квадратичной ф-ции у = ах2 + с, если в вместо х возводить в квадрат выражение (х +m), где – произвольное число? В этом случае ф-ция примет вид у = а(х +m)2 + с. Вершина параболы должна будет сместиться на m единиц влево:

66hgfhdf

Теперь докажем, что любая квадратичная ф-ция может быть представлена как в виде у = а(х + m) + n, где m и n – некоторые числа (в том числе и отрицательные). Похожие преобразования мы производили, когда учились решать квадратные уравнения. Запишем саму квадратичную ф-цию:

у = ах2 + bх + с

Вынесем множитель а за скобки:

67gdfhh

Далее попытаемся преобразовать трехчлен в скобках, используя формулу квадрата суммы. Для этого добавим к нему и сразу же вычтем величину (b/2a)2:

68ghfgh

Теперь раскроем внешние скобки:

69jhghj

Теперь произведем две замены:

70jfhjfg

Используя их, можно записать:

71gfdfg

Получили, что любую квадратичную ф-цию можно свести к виду у = а(х + m)2 + n. Что это значит и для чего мы это доказывали? Из этого факта следует, что график любой квадратичной ф-ции может быть получен из обычной параболы у = х2 за счет трех действий.

  1. Необходимо растянуть график у = х2 в а раз и получить график у = ах2. Если число а является отрицательным, то график не только растянется, но ещё «перевернется» ветвями вниз, то есть отобразится симметрично относительно оси Ох.
  2. Необходимо сдвинуть график у = ах2 на единиц вверх и получить график у = ах2 + n. Если n< 0, то график переместится вниз, а не вверх.
  3. Полученный график у = ах2 + n следует сместить влево на единиц и получить график у = а(х + m)2 + n. Если отрицательно, то график сместится не влево, а вправо.

Итак, как будет выглядеть график квадратичной ф-ции? В общем случае он является параболой, центр которой располагается не в точке (0;0), а в некоторой другой точке (х0; у0):

72hfhk

Если мы вернемся к доказательству того, что любую квадратичную ф-цию можно представить в виде у = а(х + m)2 + n, то увидим, что число m рассчитывается по формуле

73hfghf

Так как график из-за этого числа m перемещается влево, а не вправо, то координата вершины х0 рассчитывается по формуле:

74jhghj

Нет смысла составлять такую же формулу для определения координаты вершины у0, ведь можно подставить х0 в сам ф-цию и так узнать вторую координату вершины.

Пример. Определите вершину параболы, задаваемой ф-цией

у = 2х2 + 8х + 5

Решение. Выпишем коэффициенты а, b и c квадратичной ф-ции:

а = 2

b = 8

c = 5

Зная их, легко рассчитаем координату х вершины параболы:

75hgfgh

Теперь подставим это число в исходную ф-цию и определим координату у вершины параболы:

у0 = у(х0) = 2(– 2)2 + 8(– 2) + 5 = 8 – 16 + 5 = – 3

Ответ (– 2; – 3)

Напомним, что нули ф-ции – это те точки, в которых ее график пересекает ось Ох. Для их поиска необходимо приравнять ф-цию к нулю и решить уравнение. В случае с квадратичной ф-цией мы получим квадратной уравнение.

Пример. Постройте график ф-ции у = х2 – 4х + 3, отметьте на нем вершину параболы и нули ф-ции.

Решение. Приравняем ф-цию к нулю:

х2 – 4х + 3 = 0

Решим это уравнение

D = b2 – 4ас = (– 4)2 – 4•1•3 = 16 – 12 = 4

76hgfgh

Итак, нашли нули ф-ции: 1 и 3. Теперь найдем вершину параболы:

77jhgj

у0 = у(х0) = 22 – 4•2 + 3 = 4 – 8 + 3 = – 1

Вершина находится в точке (2; – 1). Теперь отметим ее, а также нули ф-ции на графике, и соединим их линией, похожей на параболу:

78gdfg

При необходимости для точности построения всегда можно вычислить значение ф-ции в нескольких дополнительных точках и провести параболу через них. Здесь мы этого делать не будем

Ответ: вершина параболы – точка (2; – 1), нули ф-ции х1 = 1 и х2 = 3

Обратите внимание, что в рассмотренном примере вершина параболы оказалась ниже нулей, поэтому ее ветви смотрят вверх. Вообще, если коэффициент а > 0, то ветви смотрят вверх, а если а < 0, то они смотрят вниз. Также можно заметить ещё одно свойство квадратичной функции – вершина параболы находится точно посередине между нулями ф-ции. То есть если нули ф-ции равны 1 и 3, то координата х вершины параболы равна их среднему арифметическому:

х0 = (х1 + х2)/2 = (1 + 3)/2 = 2

Заметим, что не все квадратичные ф-ции имеют нули, ведь не каждое квадратное уравнение имеет решение.

Пример. Постройте графики ф-ций

у = – 2х2– 4х + 6

у = – 3х2 + 6х – 4

Решение. Начнем с первой ф-ции. Сначала найдем ее нули:

– 2х2 – 4х + 6 = 0

D = b2 – 4ас = (– 4)2 – 4•(– 2)•6 = 16+48 = 64

79gfddsfg

Найдем вершину. Сначала используем обычную формулу:

80hgfgh

Далее просто проверим себя, найдя среднее арифметическое нулей ф-ции:

81gdfg

Как и ожидалось, получились одинаковые результаты! Вычислим теперь у0:

у0 = у(х0) = – 2(– 1)2 – 4(– 1) + 6 = – 2 + 4 + 6 = 8

Итак, вершина первой ф-ции – это точка (– 1; 8).

Перейдем ко второй ф-ции. Попробуем найти ее нули:

– 3х2 + 6х – 4 = 0

D = b2 – 4ас = 62 – 4•(– 3)•(– 4) = 36–48 = – 16

Дискриминант отрицательный, значит, корней у уравнения нет. Не будет и нулей и ф-ции. Найдем вершину параболы

82gdffg

Найдем координату у0 вершины:

у0 = у(х0) = – 3•12 + 6•1 – 4 = – 3 + 6 – 4 = – 1

Отметим, что у обоих графиков коэффициент а отрицательный, а потому их ветви будут смотреть вниз. Построим их графики:

83hfgh

Иногда приходится решать обратную задачу – по графику квадратичной ф-ции находить выражение, задающее эту ф-цию. Для ее решения необходимо подставлять в общий вид квадратичной ф-ции

у = ах2 + bx + c

значения квадратичной функции, взятые из графика (то есть координаты точек параболы) и получать уравнения, из которых можно найти величины a, и c.

Пример. Запишите выражение для квадратичной ф-ции, имеющей следующий график:

84hgfj

Решение. Заметим, что графику параболы принадлежит точка с координатами (0; 3). Подставим эти числа, х = 0 и у = 3, в квадратичную ф-цию:

у = ах2 + bx + c

3 = а•02 + b•02 + c

3 = c

Итак, мы нашли, что коэффициент с = 3. Осталось найти а и b. Возьмем ещё одну точку, скажем, (1; 0), и подставим ее координаты (вообще в большинстве случаев удобно брать точки, одна из координат которой равна 0 или, на худой конец, единице):

у = ах2 + bx + 3

0 = а•12 + b•1 + 3

a + b = – 3

Возьмем точку с координатами (– 3; 0):

у = ах2 + bx + 3

0 = а•(– 3)2 + b•(– 3) + 3

9а – 3b = – 3

Получили два уравнения с двумя неизвестными: a + b = – 3 и 9а – 3b = – 3. Решим систему, составленную из них:

85gdfgd

Подставим первое уравнение во второе и получим:

9а – 3(– 3 – а) = – 3

9а + 9 + 3а = – 3

12а = – 3 – 9

12а = – 12

а = – 1

Нашли а. Теперь подставим его в уравнение для b:

b = – 3 – а = – 3 – (– 1) = – 2

Получили b = – 2. Мы нашли все коэффициенты, а потому можем записать ф-цию в аналитическом виде:

у = – х2 – 2х + 3

Ответ:– х2 – 2х + 3

§ 14. Монотонность, промежутки знакопостоянства квадратичной функции

Промежутки монотонности квадратичной функции

Функция возрастает на некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции.

Функция убывает на некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Промежутки убывания и возрастания функции называются промежутками монотонности функции.

В общем случае для функции f(x) = ax2 + bx + c:

● если a > 0 (ветви параболы направлены вверх), то функция убывает на промежутке (−∞; xв] и возрастает на промежутке [xв; +∞)

● если a < 0 (ветви параболы направлены вниз), то функция убывает на промежутке [xв; +∞) и возрастает на промежутке (−∞; xв]

Чтобы определить промежутки возрастания и убывания квадратичной функции, нужно:

1) Определить абсциссу вершины параболы xв =  − b/2a.

2) Определить знак первого коэффициента.

3) Заполнить таблицу изменения функции в зависимости от изменения значений аргумента.

4) Записать ответ:

если a > 0, то функция убывает на промежутке (−∞; xв] и возрастает на промежутке [xв; +∞);

если a < 0, то функция убывает на промежутке [xв; +∞) и возрастает на промежутке (−∞; xв].    

Пример 1. Найдите промежутки монотонности квадратичной функции, заданной формулой у = 5х2 − 24х − 1.

Видеорешение

Пример 2. Для квадратичной функции у = (5 − х)(х + 1) найдите множество значений и промежутки монотонности функции.

Видеорешение

Промежутки знакопостоянства квадратичной функции

Промежутки, на которых функция принимает только положительные или только отрицательные значения, называются промежутками знакопостоянства функции.

Квадратичная функция принимает только положительные значения при всех значениях аргумента, так как при всех x ∈ R график этой функции расположен выше оси абсцисс, т. е. y > 0 при x ∈ (−∞; +∞).

Квадратичная функция принимает только положительные значения при всех значениях аргумента, кроме x = xв, так как при всех x ≠ xв график функции расположен выше оси абсцисс. Значит, y > 0 при x ∈ (−∞; xв) U (xв; +∞).

Квадратичная функция принимает положительные значения на промежутках (−∞; x1) и (x2; +∞), отрицательные значения — между нулями функции, т. е. на промежутке (x1; x2).

Квадратичная функция принимает только отрицательные значения при всех значениях аргумента, так как при всех x ∈ R график этой функции расположен ниже оси абсцисс, т. е. y < 0 при x ∈ (−∞; +∞).

Квадратичная функция принимает только отрицательные значения при всех значениях аргумента, кроме x = xв, так как при всех x ≠ xв график функции расположен ниже оси абсцисс. Значит, y < 0 при x∈ (−∞; xв) U (xв; +∞).

Квадратичная функция принимает положительные значения между нулями функции, т. е. на промежутке (x1; x2). Отрицательные значения эта функция принимает на промежутках (−∞; x1) и (x2; +∞).

Пример 3. Найдите промежутки знакопостонства квадратичной функции, заданной формулой у = −х2 + 5х − 4.

Видеорешение

Функция называется монотонной на какой-то области, если ее приращение не меняет знак и остается постоянным (по знаку) всегда на этой области.
Если каждое последующее значение функции больше предыдущего, то функция называется возрастающей, если же наоборот, ее приращение отрицательно, то она называется убывающей.
Для того, чтобы определить характер поведения функции, нужно взять ее производную и провести ее исследование.
Если производная неотрицательна, то функция не убывает, если неположительна – не возрастает.
Если производная в каждой точке области определения функции равна нулю, то функция постоянна на этой области. Графиком такой функции является прямая, параллельная оси абсцис.

Пример 1

Дано функцию y=x7+3×5+2x−1y=x^7+3x^5+2x-1. Необходимо произвести исследование этой функции на монотонность.

1 шаг. Находим производную.

y′=7×6+15×4+2y’=7x^6+15x^4+2

2 шаг. Сравнение с нулем.

Производная на всей области определения принимает исключительно положительные значения, значит исходная функция возрастает на всей области от минус бесконечности к плюс бесконечности.

Пример 2

Дано y=x3−4×2−16x+17y=x^3-4x^2-16x+17. Провести исследование данной функции на монотонность.

1 шаг. Находим производную.

y′=3×2−8x−16y’=3x^2-8x-16

2 шаг. Сравнение с нулем.

Приравниваем производную к нулю и решаем квадратное уравнение:

3×2−8x−16=03x^2-8x-16=0

D=64−4⋅3⋅(−16)=64+192=256D=64-4cdot3cdot(-16)=64+192=256

x1=8+166=4x_1=frac{8+16}{6}=4

x2=8−166=−43x_2=frac{8-16}{6}=-frac{4}{3}

Так как это парабола и ее ветви направлены вверх, то в интервале (−∞;−43)(-infty;-frac{4}{3}) и интервале (4;+∞)(4;+infty) исходная функция возрастает (поскольку на этих интервалах производная этой функции положительна), а в интервале (−43;4)(-frac{4}{3};4) функция убывает (производная на этом интервале отрицательна).

Тест по теме «Исследование функции на монотонность»

Эта статья — о числовой функции одной переменной. О функции второй степени с несколькими переменными см. Квадратичная форма; о геометрическом месте точек см. Парабола.

График функции {displaystyle f(x)=x^{2}-x-2}

Квадратичная функция — целая рациональная функция второй степени вида {displaystyle f(x)=ax^{2}+bx+c}, где a neq 0 и a,b,cin mathbb {R} . Уравнение квадратичной функции содержит квадратный трёхчлен. Графиком квадратичной функции является парабола. Многие свойства графика квадратичной функции так или иначе связаны с вершиной параболы, которая во многом определяет положение и внешний вид графика.

Обзор основных свойств[править | править код]

Многие свойства квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} зависят от значения коэффициента a. В следующей таблице приводится обзор основных свойств квадратичной функции[1]. Их доказательство рассматривается в статье в соответствующих разделах.

Свойство a>0 a<0
Область определения функции {displaystyle D(f)=mathbb {R} }
Множество значений функции {displaystyle E(f)=left[-{frac {b^{2}-4ac}{4a}};+infty right)} {displaystyle E(f)=left(-infty ;-{frac {b^{2}-4ac}{4a}}right]}
Чётность функции Чётная функция при b=0; ни чётная, ни нечётная при bneq 0
Периодичность функции Непериодическая функция
Непрерывность функции Всюду непрерывная функция, точек разрыва нет
Нули функции {displaystyle x_{1,2}={frac {-bpm {sqrt {D}}}{2a}}}, если {displaystyle D=b^{2}-4acgeq 0}
нет действительных нулей, если {displaystyle D=b^{2}-4ac<0}
Предел функции при {displaystyle xto pm infty } {displaystyle f(x)to +infty } при {displaystyle xto pm infty } {displaystyle f(x)to -infty } при {displaystyle xto pm infty }
Дифференцируемость функции Всюду многократно дифференцируема:
{displaystyle f'(x)=2ax+b,f''(x)=2a,f'''(x)=0}
Точки экстремума (абсолютный экстремум) {displaystyle x_{min}={frac {-b}{2a}}} (минимум) {displaystyle x_{max}={frac {-b}{2a}}} (максимум)
Интервалы строгой монотонности убывает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
возрастает на {displaystyle left[-{frac {b}{2a}};+infty right)}
возрастает на {displaystyle left(-infty ;-{frac {b}{2a}}right]}
убывает на {displaystyle left[-{frac {b}{2a}};+infty right)}
Выпуклость функции Всюду выпуклая вниз функция Всюду выпуклая вверх функция
Точки перегиба Точки перегиба отсутствуют
Ограниченность функции Ограничена снизу Ограничена сверху
Наибольшее значение функции Отсутствует (неограничена сверху) {displaystyle y_{max}=-{frac {b^{2}-4ac}{4a}}}
Наименьшее значение функции {displaystyle y_{min}=-{frac {b^{2}-4ac}{4a}}} Отсутствует (неограничена снизу)
Положительные значения функции {displaystyle (-infty ;x_{1})cup (x_{2};+infty )} {displaystyle (x_{1};x_{2})}
Отрицательные значения функции {displaystyle (x_{1};x_{2})} {displaystyle (-infty ;x_{1})cup (x_{2};+infty )}

Влияние коэффициентов на трансформацию графика[править | править код]

Стандартная запись уравнения квадратичной функции[править | править код]

Влияние коэффициентов a, b и c на параболу

Действительные числа a, b и c в общей записи квадратичной функции называются её коэффициентами. При этом коэффициент a принято называть старшим, а коэффициент c — свободным. Изменение каждого из коэффициентов приводит к определённым трансформациям параболы.

По значению коэффициента a можно судить о том, в какую сторону направлены её ветви (вверх или вниз) и оценить степень её растяжения или сжатия относительно оси ординат:

  • Если a>0, то ветви параболы направлены вверх, то есть её вершина расположена снизу.
  • Если a<0, то ветви параболы направлены вниз, то есть её вершина расположена сверху.
  • Если {displaystyle |a|<1}, то парабола сжата по оси ординат, то есть кажется более широкой и плоской.
  • Если {displaystyle |a|>1}, то парабола растянута по оси ординат, то есть кажется более узкой и крутой.

Влияние значения коэффициента a наиболее просто позволяет проиллюстрировать квадратичная функция вида {displaystyle f(x)=ax^{2}}, то есть в случае b=0 и c=0. В случае a=0 квадратичная функция превращается в линейную.

Изменение коэффициента b повлечёт за собой сдвиг параболы как относительно оси абсцисс, так и относительно оси ординат. При увеличении значения b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} влево и одновременно на {displaystyle (2b+1)/4a} вниз. При уменьшении b на 1 произойдёт сдвиг параболы на {displaystyle 1/2a} вправо и одновременно на {displaystyle (2b-1)/4a} вверх. Такие трансформации объясняются тем, что коэффициент b характеризует угловой коэффициент касательной к параболе в точке пересечения с осью ординат (то есть при x=0).

Коэффициент c характеризует параллельный перенос параболы относительно оси ординат (то есть вверх или вниз). При увеличении значения этого коэффициента на 1, парабола переместится на 1 вверх. Соответственно, если уменьшить коэффициент c на 1, то и парабола сместится на 1 вниз. Так как коэффициент b также влияет на положение вершины параболы, то по одному лишь значению коэффициента c нельзя судить о том, расположена ли вершина выше оси абсцисс или ниже неё.

Запись квадратичной функции через координаты вершины параболы[править | править код]

Любая квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} может быть получена с помощью растяжения/сжатия и параллельного переноса простейшей квадратичной функции f(x)=x^{2}. Так, график функции вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} получается путём сжатия (при a<0) или растяжения (при a>0) графика функции f(x)=x^{2} в a раз с последующем его параллельным переносом на x_{0} единиц вправо и y_0 единиц вверх (если эти значения являются отрицательными числами тогда, соответственно, влево и вниз). Очевидно, что при проделанной трансформации вершина параболы функции f(x)=x^{2} переместится из точки (0;0) в точку (x_{0};y_{0}). Этот факт даёт ещё один способ вычисления координат вершины параболы произвольной квадратичной функции путём приведения её уравнения к виду {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, позволяющему сразу увидеть координаты вершины параболы — (x_{0};y_{0}).

Влияние коэффициентов в записи вида {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} на параболу

Преобразовать произвольную квадратичную функцию вида {displaystyle f(x)=ax^{2}+bx+c} к форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}} позволяет метод выделения полного квадрата, использующий формулы сокращённого умножения биномов:

{displaystyle f(x)=ax^{2}+bx+c}

{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot xright)+c}
{displaystyle =acdot left(x^{2}+{frac {b}{a}}cdot x+{frac {b^{2}}{4a^{2}}}-{frac {b^{2}}{4a^{2}}}right)+c}
{displaystyle =acdot left(x^{2}+2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)-{frac {b^{2}}{4a}}+c}
{displaystyle =acdot left(x+{frac {b}{2a}}right)^{2}+{frac {-b^{2}}{4a}}+{frac {4ac}{4a}}}
{displaystyle =acdot left(x-{frac {-b}{2a}}right)^{2}+{frac {-b^{2}+4ac}{4a}}}
{displaystyle =acdot left(x-x_{0}right)^{2}+y_{0}}, где {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}={frac {-b^{2}+4ac}{4a}}}

Сравнивая значения для x_{0} и y_0, вычисленные дифференциальным методом (см. соответствующий раздел статьи), можно также убедиться, что они являются координатами вершины параболы. В конкретных случаях вовсе не требуется запоминать приведённые громоздкие формулы, удобней всякий раз выполнять преобразования многочлена к желаему виду непосредственно. На конкретном примере этот метод выглядит так:

{displaystyle f(x)=2x^{2}+8x+5=2cdot left(x^{2}+4cdot xright)+5}

{displaystyle =2cdot left(x^{2}+4cdot x+4-4right)+5}
{displaystyle =2cdot left(left(x+2right)^{2}-4right)+5}
{displaystyle =2cdot left(x+2right)^{2}-8+5}
{displaystyle =2cdot left(x+2right)^{2}-3Rightarrow S(-2;-3)}

Недостатком данного метода является его громоздкость, особенно в случае, когда в результате вынесения за скобки приходится работать с дробями. Также он требует определённого навыка в обращении с формулами сокращённого умножения.

Однако, рассмотренное выше доказательство в общем виде приводит к более простому способу вычисления координат вершины параболы с помощью формул {displaystyle x_{0}={frac {-b}{2a}}} и {displaystyle y_{0}=f(x_{0})}. Например, для той же функции {displaystyle f(x)=2x^{2}+8x+5} имеем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3}.

Нули функции[править | править код]

Число нулей квадратичной функции[править | править код]

Число действительных нулей квадратичной функции в случае a>0

Квадратичная функция является целой рациональной функцией второй степени, поэтому она может иметь не более двух нулей в действительной области. В случае расширения на комплексную область можно говорить о том, что квадратичная функция в любом случае имеет ровно два комплексных нуля, которые могут быть строго действительными числами или содержать мнимую единицу.

Определить число нулей квадратичной функции без решения соответствующего квадратного уравнения можно с помощью вычисления дискриминанта. При этом имеются различные вариации его вычисления: обычный (применим всегда), сокращённый (удобен в случае чётного коэффициента b) и приведённый (применим только для приведённого многочлена). При этом числовые значения в каждом случае будут отличаться, однако знак дискриминанта будет совпадать независимо от вариации.

Полный дискриминант Сокращённый дискриминант Приведённый дискриминант
{displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=ax^{2}+bx+c} {displaystyle f(x)=x^{2}+px+q}
{displaystyle D=b^{2}-4ac} {displaystyle D=left({frac {b}{2}}right)^{2}-ac} {displaystyle D=left({frac {p}{2}}right)^{2}-q}

Независимо от вычисления дискриминанта будут справедливы следующие утверждения:

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} с использованием стандартной формулы для дискриминанта получаем:

{displaystyle D=b^{2}-4ac=8^{2}-4cdot 2cdot 5=64-40=24>0}.

Это означает, что данная функция имеет два действительных нуля, то есть её парабола пересекает ось абсцисс в двух точках.

Методы вычисления нулей квадратичной функции[править | править код]

Нахождение нулей квадратичной функции сводится к решению квадратного уравнения {displaystyle ax^{2}+bx+c=0}, где a neq 0. Конкретный метод, наиболее подходящий для конкретной квадратичной функции, во многом зависит от его коэффициентов. Во всех специальных случаях кроме специальных формул и методов всегда применима также и универсальная формула. Во всех перечисленных формулах, содержащих квадратный корень, следует учитывать, что если подкоренное выражение является отрицательным числом, то квадратичная функция не имеет нулей в действительной области, а обладает двумя комплексными нулями.

  • В наиболее общем случае применяется универсальная формула:
{displaystyle x_{1,2}={frac {-bpm {sqrt {b^{2}-4ac}}}{2a}}}
{displaystyle x_{1,2}=-{frac {p}{2}}pm {sqrt {left({frac {p}{2}}right)^{2}-q}}}
Получить приведённую форму из общей можно, поделив исходное уравнение {displaystyle ax^{2}+bx+c=0} на a. При этом, очевидно, {displaystyle p=b/a} и {displaystyle q=c/a}.
{displaystyle x_{1,2}=pm {sqrt {frac {-c}{a}}}}
{displaystyle x_{1}=0}
{displaystyle x_{2}={frac {-b}{a}}}

Чётность и симметрия квадратичной функции[править | править код]

Симметрия относительно оси ординат[править | править код]

График функции f(x)=x^{2} (b=0 и c=0) симметричен относительно оси ординат

Квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} является целой рациональной функцией второй степени, поэтому для неё справедливы все соответствующие свойства целой рациональной функции. В частности, она является чётной только тогда, когда в записи её многочлена присутствуют лишь чётные показатели степени, и нечётной — если она содержит только нечётные показатели. Из этого следует, что никакая квадратичная функция не может быть нечётной ввиду того, что на неё изначально накладывается условие aneq 0, а следовательно она всегда будет содержать чётный показатель 2.

Кроме того, очевидно, что квадратичная функция является чётной только при отсутствии показателя 1, что означает b=0. Этот факт легко доказывается и непосредственно. Так, очевидно, что функция {displaystyle f(x)=ax^{2}+c} является чётной, так как справедливо:

{displaystyle f(-x)=acdot (-x)^{2}+c=ax^{2}+c=f(x)}, то есть {displaystyle f(-x)=f(x)}.

Таким образом, квадратичная функция является симметричной относительно оси ординат только тогда, когда b=0. Конкретные значения коэффициентов a и c на этот факт абсолютно не влияют. В частности, c может быть также равно нулю, то есть отсутствовать в записи формулы. В этом случае вершина параболы будет совпадать с началом системы координат.

Во всех других случаях квадратичная функция не будет ни чётной, ни нечётной, то есть является функцией общего вида. Это также легко можно показать с помощью определения чётности функции:

{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+cneq f(x)}, то есть {displaystyle f(-x)neq f(x)}.
{displaystyle f(-x)=acdot (-x)^{2}+bcdot (-x)+c=ax^{2}-bx+c=-(-ax^{2}+bx-c)neq -f(x)}, то есть {displaystyle f(-x)neq -f(x)}.

Осевая симметрия в общем случае[править | править код]

Осью симметрии любой параболы является прямая, проходящая через её вершину параллельно оси ординат

В то же время график любой квадратичной функции обладает осевой симметрией. Как известно, если для некоторой функции f(x) для некоторого числа {displaystyle x_{0}in mathbb {R} } справедливо равенство {displaystyle f(x_{0}+x)=f(x_{0}-x)}, то график этой функции f(x) обладает осевой симметрией по отношению к прямой x = x_0. В отношении квадратичной функции таким числом x_{0} является абсцисса вершины её параболы. Таким образом, график любой квадратичной функции симметричен по отношению к оси, параллельной оси ординат и проходящей через вершину параболы, а осью симметрии функции {displaystyle f(x)=ax^{2}+bx+c} является прямая {displaystyle x=-b/2a}.

Доказательство этого факта также не является сложным:

{displaystyle f(x_{0}+x)=f(x+x_{0})=fleft(x-{frac {b}{2a}}right)=aleft(x-{frac {b}{2a}}right)^{2}+bleft(x-{frac {b}{2a}}right)+c}

{displaystyle =aleft(x^{2}-2cdot xcdot {frac {b}{2a}}+{frac {b^{2}}{4a^{2}}}right)+bleft(x-{frac {b}{2a}}right)+c}
{displaystyle =ax^{2}-bx+{frac {b^{2}}{4a}}+bx-{frac {b^{2}}{2a}}+c=ax^{2}-{frac {b^{2}}{4a}}+c=ax^{2}+{frac {4ac-b^{2}}{4a}}}

К аналогичному результату приводит и преобразование:

{displaystyle f(x_{0}-x)=f(-x+x_{0})=fleft(-x-{frac {b}{2a}}right)=dotsb =ax^{2}+{frac {4ac-b^{2}}{4a}}}

Таким образом, {displaystyle fleft({frac {-b}{2a}}+xright)=fleft({frac {-b}{2a}}-xright)}, поэтому график функции симметричен относительно прямой {displaystyle x={frac {-b}{2a}}}.

Вычисление вершины параболы с помощью нулей функции[править | править код]

Нули функции расположены симметрично к оси, проходящей через вершину параболы параллельно оси ординат

Так как ось симметрии параболы всегда проходит через её вершину, то, очевидно, что нули квадратичной функции также всегда симметричны относительно абсциссы вершины параболы. Этот факт позволяет легко вычислить координаты вершины параболы с помощью известных нулей функции. В поле действительных чисел этот способ действует только тогда, когда парабола пересекает ось абсцисс или касается её, то есть имеет нули из действительной области.

В случае, когда квадратичная функция имеет лишь один нуль (кратности 2), то он, очевидно, сам и является вершиной параболы. Если же парабола имеет нули x_{1} и x_{2}, то абсцисса x_{0} её вершины легко вычисляется как среднее арифметическое нулей функции. Ордината вершины вычисляется путём подстановки её абсциссы в исходное уравнение функции:

{displaystyle x_{0}={frac {x_{1}+x_{2}}{2}}}
{displaystyle y_{0}=f(x_{0})}

Особенно удобным этот способ будет в случае, когда квадратичная функция заданна в её факторизированном виде. Так, например, парабола функции {displaystyle f(x)=2(x-1)(x+3)} будет иметь вершину со следующими координатами:

{displaystyle x_{0}={frac {1+(-3)}{2}}=-1}
{displaystyle y_{0}=f(-1)=2(-1-1)(-1+3)=-8}

При этом даже не требуется преобразовывать уравнение функции к общему виду.

Исследование методами дифференциального и интегрального анализа[править | править код]

Производная и первообразная[править | править код]

Квадратичная функция (красный график), её производная (синий) и первообразная (чёрный)

Угловой коэффициент касательной параболы в точке x=0 равен коэффициенту b в записи уравнения квадратичной функции; в данном случае b=1

Как и любая целая рациональная функция квадратичная функция {displaystyle f(x)=ax^{2}+bx+c} дифференцируема во всей своей области определения. Её производная легко находится с помощью элементарных правил дифференцирования: {displaystyle f'(x)=2ax+b}. Таким образом, видим, что производной квадратичной функции является линейная функция, которая либо строго монотонно возрастает (если a>0), либо строго монотонно убывает (если a<0) на всей области определения. При этом также нетрудно заметить, что {displaystyle f'(0)=b}, что означает, что коэффициент {displaystyle f'(0)=b} в уравнении исходной функции равен угловому коэффициенту параболы в начале координат.

Квадратичная функция как и любая целая рациональная функция также и интегрируема во всей своей области определения. Её первообразная, очевидно, является кубической функцией:

{displaystyle F(x)=int (ax^{2}+bx+c)dx={frac {a}{3}}x^{3}+{frac {b}{2}}x^{2}+cx+d}, где {displaystyle din mathbb {R} }.

Монотонность и точки экстремума[править | править код]

Очевидно, что вершина параболы является её наивысшей или наинизшей точкой, то есть абсолютным экстремумом квадратичной функции (минимумом при a>0 и максимумом при a<0). Поэтому абсцисса вершины параболы разбивает область определения функции на два монотонных интервала, на одном из которых функция возрастает, а на другом — убывает. Воспользовавшись методами дифференциального исчисления, с помощью этого факта можно легко вывести простую формулу для вычисления координат вершины параболы, заданной общим уравнением {displaystyle f(x)=ax^{2}+bx+c}, через его коэффициенты.

Согласно необходимому и достаточному условию для существования экстремума, получаем: {displaystyle f'(x)=2ax+b}. При этом f'(x)=0, если {displaystyle x=-b/2a}. Функция {displaystyle f''(x)=2a} является константной функцией, при этом {displaystyle f''>0} при a>0 и {displaystyle f''<0} при a<0. Таким образом, необходимый и достаточный критерий существования экстремума выполняется в точке {displaystyle x_{0}=-b/2a}. Следовательно, имеем координаты вершины:

{displaystyle x_{0}={frac {-b}{2a}}}
{displaystyle y_{0}=f(x_{0})=aleft({frac {-b}{2a}}right)^{2}+bleft({frac {-b}{2a}}right)+c={frac {4ac-b^{2}}{4a}}}

Вершина параболы разбивает область определения квадратичной функции на два монотонных интервала: {displaystyle left(-infty ;{frac {-b}{2a}}right)} и {displaystyle left({frac {-b}{2a}};+infty right)}. При a>0 функция на первом из них является строго монотонно убывающей, а на втором — строго монотонно возрастающей. В случае a<0 — в точности наоборот.

При этом можно вовсе не запоминать данные формулы, а просто каждый раз пользоваться критериями существования экстремума для каждой конкретной квадратичной функции. Или же рекомендуется запоминать только формулу {displaystyle x_{0}=-b/2a} для вычисления абсциссы вершины параболы. Её ордината легко вычисляется в результате подстановки вычисленной абсциссы в конкретное уравнение функции.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5} получаем:

{displaystyle x_{0}={frac {-b}{2a}}={frac {-8}{2cdot 2}}=-2}
{displaystyle y_{0}=f(-2)=2cdot (-2)^{2}+8cdot (-2)+5=-3Rightarrow S(-2;-3)}.

Таким образом, вершина параболы данной функции имеет координаты {displaystyle (-2;-3)}. При этом функция строго монотонно убывает на интервале {displaystyle (-infty ;-2)} и строго монотонно возрастает на интервале {displaystyle (-2;+infty )}

Выпуклость и точки перегиба[править | править код]

Так как вторая производная квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} является константной линейной функцией {displaystyle f''(x)=2a}, то она не имеет точек перегиба, так как её значение постоянно, а соответственно достаточный критерий не будет выполняться ни для какой её точки. Более того, очевидно, что при a>0 исходная квадратичная функция будет всюду выпуклой вниз (ввиду того, что её вторая производная всюду положительна), а при a<0 — всюду выпуклой вверх (её вторая производная будет всюду отрицательной).

Обратимость квадратичной функции[править | править код]

Функция f(x)=x^{2} и обратная ей {displaystyle f^{-1}(x)={sqrt {x}}} на интервале [0, +infty)

Так как квадратичная функция не является строго монотонной функцией, то она является необратимой. Так как любую непрерывную функцию, однако, можно обратить на её интервалах строгой монотонности, то для любой квадратичной функции существуют две обратные функции, соответствующие двум её интервалам монотонности. Обратными для квадратичной функции на каждом из её интервалов монотонности являются функции арифметического квадратного корня[2].

Так, функция арифметического квадратного корня {displaystyle f^{-1}(x)={sqrt {x}}} является обратной к квадратной функции f(x)=x^{2} на интервале [0, +infty). Соответственно, функция {displaystyle f^{-1}(x)=-{sqrt {x}}} является обратной к функции f(x)=x^{2} на интервале {displaystyle (-infty ;0]}. Графики функций f(x) и {displaystyle f^{-1}(x)} будут симметричными друг другу относительно прямой y=x.

Функция {displaystyle f(x)=2x^{2}+8x+5} и обратная к ней на интервале {displaystyle [-2;+infty )} функция {displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2}

Для нахождения обратных функций для произвольной квадратичной функции {displaystyle f(x)=ax^{2}+bx+c} удобнее представить её в форме {displaystyle f(x)=a(x-x_{0})^{2}+y_{0}}, где (x_{0};y_{0}) — вершина её параболы. Далее воспользуемся известным методом для нахождения обратных функций — поменяем местами переменные x и y и снова выразим y через x:

{displaystyle y=a(x-x_{0})^{2}+y_{0}}
{displaystyle x=a(y-x_{0})^{2}+y_{0}}
{displaystyle x-y_{0}=a(y-x_{0})^{2}}
{displaystyle {frac {x-y_{0}}{a}}=(y-x_{0})^{2}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}=y-x_{0}}
{displaystyle pm {sqrt {frac {x-y_{0}}{a}}}+x_{0}=y}

Таким образом, обратной к f(x) на интервале {displaystyle [x_{0};+infty )} является функция {displaystyle f^{-1}(x)={sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

На интервале {displaystyle (-infty ;x_{0}]} обратной к f(x) является функция {displaystyle f^{-1}(x)=-{sqrt {frac {x-y_{0}}{a}}}+x_{0}}.

Например, для функции {displaystyle f(x)=2x^{2}+8x+5=2cdot left(x+2right)^{2}-3} с вершиной {displaystyle (-2;-3)} получаем:

{displaystyle f^{-1}(x)={sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle [-2;+infty )}.
{displaystyle f^{-1}(x)=-{sqrt {frac {x+3}{2}}}-2} на интервале {displaystyle (-infty ;-2]}.

Примеры появления на практике[править | править код]

  • Зависимость высоты свободно падающего тела от времени.
  • Зависимость площади круга от её линейных размеров (например, радиуса).
  • Зависимость расстояния от времени при равноускоренном движении.
  • Зависимость напора от расхода (напорная характеристика центробежного насоса).

Обобщение[править | править код]

Обобщение на случай многих переменных служат поверхности второго порядка, в общем виде такое уравнение можно записать, как:

f({vec  {x}})={vec  {x}}^{T}A{vec  {x}}+{vec  {b}}cdot {vec  {x}}+c.

Здесь: A — матрица квадратичной формы, {vec  {b}} — постоянный вектор, c — константа.
Свойства функции, так же как и в одномерном случае, определяются главным коэффициентом — матрицей A.

См. также[править | править код]

  • Аффинно-квадратичная функция

Примечания[править | править код]

  1. Квадратичная функция // Большая школьная энциклопедия. — М. : «Русское энциклопедическое товарищество», 2004. — С. 118—119.
  2. Rolf Baumann. Quadratwutzelfunktion // Algebra: Potenzfunktionen, Exponential- und Logarithmusgleichungen, Stochastik : [нем.]. — München : Mentor, 1999. — Т. 9. — С. 17—19. — 167 с. — ISBN 3-580-63631-6.

Литература[править | править код]

  • Сканави М.И. График квадратного трёхчлена // Элементарная математика. — 2-е изд., перераб. и доп. — М., 1974. — С. 130—133. — 592 с.
  • Каплан И.А. Тридцать третье практическое занятие (экстремум квадратичной функции) // Практические занятия по высшей математике. — 3-е изд. — Харьков, 1974. — С. 449—451.

Добавить комментарий