Как найти промежутки возрастания убывания по графику

Что такое возрастание функции

В начале прочитаем определение возрастания функции.

Запомните!
!

Функция « y(x) » называется возрастающей на некотором промежутке, если

для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких, что « x2 > x1 »
выполняется неравенство

« y( x2 ) > y( x1 )».

Определение сложно понять без наглядного примера.
Поэтому сразу перейдём к разбору задачи на возрастание функции.

По-другому можно сказать, что, если каждому бóльшему значению « x »
соответствует бóльшее значение « y », значит,
функция « y(x) » возрастает.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Давайте разберем определение возрастания функции на конкретном примере.

Разбор примера

Возрастающей или убывающей является функция « y = 9x − 4 » ?

Для начала определим
область определения функции
« y = 9x − 4 ».

y = 9x − 4
D(y): x ∈ R
,
то есть « x » —
любое действительное число.

Построим график функции
« y = 9x − 4 ».
Так как функция
« y = 9x − 4 »
линейная, ее график — прямая.

Используем правила построения графика линейной функции. Нам достаточно найти две точки, чтобы построить ее график.

Область определения функции
« y = 9x − 4 » — все действительные числа,
поэтому можно подставить любое число вместо « x » и вычислить « y » по
формуле функции
« y = 9x − 4 ». Например, возьмем
« x = 0 ».

x = 0
y(x) = 9x − 4
y(0) = 9 · 0 − 4 = −4

Для второй точки возьмем « x = 1 ».

x = 1
y(x) = 9x − 4
y(1) = 9 · 1 − 4 = 5

Отметим две полученные
точки «(0; −4)» и «(1; 5)» на

координатной плоскости
и проведем через них прямую.

график линейной функции y = 9x - 4

Докажем, что функция
« y = 9x − 4 » возрастает на всей своей области определения двумя способами: по ее графику и
аналитически
(по ее формуле).

Как определить по графику, что функция возрастает

По определению возрастания функции мы знаем, что
если « x » увеличивается,
то « y » тоже должен увеличиваться.

На рисунке ниже видно, что график функции « y = 9x − 4 »
«идет в гору». Другими словами, при увеличении « x »
растет
значение « y » .

график линейной функции возрастает

В этом можно убедиться, если взять две любые точки на графике. Например, точки, по
которым мы построили график функции. Назовем эти точки:
« (·)A » и « (·)B ».

точки А и В на графике

У первой точки « (·)A »
координаты:
x1 = 0 ;   y1 = − 4

У второй точки « (·)B » координаты:
x2 = 1 ;   y2 = 5

На примере точек « (·)A » и « (·)B » видно, что
при увеличении
« x ( x2 > x1 )»
растет
« y ( y2 > y1 ) ».
Поэтому график зрительно «идет в гору».

Как по формуле доказать, что функция возрастает

Вернёмся к нашей функции
« y = 9x − 4 ».

По графику мы поняли, что
функция « y = 9x − 4 » возрастает,
так как ее график «идет в гору».
Но как доказать по формуле, что функция
возрастает на всей своей области определения?

Запомните!
!

Функция возрастает на всей области определения, когда при
« x2 > x1 »
выполняется условие
« y( x2 ) > y( x1 ) ».

Формулировка выше не самая простая для понимания. Давайте разберем ее на практике.

По определению возрастания функции нам нужно доказать, что при
« x2 > x1 » увеличивается значение функции
« y( x2 ) > y( x1 ) ».

Но как нам найти значения функции
« y( x1 )» и
«y( x2 ) »?

Для нахождения « y( x1 )» и
«y( x2 ) »

достаточно подставить « x1 » и
« x2 » в исходную формулу « y = 9x − 4 ».

y( x1 ) = 9x1 − 4
y( x2 ) = 9x2 − 4

Теперь запишем обязательное условие возрастания функции.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Подставим в неравенство
« y( x2 ) >
y( x1 ) » полученные формулы

« y( x1 ) = 9x1 − 4» и
« y( x2 ) = 9x2 − 4 » .

y( x2 ) > y( x1 )
9x2 − 4 > 9x1 − 4

Упростим полученное
неравенство.

9x2 − 9x1 > − 4 + 4
9x2 − 9x1 > 0

Вынесем общий множитель
в левой части неравенства.

9(x2 − x1) > 0

Разделим левую и правую часть на «9».

При делении нуля на любое число получается ноль.

x2 − x1 > 0
x2 > x1

Мы доказали, что выполняется исходное условие возрастания функции «x2 > x1».
Отсюда следует, что функция
« y = 9x − 4 » возрастает на всей области определения.

В завершении вместо ответа следует написать фразу:
«Что и требовалось доказать».


Посмотрим другой пример, где требуется доказать, что функция возрастает.

Разбор примера

Доказать, что функция возрастает на всей области определения: y = 13x − 1

По аналогии с предыдущим примером составим неравенства, которые доказывают, что функция возрастает.

x2 > x1
y( x2 ) > y( x1 )

Обязательное условие возрастания функции

Вместо « y( x1 )» и
«y( x2 ) » запишем
формулу функции « y = 13x − 1 » и упростим полученное неравенство.

y( x2 ) > y( x1 )

13x2 − 1 > 13x1 − 1

13x2 − 13x1 > 1 − 1

13(x2 − x1) > 0 |: 13

>

x2 − x1 > 0

x2 > x1

Что и требовалось доказать.

Что такое убывание функции

Запомните!
!

Функция « y(x) » называется убывающей на некотором промежутке, если для любых
« x1 » и « x2 »
принадлежащих данному промежутку, таких,
что « x2 > x1 »
выполняется неравенство « y( x2 ) < y( x1 )».

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Как по графику понять, что функция убывает

Разбор примера

Доказать, что функция убывает на всей области определения: y = 1 − 3x

По определению убывания функции мы знаем, что,
если « x »
растет, то
« y » должен уменьшаться.

Построим график функции
« y = 1 − 3x ». Ее график — прямая, поэтому нам будет достаточно двух точек.

Область определения функции
« y = 1 − 3x » — все действительные числа,
поэтому можно поставить любое число вместо « x » и вычислить « у » по
формуле функции
« y = 1 − 3x ». Например, возьмем
« x = 0 »
и « x = 1 ».

x = 0
y(x) = 1 − 3x
y(0) = 1 − 3 · 0 = 1

(·) А (0; 1)

x = 1
y(1) = 1 − 3x
y(1) = 1 − 3 · 1 = 1 − 3 = −2

(·) B (1; −2)

Построим график функции
« y = 1 − 3x » по полученным точкам
« (·)A » и « (·)B ».

график линейной функции y = 1 - 3x

На графике функции видно, что зрительно график «спускается с горы», то есть функция убывает. Другими словами, при увеличении
« x »
уменьшается
значение
« y » .

Как по формуле доказать, что функция убывает

Вернёмся к нашей функции
« y = 1 − 3x ».

По ее графику мы поняли, что функция убывает, так как график «спускается с горы». Но как доказать по формуле,
что функция « y = 1 − 3x » убывает на всей области определения?

Запомните!
!

Чтобы доказать, что функция убывает требуется доказать, что при любых
« x2 > x1 » выполняется

« y( x2 ) < y( x1 ) ».

Давайте разберем на примере функции
« y = 1 − 3x ». Докажем, что она убывает
на всей своей области определения.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Подставим « y( x1 )» и
«y( x2 ) » в
формулу функции « y = 1 − 3x » и упростим полученное неравенство.

y( x2 ) < y( x1 )

1 − 3x2 < 1 − 3x1

3x1 − 3x2 < 1 − 1

3(x1 − x2) < 0 | :3

<

x1 − x2 < 0

−x2 < −x1

Умножим на « −1 » левую и правую часть неравенства. При
умножении неравенства на отрицательное число знак неравенства поменяется на
противоположный.

−x2 < −x1 | · (−1)

x2 > x1

Что и требовалось доказать.

Как по графику функции определить
возрастание и убывание

Потренируемся только по графику функции определять промежутки возрастания и убывания функции.

Разбор примера

На рисунке ниже изображён график функции, определенной на множестве действительных чисел.
Используя график, найдите промежутки возрастания и промежутки убывания функции.

Как по графику функции определить возрастает или убывает функция

Отметим с помощью штриховых линий промежутки, где график функции убывает
(«спускается с горы») и где он возрастает («идет в гору»).

промежутки возрастания и убывания функции

Запишем через знаки неравенств,
какие значения принимает « x » на полученных промежутках.
Обратите внимание, что во всех случаях при указании промежутков, мы указываем, что их
концы входят в промежуток, то есть используем знаки нестрогого неравенства.

промежутки возрастания и убывания функции через неравенства

Остаётся записать полученные промежутки возрастания и убывания функции в ответ.

Ответ:

  • функция убывает при
       x ≤ −2;     0 ≤ x ≤ 3,5
  • функция возрастает при
        −2 ≤ x ≤ 0 ;     x ≥ 3,5

Более грамотно будет записать ответ с помощью специальных
математических символов.

Ответ:

  • функция убывает на промежутках    
    x ∈ (−∞ ; −2] ∪ [0; 3,5]
  • функция возрастает на промежутках     x ∈ [−2 ; 0] ∪ [3,5 ; +∞]

При каких значениях
« m »
функция является убывающей или возрастающей

Ещё один тип заданий, в которых требуется определить,
при каких
« m » ( « а, b » или других буквах) функция убывает или возрастает.

Разбор примера

При каких значениях « m » функция

« y = mx − m − 3 + 2x » является убывающей?

Обратимся снова к определению убывания функции. Вспомним, как записать условия убывания функции с точки зрения формул.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Запишем эти условия, используя формулу функции « y = mx − m − 3 + 2x », заданную в
задаче. Вместо
« x »
подставим « x1 » и « x2 ».

y( x2 ) < y( x1 )

mx2 − m − 3 + 2x2 < mx1 − m − 3 + 2x1

Упростим полученное неравенство. Перенесем из правой части все члены неравенства в левую часть с противоположными знаками.


mx2 − m − 3 + 2x2 mx1
+ m
+ 3
2x1
< 0

Упростим полученное выражение. Некоторые члены неравенства взаимоуничтожатся.


mx2 − mx1
− m + m − 3 + 3 + 2x2 − 2x1

< 0

mx2 − mx1 + 2x2 − 2x1

< 0

Вынесем общие множители за скобки.

m( x2 − x1) + 2(x2 − x1)

< 0

Теперь
вынесем общий множитель

« ( x2 − x1 ) ».

( x2 − x1) (m + 2)

< 0

Вспомним обязательное условие убывания функции.

x2 > x1
y( x2 ) < y( x1 )

Обязательное условие убывания функции

Преобразуем исходное условие убывания функции « x2 > x1 ».
Перенесем все в левую часть.

x2 > x1

x2 − x1 > 0

По условию убывания функции
« x2 − x1 > 0 »,
значит, чтобы
произведение
«( x2 − x1) (m + 2)

» было меньше нуля, требуется, чтобы множитель «(m + 2)» был меньше нуля. Так как по
правилу знаков:
плюс на минус даёт минус.

+ · < 0
(x2 − x1) · (m + 2) < 0

Решим полученное неравенство.

m + 2 < 0
m < −2

Ответ: при «m < −2» функция
« y = mx − m − 3 + 2x »
является убывающей.


Ваши комментарии

Важно!
Галка

Чтобы оставить комментарий, вам нужно войти на наш сайт при помощи

«ВКонтакте».

Пришелец пожимает плечами

Оставить комментарий:


Чтобы определить характер функции  и говорить о ее поведении, необходимо находить промежутки возрастания и убывания. Этот процесс получил название исследования функции и построения графика. Точка экстремума используется при нахождении наибольшего и наименьшего значения функции, так как в них происходит возрастание или убывание функции из интервала.

Данная статья раскрывает определения, формулируем достаточный признак возрастания и убывания на интервале и условие существования экстремума. Это применимо к решению примеров  и задач. Следует повторить раздел дифференцирования функций, потому как при решении необходимо будет использовать нахождение производной.

Возрастание и убывание функции на интервале

Определение 1

Функция y=f(x) будет возрастать на интервале x, когда при любых x1∈X и x2∈X , x2>x1неравенство f(x2)>f(x1) будет выполнимо. Иначе говоря, большему значению аргумента соответствует большее значение функции.

Определение 2

Функция y=f(x) считается убывающей на интервале x, когда при любых x1∈X, x2∈X, x2>x1  равенство f(x2)>f(x1) считается выполнимым. Иначе говоря, большему значению функции соответствует меньшее значение аргумента. Рассмотрим рисунок, приведенный ниже.

Возрастание и убывание функции на интервале

Замечание: Когда функция определенная и непрерывная в концах интервала возрастания и убывания, то есть (a;b), где х=а, х=b, точки включены в промежуток возрастания и убывания. Определению это не противоречит, значит, имеет место быть на промежутке x.

Основные свойства элементарных функций типа y=sinx – определенность и непрерывность  при действительных значениях аргументах. Отсюда получаем, что возрастание синуса происходит на интервале -π2; π2, тогда возрастание на отрезке имеет вид -π2; π2.

Точки экстремума, экстремумы функции

Определение 3

Точка х0 называется точкой максимума для функции y=f(x), когда для всех значений x неравенство f(x0)≥f(x) является справедливым. Максимум функции – это значение функции в точке, причем обозначается ymax.

Точка х0 называется точкой минимума для функции y=f(x), когда для всех значений x неравенство f(x0)≤f(x) является справедливым. Минимум функции – это значение функции в точке, причем имеет обозначение вида ymin.

Окрестностями точки х0 считаются точки экстремума, а значение функции, которое соответствует точкам экстремума. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Экстремумы функции с набольшим и с наименьшим значением функции. Рассмотрим рисунок, приведенный ниже.

Точки экстремума, экстремумы функции

Первый рисунок говорит о том, что необходимо найти наибольшее значение функции из отрезка [a;b]. Оно находится при помощи точек максимума и равняется максимальному значению функции, а второй рисунок больше походит на поиск точки максимума при х=b.

Достаточные условия возрастания и убывания функции

Чтобы найти максимумы и минимумы функции, необходимо применять признаки экстремума в том случае, когда функция удовлетворяет этим условиям. Самым часто используемым считается первый признак.

Первое достаточное условие экстремума

Определение 4

Пусть задана функция y=f(x), которая дифференцируема в ε окрестности точки x0, причем имеет непрерывность в заданной точке x0. Отсюда получаем, что

  • когда f'(x)>0 с x∈(x0-ε; x0) и f'(x)<0 при x∈(x0; x0+ε), тогда x0 является точкой максимума;
  • когда f'(x)<0 с x∈(x0-ε; x0) и f'(x)>0 при x∈(x0; x0+ε), тогда x0 является точкой минимума.

Иначе говоря, получим их условия постановки знака:

  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком, то есть с + на -, значит, точка называется максимумом;
  • когда функция непрерывна в точке x0, тогда имеет производную с меняющимся знаком с – на +, значит, точка называется минимумом.

Алгоритм для нахождения точек экстремума

Чтобы верно определить точки максимума и минимума функции, необходимо следовать алгоритму их нахождения:

  • найти область определения;
  • найти производную функции на этой области;
  • определить нули и точки, где функция не существует;
  • определение знака производной на интервалах;
  • выбрать точки, где функция меняет знак.

Рассмотрим алгоритм на примере решения нескольких примеров на нахождение экстремумов функции.

Пример 1

Найти точки максимума и минимума заданной функции y=2(x+1)2x-2.

Решение

Область определения данной функции – это все действительные числа кроме х=2. Для начала найдем производную функции и получим:

y’=2x+12x-2’=2·x+12’·(x-2)-(x+1)2·(x-2)'(x-2)2==2·2·(x+1)·(x+1)’·(x-2)-(x+1)2·1(x-2)2=2·2·(x+1)·(x-2)-(x+2)2(x-2)2==2·(x+1)·(x-5)(x-2)2

Отсюда видим, что нули функции – это х=-1, х=5, х=2, то есть каждую скобку необходимо приравнять к нулю. Отметим на числовой оси и получим:

Алгоритм для нахождения точек экстремума

Теперь определим знаки производной из каждого интервала. Необходимо выбрать точку, входящую в интервал, подставить в выражение. Например, точки х=-2, х=0, х=3, х=6.

Получаем, что

y'(-2)=2·(x+1)·(x-5)(x-2)2x=-2=2·(-2+1)·(-2-5)(-2-2)2=2·716=78>0, значит, интервал -∞; -1 имеет положительную производную. Аналогичным образом получаем, что

y'(0)=2·(0+1)·0-50-22=2·-54=-52<0y'(3)=2·(3+1)·(3-5)(3-2)2=2·-81=-16<0y'(6)=2·(6+1)·(6-5)(6-2)2=2·716=78>0

Так как второй интервал получился меньше нуля, значит, производная на отрезке будет отрицательной. Третий  с минусом, четвертый с плюсом. Для определения непрерывности необходимо обратить внимание на знак производной, если он меняется, тогда это точка экстремума.

Получим, что в точке х=-1 функция будет непрерывна, значит, производная изменит знак с + на -. По первому признаку имеем, что х=-1 является точкой максимума, значит получаем

ymax=y(-1)=2·(x+1)2x-2x=-1=2·(-1+1)2-1-2=0

Точка х=5 указывает на то, что функция является непрерывной, а производная поменяет знак с – на +. Значит, х=-1 является точкой минимума, причем ее нахождение имеет вид

ymin=y(5)=2·(x+1)2x-2x=5=2·(5+1)25-2=24

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ: ymax=y(-1)=0, ymin=y(5)=24.

Стоит обратить внимание на то, что использование первого достаточного признака экстремума не требует дифференцируемости функции с точке x0, этим и упрощает вычисление.

Пример 2

Найти точки максимума и минимума функции y=16×3=2×2+223x-8.

Решение.

Область определения функции – это все действительные числа. Это можно записать в виде системы уравнений вида:

-16×3-2×2-223x-8, x<016×3-2×2+223x-8, x≥0

После чего необходимо найти производную:

y’=16×3-2×2-223x-8′, x<016×3-2×2+223x-8′, x>0y’=-12×2-4x-223, x<012×2-4x+223, x>0

Точка х=0 не имеет производной, потому как значения односторонних пределов разные. Получим, что:

lim y’x→0-0=lim yx→0-0-12×2-4x-223=-12·(0-0)2-4·(0-0)-223=-223lim y’x→0+0=lim yx→0-012×2-4x+223=12·(0+0)2-4·(0+0)+223=+223

Отсюда следует, что функция непрерывна в точке х=0, тогда вычисляем

lim yx→0-0=limx→0-0-16×3-2×2-223x-8==-16·(0-0)3-2·(0-0)2-223·(0-0)-8=-8lim yx→0+0=limx→0-016×3-2×2+223x-8==16·(0+0)3-2·(0+0)2+223·(0+0)-8=-8y(0)=16×3-2×2+223x-8x=0=16·03-2·02+223·0-8=-8

Необходимо произвести вычисления для нахождения значения аргумента, когда производная становится равной нулю:

-12×2-4x-223, x<0D=(-4)2-4·-12·-223=43×1=4+432·-12=-4-233<0x2=4-432·-12=-4+233<0

12×2-4x+223, x>0D=(-4)2-4·12·223=43×3=4+432·12=4+233>0x4=4-432·12=4-233>0

Все полученные точки нужно отметить на прямой для определения знака каждого интервала. Поэтому необходимо вычислить производную в произвольных точках у каждого интервала. Например, у нас можно взять точки со значениями x=-6, x=-4, x=-1, x=1, x=4, x=6. Получим, что

y'(-6)=-12×2-4x-223x=-6=-12·-62-4·(-6)-223=-43<0y'(-4)=-12×2-4x-223x=-4=-12·(-4)2-4·(-4)-223=23>0y'(-1)=-12×2-4x-223x=-1=-12·(-1)2-4·(-1)-223=236<0y'(1)=12×2-4x+223x=1=12·12-4·1+223=236>0y'(4)=12×2-4x+223x=4=12·42-4·4+223=-23<0y'(6)=12×2-4x+223x=6=12·62-4·6+223=43>0

Изображение на прямой имеет вид

Алгоритм для нахождения точек экстремума

Значит, приходим к тому, что необходимо прибегнуть к первому признаку экстремума. Вычислим и получим, что

x=-4-233, x=0, x=4+233, тогда отсюда точки максимума имеют значениx=-4+233, x=4-233

Перейдем к вычислению минимумов:

ymin=y-4-233=16×3-22+223x-8x=-4-233=-8273ymin=y(0)=16×3-22+223x-8x=0=-8ymin=y4+233=16×3-22+223x-8x=4+233=-8273

Произведем вычисления максимумов функции. Получим, что

ymax=y-4+233=16×3-22+223x-8x=-4+233=8273ymax=y4-233=16×3-22+223x-8x=4-233=8273

Графическое изображение

Алгоритм для нахождения точек экстремума

Ответ:

ymin=y-4-233=-8273ymin=y(0)=-8ymin=y4+233=-8273ymax=y-4+233=8273ymax=y4-233=8273

Второй признак экстремума функции

Если задана функция f'(x0)=0, тогда при ее f”(x0)>0 получаем, что x0 является точкой минимума, если f”(x0)<0, то точкой максимума. Признак связан с нахождением производной в точке x0.

Пример 3

Найти максимумы и минимумы функции y=8xx+1.

Решение

Для начала находим область определения. Получаем, что

D(y): x≥0x≠-1⇔x≥0

Необходимо продифференцировать функцию, после чего получим

y’=8xx+1’=8·x’·(x+1)-x·(x+1)'(x+1)2==8·12x·(x+1)-x·1(x+1)2=4·x+1-2x(x+1)2·x=4·-x+1(x+1)2·x

При х=1 производная становится равной нулю, значит, точка является возможным экстремумом. Для уточнения необходимо найти вторую производную и вычислить значение  при х=1. Получаем:

y”=4·-x+1(x+1)2·x’==4·(-x+1)’·(x+1)2·x-(-x+1)·x+12·x'(x+1)4·x==4·(-1)·(x+1)2·x-(-x+1)·x+12’·x+(x+1)2·x'(x+1)4·x==4·-(x+1)2x-(-x+1)·2x+1(x+1)’x+(x+1)22x(x+1)4·x==-(x+1)2x-(-x+1)·x+1·2x+x+12x(x+1)4·x==2·3×2-6x-1x+13·x3⇒y”(1)=2·3·12-6·1-1(1+1)3·(1)3=2·-48=-1<0

Значит, использовав 2 достаточное условие экстремума, получаем, что х=1 является точкой максимума. Иначе запись имеет вид ymax=y(1)=811+1=4.

Графическое изображение

Второй признак экстремума функции

Ответ: ymax=y(1)=4..

Третье достаточное условие экстремума

Определение 5

Функция y=f(x) имеет ее производную до n-го порядка  в ε окрестности заданной точки x0 и производную до n+1-го порядка в точке x0. Тогда f'(x0)=f”(x0)=f”'(x0)=…=fn(x0)=0.

Отсюда следует, что когда n является четным числом, то x0 считается точкой перегиба, когда n является нечетным числом, то x0 точка экстремума, причем f(n+1)(x0)>0, тогда x0 является точкой минимума, f(n+1)(x0)<0, тогда x0 является точкой максимума.

Пример 4

Найти точки максимума и минимума функции yy=116(x+1)3(x-3)4.

Решение

Исходная функция – целая рациональная, отсюда следует, что область определения – все действительные числа. Необходимо продифференцировать функцию. Получим, что

y’=116x+13′(x-3)4+(x+1)3x-34’==116(3(x+1)2(x-3)4+(x+1)34(x-3)3)==116(x+1)2(x-3)3(3x-9+4x+4)=116(x+1)2(x-3)3(7x-5)

Данная производная обратится в ноль при x1=-1, x2=57, x3=3. То есть точки могут быть точками возможного экстремума. Необходимо применить третье достаточное условие экстремума. Нахождение второй производной позволяет в точности определить наличие максимума и минимума функции. Вычисление второй производной производится в точках ее возможного экстремума. Получаем, что

y”=116x+12(x-3)3(7x-5)’=18(x+1)(x-3)2(21×2-30x-3)y”(-1)=0y”57=-368642401<0y”(3)=0

Значит, что x2=57 является точкой максимума. Применив 3 достаточный признак, получаем, что при n=1 и f(n+1)57<0.

Необходимо определить характер точек x1=-1, x3=3. Для этого необходимо найти третью производную, вычислить значения в этих точках. Получаем, что

y”’=18(x+1)(x-3)2(21×2-30x-3)’==18(x-3)(105×3-225×2-45x+93)y”'(-1)=96≠0y”'(3)=0

Значит, x1=-1 является точкой перегиба функции, так как при n=2 и f(n+1)(-1)≠0. Необходимо исследовать точку x3=3. Для этого находим 4 производную и производим вычисления в этой точке:

y(4)=18(x-3)(105×3-225×2-45x+93)’==12(105×3-405×2+315x+57)y(4)(3)=96>0

Из выше решенного делаем вывод, что x3=3 является точкой минимума функции.

Графическое изображение

Третье достаточное условие экстремума

Ответ: x2=57 является точкой максимума, x3=3 – точкой минимума заданной функции.

Алгебра и начала математического анализа, 11 класс

Урок №15. Возрастание и убывание функции.

Перечень вопросов, рассматриваемых в теме

1) Нахождение промежутков монотонности функции,

2) Определение алгоритма нахождения промежутков возрастания и убывания функции,

3) Решение задачи на нахождения промежутков возрастания и убывания функции

Глоссарий по теме

Алгоритм нахождения промежутков возрастания и убывания функции y = f(x)

  1. Найти D(f)
  2. Найти f‘(x).
  3. Определить, при каких значениях хf‘(x) ≥ 0 (на этих промежутках функция возрастает); при каких значениях х f‘(x) ≤ 0 (на этих промежутках функция убывает))

Основная литература:

Колягин Ю.М., Ткачева М.В, Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Орлова Е. А., Севрюков П. Ф., Сидельников В. И., Смоляков А.Н. Тренировочные тестовые задания по алгебре и началам анализа для учащихся 10-х и 11-х классов: учебное пособие – М.: Илекса; Ставрополь: Сервисшкола, 2011.

Теоретический материал для самостоятельного изучения

1. Функция y = f(x), определенная на промежутке Х, называется возрастающей на этом промежутке, если для любой пары чисел х1 и х2 из этого промежутка из неравенства х1< х2 следует неравенство f(x1) <f(x2)

2. Функция y = f(x), определенная на промежутке Х, называется убывающей на этом промежутке, если для любой пары чисел х1 и х2 из этого промежутка из неравенства х1< х2 следует неравенство f(x1) >f(x2)

Теоремы

  1. Если во всех точках открытого промежутка Х выполняется неравенство f‘(x) ≥ 0 (причем равенство f‘(x) = 0 либо не выполняется, либо выполняется лишь в конечном множестве точек),то функция y = f(x) возрастает на промежутке Х.
  2. Если во всех точках открытого промежутка Х выполняется неравенство f‘(x) ≤ 0 (причем равенство f‘(x) = 0 либо не выполняется, либо выполняется лишь в конечном множестве точек),то функция y = f(x) убывает на промежутке Х.

Примеры и разбор решения заданий тренировочного модуля

№1. Определите промежутки монотонности функции

у = -3х3 + 4х2 + х – 10.

Решение

1.Найдем область определения функции.

D(y) =

2.Найдем производную функции.

y’ = (x – 1)(-9x – 1)

3.Определим, на каких промежутках производная положительна (на этих промежутках функция возрастает), на каких – отрицательна (на этих промежутках функция убывает).

Применим для этого метод интервалов. Для определения знака на каждом промежутке подставим произвольное значение из этого промежутка в выражение для производной.

Так как на интервале производная функции отрицательна, то на этом интервале функция убывает.

Так как на интервале производная функции положительна, то на этом интервале функция возрастает.

Так как на интервале производная функции отрицательна, то на этом интервале функция убывает.

Так как в точках функция непрерывна, то эти точки входят в промежутки возрастания и убывания данной функции.

Следовательно, функция возрастает на ; функция убывает на и на .

Ответ: Функция возрастает на

Функция убывает на и на .

№2. Определите промежутки монотонности функции

у = х5–5х4 +5х3 – 4.

Решение:

y =

  1. Функция возрастает на ; функция убывает на .

Ответ: Функция возрастает на ;

функция убывает на .

Каждый из нас встречался с разными графиками, как на уроках, так и в жизни. Например, рассматривали, как изменяется температура воздуха в определенный период времени.

Свойства функции

На рисунке видно, что температура воздуха была отрицательной с 0 часов до 6 часов, а также с 20 до 24 часов. Еще можем сказать, что температура повышалась до 14 часов, а затем понижалась. То есть по данному графику мы смогли определить некоторые свойства зависимости температуры воздуха от времени суток.

Остановимся подробнее на свойствах функций.

Нули функции

Определение

Нули функции – это значение аргумента, при которых функция обращается в нуль. Если смотреть нули функции на графике, то берем точки, где график пересекает ось х.

Рисунок 2

На рисунке он пересекает ось х при х=-1; х=4; х=6. Эти точки пересечения выделены красным цветом.
Внимание!

Существует функция, которая не будет иметь нули функции. Это гипербола. Вспомним, что функция имеет вид у=k/x, где х не равное 0 число.

График функции у=k/x выглядит следующим образом:

Рисунок 3

По данному рисунку видно, что нулей функции не существует.
Как найти нули функции?

  1. Для того чтобы найти нули функции, которая задана формулой, надо подставить вместо у число нуль и решить полученное уравнение.
  2. Если график функции дан на рисунке, то ищем точки пересечения графика с осью х.

Рассмотрим примеры нахождения нулей функции.

Пример №1. Найти нули функции (если они существуют):

а) у= –11х +22

б) у= (х + 76)(х – 95)

в) у= – 46/х

а) Для нахождения нулей функции необходимо в данную формулу вместо у подставить число 0, так как координаты точки пересечения графика с осью х (х;0). Нам нужно найти значение х. Получаем 0 = –11х +12. Решаем уравнение. Переносим слагаемое, содержащее переменную, в левую часть, меняя знак на противоположный: 11х=22

Находим х, разделив 22 на 11: х=22:11

Получим х=2.

Таким образом, мы нашли нуль функции: х=2

б) Аналогично во втором случае. Подставляем вместо у число 0 и решаем уравнение вида 0=(х + 76)(х – 95). Вспомним, что произведение двух множителей равно 0 тогда и только тогда, когда хотя бы один из множителей равен 0. Таким образом, так как у нас два множителя, составляем два уравнения: х + 76 = 0 и х – 95 = 0. Решаем каждое, перенося числа 76 и -95 в правую часть, меняя знаки на противоположные. Получаем х = – 76 и х = 95. Значит, нули функции это числа (-76) и 95.

в) в третьем случае: если вместо у подставить 0, то получится 0 = – 46/х, где для нахождения значения х нужно будет -46 разделить на нуль, что сделать невозможно. Значит, нулей функции в этом случае нет.

Пример №2. Найти нули функции у=f(x) по заданному графику.

Рисунок 4

Находим точки пересечения графика с осью х и выписываем значения х в этих точках. Это (-4,9); (-1,2); 2,2 и 5,7. У нас на рисунке точки пересечения выделены красным цветом.

Промежутки знакопостоянства

Определение

Промежутки, где функция сохраняет знак (то есть значение y либо положительное на этом промежутке, либо отрицательное), называется промежутками знакопостоянства.

Рисунок 5

Рассмотрим по нашему рисунку, на какие промежутки разбивается область определения данной функции [-3; 7] ее нулями. По графику видно, что это 4 промежутка: [-3; -1), (-1;4), (4; 6) и (6; 7]. Помним, что значения из области определения смотрим по оси х.

На рисунке синим цветом выделены части графика в промежутках [-3; -1) и (4; 6), которые расположены ниже оси х. Зеленым цветом выделены части графика в промежутках (-1;4) и (6; 7], которые расположены выше оси х.

Значит, что в промежутках [-3; -1) и (4; 6) функция принимает отрицательные значения, а в промежутках (-1;4) и (6; 7] она принимает положительные значения. Это и есть промежутки знакопостоянства.

Пример №3. Найдем промежутки знакопостоянства по заданному на промежутке [-2; 10] графику функции у=f(x).

Рисунок 6

Функция принимает положительные значения в промежутках [-2; -1) и (3; 8). Обратите внимание, что эти части на рисунке выделены зеленым цветом.

Функция принимает отрицательные значения в промежутках (-1; 3) и (8; 10]. Обратите внимание на линии синего цвета.

Возрастание и убывание функции

Значения функции могут уменьшаться или увеличиваться. Это зависит от того, как изменяются значения х. Рассмотрим это свойство по рисунку.

Рисунок 7

На графике видно, что с увеличением значения х от -3 до 2 значения у тоже увеличиваются. Также с увеличением значения х от 5 до 7 значения у опять увеличиваются. Проще говоря, слева направо график идет вверх (синие линии). То есть в промежутках [-3; 2] и [5; 7] функция у=f(x) является возрастающей.

Посмотрим на значения х, которые увеличиваются от 2 до 5. В этом случае значения у уменьшаются. На графике эта часть выделена зеленым цветом. Слева направо эта часть графика идет вниз. То есть в промежутке [2;5] функция у=f(x) является убывающей.

Определение

Функция называется возрастающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует большее значение функции; функция называется убывающей в некотором промежутке, если большему значению аргумента из этого промежутка соответствует меньшее значение функции.

Даниил Романович | Просмотров: 16k

План урока:

Возрастание и убывание функций

Промежутки монотонности основных функций

Свойства монотонных функций

Четные и нечетные функции

Свойства четных и нечетных функций

Ограниченные и неограниченные функции

Квадратичная функция

Возрастание и убывание функций

Посмотрим на график произвольной функции:

1yrtghf

Видно, что область определения ф-ции – это промежуток [– 6; 4].

На графике сначала ф-ция как бы «поднимается». При увеличении х растет значение у. Так происходит до точки (1; 5). После этого ситуация меняется, при увеличении аргумента значение ф-ции начинает падать. В математике принято говорить, что ф-ция возрастает на промежутке [– 6; 1] и функция убывает на промежутке [1; 4]. Можно сказать и иначе – ф-ция у является возрастающей функцией на множестве [– 6; 1] и убывающей функцией на множестве [1; 4].

2gdfgd

Рассмотрим это определение возрастающей функции подробнее. Построим произвольную возрастающую ф-цию и выберем на ней две точки со значениями аргумента х1 и х2. Также отметим значения ф-ции в этих точках, у(х1) и у(х2):

3hfgghd

По определению, если х1 меньше х2, то и у(х1) <у(х2). Другими словами, из двух точек та, которая располагается левее (то есть имеет меньшее значение х), будет одновременно располагаться и ниже, (то есть иметь меньшее значение у).

Мы видим возрастание функции на промежутке [– 6; 5]. Однако она также будет возрастать и на любом другом промежутке, который является частью отрезка [– 6; 5]. Например, можно сказать, что она возрастает на промежутке [1; 3] или [– 2; 0].

Аналогично дается и определение убывающей ф-ции:

4dghd

По сравнению с определением возрастающей ф-ции изменился лишь один символ, в последнем неравенстве для у(х1) и у(х2) стоит знак «больше» а не меньше. Покажем пример убывания функции.

5fjgd

Заметим, что в приведенных определениях используются строгие неравенства со знаками «>»и «<». Однако в математике используются и нестрогие неравенства, содержащие знаки «≤» и «≥». С их использованием можно записать ещё 2 определения:

9 1 1

 9 1 2

Приведем пример неубывающей ф-ции:

8fsdg

Здесь х1<x2<x3<x4. Видно, что, например, у(х1) <у(х2). Однако у(х2) = у(х3). Получается, что на графике ф-ции есть плоская «площадка» на промежутке [1; 3]. Для всех значений х из этого промежутка у = 3,5. Из-за этой площадки ф-цию нельзя считать строго возрастающей.

Теперь покажем пример невозрастающей ф-ции:

9gfgs

Здесь также есть плоские «площадки», из-за которых ф-цию нельзя считать просто убывающей.

Ясно, что всякая возрастающая ф-ция является неубывающей, а каждая убывающая ф-ция одновременно считается и невозрастающей.

В математике часто вместо всех этих терминов используют понятие монотонности. Дадим определение монотонной функции:

10gfdfh

Если же ф-ция убывает или возрастает на промежутке (то есть не имеет плоской площадки), то говорят, что она строго монотонна.

11fdsdfa

Рассмотрим ф-цию, изображенную на рисунке:

12gfdgs

Ф-ция возрастает на промежутках [– 6; –2] и [3; 4,5], а также убывает на промежутках [– 2; 1,5] и [2,5; 3]. Значит, на каждом из этих промежутков ф-ция строго монотонна. На отрезке [-2; 3] ф-ция невозрастающая, поэтому здесь она просто монотонна. Любой промежуток, на котором ф-ция монотонна, называют промежутком монотонности.

13hgf

Различают как промежутки убывания функции, так и промежутки возрастания функции.

Понятно, что если ф-ция строго монотонна, то она и просто монотонна. В большинстве школьных задач не важна строгость монотонности, поэтому слово «строго» часто опускают.

Во всех данных определениях рассматривалось поведение ф-ции на каком-то отдельном числовом промежутке. Одна и та же ф-ция может на одном числовом промежутке возрастать, а на другом убывать. Однако некоторые ф-ции сохраняют свой характер на всей своей области определения. Например, линейная ф-ция у = 2х – 3 возрастает на протяжении всей числовой прямой, то есть на промежутке (– ∞; + ∞):

14gdfgd

В большинстве случаев промежутки монотонности ф-ции очевидны, исходя из графика ф-ции. Однако и без их построения можно аналитически доказывать монотонность ф-ции.

Пример. Докажите, что ф-ция у = 2х – 3 возрастает на промежутке (– ∞; + ∞).

Решение. Выберем произвольные числа х1 и х2, причем х1< х2. Разность (х2 – х1) будет, очевидно, положительным числом. Найдем теперь разность (у(х2) – у(х1)):

у(х2) – у(х1) = (2х2 – 3) – (2х1 – 3) = 2х2– 3 – 2х1+ 3 = 2х2 – 2х1 = 2(х2 – х1)

Так как (х2 – х1) – положительное число, то и 2(х2 – х1), а значит, и (у(х2) – у(х1)) – тоже положительное число. Если же разность двух числе положительна, то уменьшаемое больше вычитаемого. Значит, у(х2) > у(х1). По определению получаем, что у = 2х – 3 – возрастающая ф-ция.

Промежутки монотонности основных функций

Мы ранее уже изучили несколько видов ф-ций. Посмотрим, какие у них промежутки монотонности.

Поведение линейной ф-ции у = kх + b зависит исключительно от значение коэффициента k. Если он больше нуля, то функция возрастает на промежутке (– ∞; + ∞), то есть на всей числовой прямой. Если же k< 0, то ф-ция будет убывать. Если k = 0, то график будет выглядеть как горизонтальная линия. Её можно считать одновременно и неубывающей, и невозрастающей ф-цией. Приведем примеры на рисунке:

15gfdds

Поведение обратной пропорциональности у = k/х также зависит от значения k. Если он больше нуля, то ф-ция убывает на двух промежутках: (– ∞;0) и (0; + ∞).

16gfds

Здесь стоит обратить внимание, что, хотя у ф-ции нет ни одного участка, на котором бы она возрастала, нельзя утверждать, что обратная пропорциональность убывает на всей своей области определения (– ∞; 0)∪(0; + ∞). Например, сравним значение ф-ции у = 5/х при х1 = – 1 и х2 = 1:

у(– 1) = 5/(– 1) = – 5

у(1) = 5/1 = 5

Получили, что для этих значений х1<x2, а у(– 1) <у(1), поэтому ф-цию нельзя считать убывающей на всей области определения.

Если в обратной пропорциональности коэффициент k отрицательный, то ф-ция возрастает на промежутках (– ∞;0) и (0; + ∞):

17uytyu

Ф-ция

18jhfg

возрастает на всей своей области определения, то есть на промежутке [0; + ∞):

19hjfg

Поведение степенной ф-ции у = хn зависит от показателя n. Если он нечетный, то получается ф-ция, возрастающая на всей числовой прямой:

20gfdh

Если же число n четное, то степенная ф-ция будет убывать на промежутке (– ∞:0] и возрастать на промежутке [0; + ∞):

21hgfh

Пример. Найдите значения параметра a, при котором ф-ция

у = (5а – 2)х +16

является возрастающей.

Решение. Данная ф-ция является линейной ф-цией вида у = kx + b, где в роли коэффициента k выступает выражение (5а – 2). Ф-ция будет возрастать, если этот коэффициент будет больше нуля, то есть

5а – 2> 0

5а> 2

а > 0,4

Получаем, что ф-ция будет возрастающей при значениях а, больших 0,4, или, другими словами, при а∊(4; + ∞).

Ответ: а∊(4; + ∞).

Свойства монотонных функций

Монотонные функции имеют ряд примечательных свойств, которые могут помогать при решении задач. Вспомним, что некоторые ф-ции могут при различных значениях аргументов принимать одинаковое значение. Например, таковой является степенная ф-ция у = х2:

у(2) = 4

у(– 2) = 4

С точки зрения графиков это означает, что горизонтальная линия может пересекать график ф-ции в нескольких точках:

22gfdgd

С другой стороны, это значит, что уравнение х2 = 4 имеет два корня, 2 и ( – 2).

Если же ф-ция строго монотонна, то такая ситуация невозможна. Любое ее значение может быть получено только при одном значении аргумента.

23ghfdh

Действительно, если ф-ция монотонна, то любая горизонтальная прямая сможет пересечь ее график не более чем в одной точке:

24ghjkk

Это также означает, что, если у(х) – строго монотонная ф-ция, а b– произвольное число, то уравнение у(х) = b имеет не более одного корня. Так, у уравнения х3 = 8 есть только один корень (он равен 2), потому что х3 – монотонная ф-ция.

Рассмотрим следующее свойство монотонных функций.

25khjkhg

Действительно, ранее мы уже изучали сжатие и растягивание графиков. умножение ф-ции на постоянное число как раз и ведет к подобным преобразованиям. Ясно, что при этом не происходит изменение монотонности ф-ций:

26kjhjk

Например, парабола у = х2 возрастает на промежутке [0; + ∞), значит, и ф-ция у = 3х2 также возрастает на этом же промежутке:

27gfdfh

Проще говоря, при умножении ф-ции на положительное число ее промежутки монотонности не изменяются.

А что же произойдет при умножении ф-ции на отрицательное число. Она не только сожмется или растянется, но ещё и отобразится симметрично относительно оси Ох. В результате промежутки возрастания ф-ции превратятся в промежутки убывания, и наоборот.

28jhgj

Проиллюстрируем это на примере ф-ций у = х2 и у = – х2:

29jfhj

Видно, что на промежутке (– ∞; 0] ф-ция у = – х2 возрастает, в то время как обычная парабола убывает. На промежутке [0; + ∞)ситуация противоположная.

Если две ф-ции одновременно возрастают на одном промежутке, то и их сумма также будет возрастать на этом промежутке.

30safd

Например, ф-ции у = х5 и у = 4х возрастают на всей числовой прямой. Следовательно, возрастающей является и ф-ция у = х5 + 4х.

Пример. Решите уравнение

х7 + 2х – 3 = 0

Решение. Можно заметить, что число 1 является корнем этого уравнения. Действительно, подставим единицу в уравнение и получим верное равенство:

17 + 2•1 – 3 = 0

1 + 2 – 3 = 0

0 = 0

Докажем, что других корней уравнение не имеет. В его левой части стоит сумма двух возрастающих ф-ций, у = х7 и у = 2х – 3. Следовательно, и ф-ция у = х7 + 2х – 3 также является возрастающей на всей числовой прямой. Это значит, что исследуемое уравнение имеет не более 1 корня, то есть корень х = 1 – единственный.

Ответ: 1.

Пример. Докажите, что у уравнения

31hfhj

не более одного корня.

Решение.

Выражение в левой части имеет смысл только при положительных х. Ведь если х < 0, то под корнем окажется отрицательное число, а если х = 0, то ноль окажется в знаменателе. Другими словами, уравнение имеет смысл на промежутке (0; + ∞). При этом левая часть представляет собой сумму трех слагаемых:

32gfdfg

Первое и третье из них являются возрастающими ф-циями. Второе слагаемое – это взятая со знаком «минус» ф-ция у = 2/х. Так как у = 2/х убывает на промежутке (0; + ∞), то у = – 2/х на нем же возрастает. В итоге получаем, что в левой части сумма трех возрастающих ф-ций, значит, и всё это выражение – возрастающая ф-ция. Из этого следует, что у уравнения есть не более одного корня. Попробуйте сами подобрать его.

Четные и нечетные функции

При изучении степенных ф-ций мы заметили, что при четном показатели степени n их график симметричен относительно оси Оу:

33gfsfdg

Почему так происходит? Дело в том, что у этих ф-ций противоположным значениям аргументов соответствует одно и то же значение у. Убедимся в этом на примере у = х2:

  • у(1) = 12 = 1 и у(– 1) = (– 1)2 = 1;
  • у(2) = 22 = 4 и у(– 2) = (– 2)2 = 4;
  • у(3) = 32 = 9 и у(– 3) = (– 3)2 = 9.

В общем случае эту особенность можно доказать так:

у(– х) = (– х)2 = х2 = у(х)

В математике есть специальный термин для обозначения ф-ций, обладающих таким свойством. Их называют четным функциями.

34gdfgd

Определение четной функции можно записать и так, чтобы в нем фигурировали формулы:

35gfdfgd

Для проверки того, является ли функция четной, достаточно подставить в нее вместо аргумента х величину (– х).

Пример. Докажите, что ф-ция у = х4 + 3х2 является четной.

Решение. Подставим в ф-цию значение (– х):

у(– х) = (– х)4 + 3(– х)2 = х4 + 3х2

Получили исходную ф-цию у(х). Значит, исследуемая функция является четной.

Пример. Четна ли ф-ция

36hfgh

Решение снова подставим в ф-цию значение (– х):

37jkgjk

Получили изначальную ф-цию. Следовательно, она – четная.

Почему же четные ф-ции симметричны относительно оси Оу? Из определения следует, что если графику четной ф-ции принадлежит точка (х00), то ему же принадлежит точка (– х00). Посмотрим, как они располагаются на координатной плоскости:

38jghj

Они симметричны относительно оси Оу. Если же для каждой точки графика есть симметричная точка, также ему принадлежащая, то и в целом график симметричен относительно вертикальной оси.

Теперь посмотрим на степенные ф-ции, у которых нечетный показатель степени. В качестве примера можно привести у = х3 и у = х5. Видно, что они симметричны относительно центра координат:

39hgfgh

Такая симметрия (относительно точки), называется центральной. Геометрически она означает, каждой точке графика в I четверти с двумя положительными координатами соответствует точка графика в III четверти с такими же координатами, но взятыми со знаком «минус»:

40sdfs

Существует множество ф-ций, обладающих подобной симметрией. В математике их все называют нечетными функциями. У них противоположным значениям аргументов соответствуют противоположные значения ф-ции, а график нечетной функции всегда симметричен относительно начала координат.

41gfdfg

Чаще используется определение, содержащее формулу:

42gfdhd

Покажем это свойство у ф-ции у = х3:

  • у(1) = 13 = 1 и у(– 1) = (– 1)3 = – 1;
  • у(2) = 23 = 8 и у(– 2) = (– 2)3 = – 8;
  • у(3) = 33 = 27 и у(– 3) = (– 3)3 = – 27.

Для того, чтобы доказать нечетность ф-ции, надо поставить в нее (– х) вместо х. Если получилась исходная ф-ция с противоположным знаком, то это значит, что ф-ция нечетная.

Пример. Докажите, что ф-ция у = х5 + х – нечетная.

Решение: Подставим (– х):

у(– х) = (– х)5 + (– х) = –х5 – х = – (х5 + х) = – у(х)

Получили исходную ф-цию, но со знаком «минус», поэтому ф-ция является нечетной.

Пример. Докажите нечетность ф-ции у = 5/х + 4х.

Решение. Подставляем в ф-цию (– х):

у = 5/(– х) + 4(– х) = – 5/х – 4х = – (5/х + 4х) = – у(х)

Снова получили исходную ф-цию со знаком минус, следовательно, мы исследовали нечетную ф-цию.

Известно, что любое целое число либо четное, либо нечетное. Однако с ф-циями всё по-другому. Существует множество ф-ций, которые не относятся ни к тем, ни к другим. Чтобы доказать, что ф-ция не является ни четной, ни нечетной, достаточно продемонстрировать, что хотя бы для одного значения х не выполняются условия у(– х) = у(х) и у(– х) = – у(х).

Пример. Докажите, что у = х3 + х2 – ни четная, ни нечетная ф-ция.

Решение. Определим значение ф-ции при, например, х = 1 и х = –1

у(1) = 13 + 12 = 2

у(– 1) = (– 1)3 + (– 1)2 = 0

Получили, что при противоположных х значения у не являются ни одинаковыми, ни противоположными. Значит, рассматриваемая ф-ция не подходит под приведенные определения четности и нечетности.

Свойства четных и нечетных функций

Рассмотрим важные свойства, помогающие быстро определять четность и нечетность ф-ций.

43gkg

Например, так как четной является ф-ция у = х6, то также четными будут и ф-ции:

  • у = 2х6;
  • у = 3х6;
  • у = – х6;
  • у = – 12х6;
  • у = 0,135х6.

44fsdf

Так, ф-ции у = х3 и у = 1/х – нечетны. Значит, нечетна и их сумма у = х3 + 1/х.

45fdsdf

Другими словами, ф-цию можно «перевернуть», и она всё равно сохранит свою четность. Так, ф-ция 5х4 + х2 четная, поэтому и ф-ция

46gfgds

останется такой же.

Вообще рассматриваемое свойство ф-ции часто называют ее четностью. Так, про две рассматриваемые ф-ции у = х3 и у = х9 можно сказать, что они обладают одинаковой четностью (обе нечетные), а у = х5 и у = х7 обладают различной четностью (одна из них четная, а другая нечетная).

47safddf

Например, ф-ции у = 5х3 + 6х и у = 9х5 имеют одинаковую четность (обе нечетные), а потому их произведение у = 9х5(5х3 + 6х) является четным. С другой стороны, у = х5 и у = х8 + у6 имеют различную четность, следовательно, их произведение у = х58 + у6) нечетное.

Докажем справедливость этого правила. Пусть есть две ф-ции, у = у(х) и g = g(х), которые обладают какой-нибудь четностью. Определим четность их произведения у(х)•g(х). Для этого рассмотрим 3 различных случая:

  1. И у = у(х), и g = g(х) – четные. Тогда у(– х) = у(х), g(– х) = g(х), и мы получаем следующее:

у(– х)•g(– х) = у(х)•g(х).

  1. Обе рассматриваемые ф-ции – нечетные. Тогда у(– х) = – у(х), g(– х) = – g(х), и получается следующее:

у(– х)•g(– х) = (– у(х))•(– g(х)). = (– 1)(– 1)у(х)•g(х) = у(х)•g(х).

  1. Если же одна из ф-ций, например, у(х), будет четной, а вторая – нечетной, то их произведение будет следующим:

у(– х)•g(– х) = у(х)•(– g(х)) = – у(х)•g(х).

Пример. Определите четность ф-ции у = (8х4 + 3х2)(7х5 + 2х)

Решение. Ф-ция из условия представляет собой произведение двух других ф-ций: у = 8х4 + 3х2 и у = 7х5 + 2х. Первая из них является суммой двух четных и поэтому сама четная. Вторая ф-ция, наоборот, нечетная. Следовательно, их произведение – это тоже нечетная ф-ция.

Ответ: Нечетная ф-ция.

Пример. Определите четность ф-ции у = (х6 + х2)(х10 + х8)

Решение. Так как ф-ции у = х6 + х2 и у = х10 + химеют одинаковую четность (обе четные), то их произведение является четным.

Ответ: Четная ф-ция.

Для изучения следующего свойства ф-ций необходимо сначала рассмотреть понятие сложной ф-ции. Так называют ф-цию, которую получают подстановкой одной «простой» ф-ции в другую.Например, пусть есть ф-ции g = хи у = х3 + 2х. Подставив вторую в первую, получим

g = (х3 + 2х)2

Ещё пример сложной ф-ции:

у = 2(9х2 + 4х + 1)3 + 3(9х2 + 4х + 1)

Она получена путем подстановки выражения 9х2 + 4х + 1 в ф-цию у = х3 + 3х. В общем случае, если в ф-цию у = f (x) подставляют g(x), то используют запись у = f (g(x)). Иногда вместо термина «сложная функция» используют аналогичное понятие «композиция функций».

Итак, сформулируем ещё одно свойство четных функций:

48jhgfghj

Например, пусть есть четная ф-ция у = х2. Подставим ее в любую другую ф-цию, скажем, в у = 5х + 7 + 1/х. В итоге получим новую, сложную ф-цию

у = 5х2 + 7 + 1/(х2)

которая будет четной. При этом природа ф-ции у = 5х + 7 + 1/х не играет никакой роли. Мы могли бы взять любую другую ф-цию, например, у = 958,235х3 – 12,25х2 + 19х + 2/3, и подставив в нее х2 вместо х, получить ф-цию

у = 958,235(х2) 3 – 12,25(х2) 2 + 19х2+ 2/3

которая будет четной.

Ограниченные и неограниченные функции

Ещё раз рассмотрим ф-цию у = х2. Очевидно, что все точки ее графика лежат выше оси Ох (кроме точки (0;0), лежащей непосредственно на оси Ох). Ось Ох – это, по сути, горизонтальная прямая у = 0. Можно провести ряд других горизонтальных линий, каждая из которых лежит ниже параболы и не пересекает её:

49fdsdf

В математике говорят, что ф-ция у = х2 ограничена снизу. То есть для любого допустимого х выполняется неравенство у(х) ⩾ а, где а – это какое-то произвольное число. И действительно, неравенство х2⩾ 0 выполняется при всех значениях х. Также выполняются неравенства

х2⩾ – 1,5

х2⩾ – 3

х2⩾ – 5

Дадим определение функции, ограниченной снизу

50dfsg

Очевидно, что если неравенство у(х) ⩾ а выполняется хотя бы для одного числа а, то оно выполняется и для всех а, которые ещё меньше. Так, из справедливости неравенства х2⩾ 0 автоматически следует справедливость неравенства х2⩾ – 1,5, так как

– 1,5 ⩽ 0.

Аналогично в математике существует понятие функции, ограниченной сверху.

51gjhj

В качестве примера ограниченной сверху ф-ции можно привести у = 4 – х2:

52ghjg

Ясно, что неравенство 4 – х2⩽ 4 выполняется при всех х, то есть ни одна точка графика не лежит выше прямой у = 4.

Иногда бывает так, что функция ограничена одновременно и снизу, и сверху. Их называют ограниченными функциями.

53hfghf

Ф-ция, не попадающее под это определение, называется неограниченной функцией. В качестве примера неограниченной функции можно привести линейную ф-цию у = х + 1.

График ограниченной ф-ции находится в своеобразной «полосе» из горизонтальных линий, которые ограничивают его сверху и снизу. Примером ограниченной ф-ции является

54gfdfg

55gfdgd

С одной стороны, у этой дроби и числитель, и знаменатель – положительное число, поэтому она ограничена снизу прямой у = 0. С другой стороны, дробь тем больше, чем меньше ее знаменатель (если они оба положительны). Минимальное значение выражения х2 + 1 – это единица (при х = 0), а поэтому максимальное значение дроби равно 4/1 = 4. Поэтому график ограничен сверху прямой у = 4.

Пример. Ограничена ли ф-ция

56hgfgh

Решение. Выделим в ф-ции целую часть:

57gfdfg

Так как величина 5х2 + 5 всегда положительна, то и дробь

58hgfgh

а значит, и вообще вся ф-ция положительна, то есть ограничена снизу прямой у = 0

С другой стороны, дробь будет принимать максимальное значение при минимальном значении знаменателя, которое равно 5 (при х = 0) При х = 0 имеем

59ghdgh

Получается, что ф-ция ограничена сверху прямой у = 1,4.

Ответ: ограничена.

Пример. Ограничена ли ф-ция

60gfdfgg

Решение. Величина х2 всегда положительна, то есть х2⩾ 0. Преобразуем это неравенство, умножив его на (– 1) и добавив к нему 16:

х2⩾ 0

– х2⩽ 0

16 – х2⩽ 16

Получили, что подкоренное выражение не превосходит 16, а значит, и корень из него не больше, чем

61gfdgd

То есть график будет ограничен прямой у = 4 сверху. С другой стороны, арифметический квадратный корень не может быть отрицательным числом, а потому его график ограничен снизу прямой у = 0. Для наглядности покажем график исследуемой ф-ции:

62ngfghf

Ответ: ограничена.

Квадратичная функция

В качестве ф-ции можно использовать квадратный трехчлен, например:

у = 2х2 + 6х – 10

у = – 1,5х2 + 19х + 0,5

у = 0,005х2 + 654,25х – 124

Все эти ф-ции заданы с помощью выражения, представляющего собой квадратный трехчлен, поэтому в математике их называют квадратичными функциями.

9 1 3

Если коэффициент перед х2 окажется равным нулю, то ф-ция превратится из квадратичной в линейную:

2 + bx + c = bx + c

Попытаемся понять, как выглядит график квадратичной функции. Для этого начнем рассматривать частные случаи и использовать правило растяжения и сжатия, а также параллельного переноса графиков ф-ций.

Если в выражение для квадратичной ф-ции подставить значения

а =1

b= 0

с = 0

то получится уже известная нам степенная ф-ция у = х2:

2 + 0x + 0 = х2

Её графиком является парабола.

График ф-ции у = ах2 – это тоже парабола (где а – некоторое число), которая однако, получена из «обычной» параболы у = х2 путем сжатия или растяжения графика. Если коэффициент а является отрицательным, то парабола «перевернется» то есть отобразится симметрично относительно оси Ох. Покажем примеры нескольких графиков у = ах2:

64hfghf

Напомним, что при добавлении к ф-ции какого-нибудь постоянного числа n ее график переносится на единиц вверх. Зная это можно легко получить график ф-ции у = ах2 + с из графика у = ах2:

65jjhkg

Таким образом, графиком ф-ции у = ах2 + с является парабола, чья вершина поднята на с единиц вверх.

Как изменится график квадратичной ф-ции у = ах2 + с, если в вместо х возводить в квадрат выражение (х +m), где – произвольное число? В этом случае ф-ция примет вид у = а(х +m)2 + с. Вершина параболы должна будет сместиться на m единиц влево:

66hgfhdf

Теперь докажем, что любая квадратичная ф-ция может быть представлена как в виде у = а(х + m) + n, где m и n – некоторые числа (в том числе и отрицательные). Похожие преобразования мы производили, когда учились решать квадратные уравнения. Запишем саму квадратичную ф-цию:

у = ах2 + bх + с

Вынесем множитель а за скобки:

67gdfhh

Далее попытаемся преобразовать трехчлен в скобках, используя формулу квадрата суммы. Для этого добавим к нему и сразу же вычтем величину (b/2a)2:

68ghfgh

Теперь раскроем внешние скобки:

69jhghj

Теперь произведем две замены:

70jfhjfg

Используя их, можно записать:

71gfdfg

Получили, что любую квадратичную ф-цию можно свести к виду у = а(х + m)2 + n. Что это значит и для чего мы это доказывали? Из этого факта следует, что график любой квадратичной ф-ции может быть получен из обычной параболы у = х2 за счет трех действий.

  1. Необходимо растянуть график у = х2 в а раз и получить график у = ах2. Если число а является отрицательным, то график не только растянется, но ещё «перевернется» ветвями вниз, то есть отобразится симметрично относительно оси Ох.
  2. Необходимо сдвинуть график у = ах2 на единиц вверх и получить график у = ах2 + n. Если n< 0, то график переместится вниз, а не вверх.
  3. Полученный график у = ах2 + n следует сместить влево на единиц и получить график у = а(х + m)2 + n. Если отрицательно, то график сместится не влево, а вправо.

Итак, как будет выглядеть график квадратичной ф-ции? В общем случае он является параболой, центр которой располагается не в точке (0;0), а в некоторой другой точке (х0; у0):

72hfhk

Если мы вернемся к доказательству того, что любую квадратичную ф-цию можно представить в виде у = а(х + m)2 + n, то увидим, что число m рассчитывается по формуле

73hfghf

Так как график из-за этого числа m перемещается влево, а не вправо, то координата вершины х0 рассчитывается по формуле:

74jhghj

Нет смысла составлять такую же формулу для определения координаты вершины у0, ведь можно подставить х0 в сам ф-цию и так узнать вторую координату вершины.

Пример. Определите вершину параболы, задаваемой ф-цией

у = 2х2 + 8х + 5

Решение. Выпишем коэффициенты а, b и c квадратичной ф-ции:

а = 2

b = 8

c = 5

Зная их, легко рассчитаем координату х вершины параболы:

75hgfgh

Теперь подставим это число в исходную ф-цию и определим координату у вершины параболы:

у0 = у(х0) = 2(– 2)2 + 8(– 2) + 5 = 8 – 16 + 5 = – 3

Ответ (– 2; – 3)

Напомним, что нули ф-ции – это те точки, в которых ее график пересекает ось Ох. Для их поиска необходимо приравнять ф-цию к нулю и решить уравнение. В случае с квадратичной ф-цией мы получим квадратной уравнение.

Пример. Постройте график ф-ции у = х2 – 4х + 3, отметьте на нем вершину параболы и нули ф-ции.

Решение. Приравняем ф-цию к нулю:

х2 – 4х + 3 = 0

Решим это уравнение

D = b2 – 4ас = (– 4)2 – 4•1•3 = 16 – 12 = 4

76hgfgh

Итак, нашли нули ф-ции: 1 и 3. Теперь найдем вершину параболы:

77jhgj

у0 = у(х0) = 22 – 4•2 + 3 = 4 – 8 + 3 = – 1

Вершина находится в точке (2; – 1). Теперь отметим ее, а также нули ф-ции на графике, и соединим их линией, похожей на параболу:

78gdfg

При необходимости для точности построения всегда можно вычислить значение ф-ции в нескольких дополнительных точках и провести параболу через них. Здесь мы этого делать не будем

Ответ: вершина параболы – точка (2; – 1), нули ф-ции х1 = 1 и х2 = 3

Обратите внимание, что в рассмотренном примере вершина параболы оказалась ниже нулей, поэтому ее ветви смотрят вверх. Вообще, если коэффициент а > 0, то ветви смотрят вверх, а если а < 0, то они смотрят вниз. Также можно заметить ещё одно свойство квадратичной функции – вершина параболы находится точно посередине между нулями ф-ции. То есть если нули ф-ции равны 1 и 3, то координата х вершины параболы равна их среднему арифметическому:

х0 = (х1 + х2)/2 = (1 + 3)/2 = 2

Заметим, что не все квадратичные ф-ции имеют нули, ведь не каждое квадратное уравнение имеет решение.

Пример. Постройте графики ф-ций

у = – 2х2– 4х + 6

у = – 3х2 + 6х – 4

Решение. Начнем с первой ф-ции. Сначала найдем ее нули:

– 2х2 – 4х + 6 = 0

D = b2 – 4ас = (– 4)2 – 4•(– 2)•6 = 16+48 = 64

79gfddsfg

Найдем вершину. Сначала используем обычную формулу:

80hgfgh

Далее просто проверим себя, найдя среднее арифметическое нулей ф-ции:

81gdfg

Как и ожидалось, получились одинаковые результаты! Вычислим теперь у0:

у0 = у(х0) = – 2(– 1)2 – 4(– 1) + 6 = – 2 + 4 + 6 = 8

Итак, вершина первой ф-ции – это точка (– 1; 8).

Перейдем ко второй ф-ции. Попробуем найти ее нули:

– 3х2 + 6х – 4 = 0

D = b2 – 4ас = 62 – 4•(– 3)•(– 4) = 36–48 = – 16

Дискриминант отрицательный, значит, корней у уравнения нет. Не будет и нулей и ф-ции. Найдем вершину параболы

82gdffg

Найдем координату у0 вершины:

у0 = у(х0) = – 3•12 + 6•1 – 4 = – 3 + 6 – 4 = – 1

Отметим, что у обоих графиков коэффициент а отрицательный, а потому их ветви будут смотреть вниз. Построим их графики:

83hfgh

Иногда приходится решать обратную задачу – по графику квадратичной ф-ции находить выражение, задающее эту ф-цию. Для ее решения необходимо подставлять в общий вид квадратичной ф-ции

у = ах2 + bx + c

значения квадратичной функции, взятые из графика (то есть координаты точек параболы) и получать уравнения, из которых можно найти величины a, и c.

Пример. Запишите выражение для квадратичной ф-ции, имеющей следующий график:

84hgfj

Решение. Заметим, что графику параболы принадлежит точка с координатами (0; 3). Подставим эти числа, х = 0 и у = 3, в квадратичную ф-цию:

у = ах2 + bx + c

3 = а•02 + b•02 + c

3 = c

Итак, мы нашли, что коэффициент с = 3. Осталось найти а и b. Возьмем ещё одну точку, скажем, (1; 0), и подставим ее координаты (вообще в большинстве случаев удобно брать точки, одна из координат которой равна 0 или, на худой конец, единице):

у = ах2 + bx + 3

0 = а•12 + b•1 + 3

a + b = – 3

Возьмем точку с координатами (– 3; 0):

у = ах2 + bx + 3

0 = а•(– 3)2 + b•(– 3) + 3

9а – 3b = – 3

Получили два уравнения с двумя неизвестными: a + b = – 3 и 9а – 3b = – 3. Решим систему, составленную из них:

85gdfgd

Подставим первое уравнение во второе и получим:

9а – 3(– 3 – а) = – 3

9а + 9 + 3а = – 3

12а = – 3 – 9

12а = – 12

а = – 1

Нашли а. Теперь подставим его в уравнение для b:

b = – 3 – а = – 3 – (– 1) = – 2

Получили b = – 2. Мы нашли все коэффициенты, а потому можем записать ф-цию в аналитическом виде:

у = – х2 – 2х + 3

Ответ:– х2 – 2х + 3

Добавить комментарий