Содержание:
Логарифмической функцией называется функция, задаваемая формулой:
где
Теорема 7.
Областью определения логарифмической функции является множество всех положительных действительных чисел, а областью значений — множество всех действительных чисел.
Доказательство:
Пусть . Тогда выражение , в соответствии с определением логарифма числа, имеет значение, если значение аргумента — положительное действительное число, т. е. областью определения логарифмической функции является множество всех положительных действительных чисел.
Любое действительное число может быть значением выражения , так как уравнение имеет корень при любом действительном . Значит, областью значений логарифмической функции является множество всех действительных чисел.
Теорема 8.
Логарифмическая функция на множестве всех положительных действительных чисел является возрастающей при и убывающей при , а ее график проходит через точку (1; 0).
Доказательство:
Пусть . Если допустить, что , то, с учетом возрастания показательной функции с большим единицы основанием (см. теорему 2 из параграфа 11 и следствие из нее), получим, что , или , что противоречит условию . Потому остается признать, что .
Пусть, тогда . Если , то по доказанному . После перехода к основанию получим, что , или .
Поскольку , то точка (1; 0) принадлежит графику логарифмической функции.
Из доказанной теоремы непосредственно получаем следующие утверждения.
Следствие 2.
Значения логарифмической функции с основанием, большим единицы, на промежутке (0; 1) отрицательны, а на промежутке положительны.
Следствие 3.
Значения логарифмической функции с положительным и меньшим единицы основанием на промежутке (0; 1) положительны, а на промежутке отрицательны.
Построим график функции . Для этого нанесем на координатную плоскость некоторые точки этого графика, составив предварительно таблицу значений функции.
Используя построенные точки и установленные свойства логарифмической функции, получим график функции , который представлен на рисунке 167.
Для построения графика функции учтем равенство и используем то, что график функции получается из графика функции симметричным отражением относительно оси абсцисс. Указанное преобразование проведено на рисунке 168.
Теорема 9.
График функции симметричен графику функции относительно прямой .
Доказательство:
Пусть точка принадлежит графику функции (рис. 169). Тогда ее координаты и удовлетворяют равенству . Но тогда истинно и равенство . А это означает, что точка принадлежит графику функции .
Так же доказывается, что если точка принадлежит графику функции , то точка принадлежит графику функции .
Для завершения доказательства остается заметить, что точки симметричны относительно прямой .
Теорема 10.
Если положительные основания и логарифмов оба больше единицы или оба меньше ее и , то при и при .
Доказательство:
Сравним значения выражений и :
Пусть , тогда, с учетом возрастания логарифмической функции с большим единицы основанием, получим или
Если , то , и потому , или
Если , то , и потому или
Пусть теперь . Поскольку логарифмическая функция с меньшим единицы основанием убывает, то , или
Если , то , и потому , а если , то , и потому
В соответствии с теоремой 10 с увеличением основания график функции на промежутке (0; 1) располагается более высоко, а на промежутке — более низко.
График любой логарифмической функции с основанием , большим единицы, похож на график функции . На рисунке 170 представлены графики функций
График любой логарифмической функции с положительным основанием , меньшим единицы, похож на график функции . На рисунке 171 приведены графики функций
Логарифм числа:
Определение:
Логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить .
Обозначение:
Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Примеры:
Определение:
Натуральный логарифм — это логарифм по основанию ( — иррациональное число, приближенное значение которого:). Обозначение:
Пример:
Основное логарифмическое тождество:
Примеры:
Свойства логарифмов и формулы логарифмирования:
Логарифм единицы no любому основанию равен нулю.
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
Логарифм степени положительного числа равен произведению показа теля степени на логарифм основания этой степени.
Формула перехода к логарифмам с другим основанием:
Следствия:
Объяснение и обоснование:
Логарифм числа
Если рассмотреть равенство то, зная любые два числа из этого равенства, мы можем найти третье:
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа, мы ознакомимся в этом параграфе.
В общем виде операция логарифмирования позволяет из равенства найти показатель степени Результат выполнения этой операции обозначается
Таким образом, логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
Например:
- так как
- поскольку
- потому что
Отметим, что при положительных уравнение всегда имеет единственное решение, поскольку функция принимает все значения из промежутка и при является возрастающей, а при — убывающей (рис. 15.1).
И так, каждое свое значение функция принимает только при одном значении Следовательно, для любых положительных чисел и уравнение имеет единственный корень
При уравнение не имеет корней, таким образом, при Ь < 0 значение выражения не существует . Например, не существуют значения
Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается Например,
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в различных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число (такое же знаменитое, как и число ). Число , как и число , — иррациональное,
Логарифм по основанию называется натуральным логарифмом и обозначается Например,
Основное логарифмическое тождество
По определению логарифма, если Подставляя в последнее равенство вместо его значение, получаем равенство, которое называется основным логарифмическим тождеством:
Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что поскольку Таким образом, логарифм единицы по любому основанию равен нулю.
2) Поскольку то
Чтобы получить формулу логарифма произведения обозначим Тогда по определению логарифма
Перемножив почленно два последних равенства, имеем По определению логарифма и с учетом введенных обозначений из последнего равенства получаем
Таким образом,
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного — достаточно разделить почленно равенства (1). Тогда По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени обозначим По определению логарифма Тогда и по определению логарифма с учетом обозначения для имеем Таким образом,
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при по формуле (4) имеем: Иными словами, при можно воспользоваться формулой
(запоминать эту формулу не обязательно, при необходимости можно записывать корень из положительного числа как соответствующую степень).
Замечание. Иногда приходится находить логарифм произведения и в том случае, когда оба числа отрицательны
Тогда существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений В случае имеем и теперь Таким образом, для логарифма произведения можно воспользоваться формулой (2). Поэтому при можем записать: Отметим, что полученная формула справедлива и при поскольку в этом случае Таким образом, при
Аналогично можно обобщить и формулы (3) и (4):
при
при
4. Формула перехода к логарифмам с другим основанием Пусть Тогда по определению логарифма Прологарифмируем обе части последнего равенства по основанию Получим Используя в левой части этого равенства формулу логарифма степени, имеем Тогда Учитывая, что получаем
Таким образом, логарифм положительного числа по одному основанию равен логарифму этого же числа по новому основанию , деленному на логарифм прежнего основания по новому основанию .
С помощью последней формулы можно получить следующие следствия. 1) Учитывая, что имеем
2) Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при )
Записав полученную формулу справа налево, имеем
Примеры решения задач:
Пример №1
Вычислите:
Решение:
1) поскольку
2) так как
Комментарий:
Исходя из определения логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №2
Запишите решение простейшего показательного уравнения:
Решение:
По определению логарифма:
1)
2)
3)
Комментарий:
Для любых положительных чисел и уравнение имеет единственный корень. Показатель степени в которую необходимо возвести основание чтобы получить , называется логарифмом по основанию поэтому
Пример №3
Выразите логарифм по основанию 3 выражения . (где ) через логарифмы по основанию 3 чисел и . (Коротко говорят так: «Прологарифмируйте данное выражение по основанию 3».)
Решение:
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного положительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения () равен сумме логарифмов множителей.
Пример №4
Известно, что Выразите через
Решение:
Комментарий:
Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения и
Пример №5
Прологарифмируйте по основанию 10 выражение
Решение:
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае, когда Из условия не следует, что в данном выражении значения положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования а также учтем, что
Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №6
Найдите по его логарифму:
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-либо выражения. Из полученного равенства получаем (как будет показано, значение , удовлетворяющее равенству (1), — единственное).
Пример №7
Вычислите значение выражения
Решение:
Поскольку
Кроме того
Тогда
Итак,
Комментарий:
Попытаемся привести показатель степени данного выражения к виду чтобы можно было воспользоваться основным логарифмическим тождеством: Для этого перейдем в показателе степени к одному основанию логарифма — 5.
Логарифмическая функция
Определение:
Логарифмической функцией называется функция вида
1. График логарифмической функции
Функции — взаимно обратные функции, поэтому их графики симметричны относительно прямой
2. Свойства логарифмической функции
1. Область определения: 2. Область значений: 3. Функция ни четная, ни нечетная. 4. Точки пересечения с осями координат:
С осью , с осью
5. Промежутки возрастания и убывания:
функция возрастает на всей области определения
функция убывает на всей области определения
6. Промежутки знакопостоянства:
7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции
Логарифмической функцией называется функция вида Покажем, что эта функция является обратной функции
Действительно, показательная функция при возрастает на множестве , а при — убывает на множестве . Область значений функции — промежуток Таким образом, функция обратима и имеет обратную функцию с областью определения и областью значений . Напомним, что для записи формулы обратной функции достаточно из равенства выразить через у и в полученной формуле аргумент обозначить через , а функцию — через .
Тогда из уравнения по определению логарифма получаем — формулу обратной функции, в которой аргумент обозначен через , а функция — через . Изменяя обозначения на традиционные, имеем формулу — функции, обратной функции
Как известно, графики взаимно обратных функций симметричны относительно прямой Таким образом, график функции можно получить из графика функции симметричным отображением его относительно прямой На рис. 16.1 приведены графики логарифмических функций при и при График логарифмической функции называют логарифмической кривой.
Свойства логарифмической функции
Свойства логарифмической функции и другие свойства прочитаем из полученного графика функции и обоснуем, опираясь на свойства функции
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции получаем соответствующие характеристики для функции
Функция:
1) 2)
Область определения :
1) 2)
Область значений:
1) 2)
Обоснуем это, опираясь на свойства функции
Например, при возьмем По основному логарифмическому тождеству можно записать: Тогда, учитывая, что имеем Поскольку при функция является возрастающей, то из последнего неравенства получаем А это и означает, что при функция возрастает на всей области определения.
Аналогично можно обосновать, что при функция убывает на всей области определения. 6) Промежутки знакопостоянства. Поскольку график функции пересекает ось в точке то, учитывая возрастание функции при и убывание при имеем:
Значение функции:
1) 2)
Значение аргумента
1) 2)
Значение аргумента
1) 2)
Примеры решения задач:
Пример №8
Найдите область определения функции:
Решение:
1)Область определения функции задается неравенствомОтсюдато есть 2) Область определения функции задается неравенством Это неравенство выполняется при всех действительных значениях Таким образом, 3) Область определения функции задается квадратным неравенством Решая его, получаем или (см. рисунок), То есть
Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения данной функции необходимо найти те значения аргумента х, при которых выражение, стоящее под знаком логарифма, будет положительным.
Пример №9
Изобразите схематически график функции:
Комментарий:
Область определения функции — значения следовательно, график этой функции всегда расположен справа от оси Этот график пересекает ось в точке При логарифмическая функция возрастает, таким образом, графиком функции у будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются. При логарифмическая функция убывает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №10
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований. 1. Можно построить график функции у (основание логарифма — логарифмическая функция возрастает). 2. Затем можно построить график функции (справа от оси график функции остается без изменений, и эта же часть графика отображается симметрично относительно оси ). 3. После этого можно построить график данной функции параллельным переносом графика функции вдоль оси на 2 единицы.
Пример №11
Сравните положительные числа зная, что:
Решение:
1) Поскольку функция возрастающая, то для положительных чисел из неравенства c получаем 2) Так как функция убывающая, то для положительных чисел из неравенства получаем
Комментарий:
В каждом задании данные выражения — это значения логарифмической функции в точках . Используем возрастание или убывание соответствующей функции: 1) при функция возрастающая, и поэтому большему значению функции соответствует большее значение аргумента; 2) при функция убывающая, следовательно, большему значению функции соответствует меньшее значение аргумента.
Пример №12
Сравните с единицей положительное число зная, что
Решение:
Поскольку а из условия получаем, что (то есть), то функция убывающая, поэтому
Комментарий:
Числа — это два значения функции Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при и убывает при
Решение логарифмических уравнений
1. Основные определения и соотношения
Определение:
Логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
График функции
2. Решение простейших логарифмических уравнений
Ориентир
Если — число (), то
(используем определение логарифма)
Пример:
Ответ: 10
3. Использование уравнений-следствий
Ориентир:
Если из предположения, что первое равенство верно, следует, что каж дое следующее верно, то гарантируем, что получаются уравнения- следствия. При использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример:
По определению логарифма получаем
Проверка, — посторонний корень (в основании логарифма получаем отрицательное число);
Ответ: 2
4. Равносильные преобразования логарифмических уравнений
Замена переменных
Ориентир:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой (новой переменной).
Пример:
Ответ: 0,1; 1000.
Уравнение вида
Ориентир:
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:
— посторонний корень (не удовлетворяет условиям ОДЗ); — корень (удовлетворяет условиям ОДЗ). Ответ: 3.
Равносильные преобразования уравнений в других случаях
Ориентир:
- 1. данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ)
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Пример:
На этой ОДЗ данное уравнение равносильно уравнениям:
— корень (удовлетворяет условиям ОДЗ); — посторонний корень (не удовлетворяет условиям ОДЗ). Ответ: 1.
Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при (см. графики в п. 1 табл. 23), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение всегда имеет единственный корень, который можно записать, исходя из определения логарифма:
Если рассмотреть уравнение и выполнить замену переменной: f (х) = t, то получим простейшее логарифмическое уравнение имеющее единственный корень Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения
Следовательно, уравнения (2) и (3) равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения. (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком то коротко этот результат можно записать так:
Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Но для всех корней уравнения (3) это условие выполняется автоматически (потому что ). Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)). Например, уравнение равносильно уравнению корень которого и является корнем данного уравнения. Аналогично записано и решение простейшего уравнения в табл. 23.
Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень данного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Хотя при использовании уравнений-следствий и не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составляющей решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений- следствий и оформление такого решения приведены в п. 3.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то соответствующее выражение с переменной удобно обозначить одной буквой ( новой переменной).
Например, в уравнение переменная входит только в виде поэтому для его решения целесобразно применить замену получить квадратное уравнение имеющее корни а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Тогда, по определению логарифма, корнями данных уравнений являются и
Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в п. 4.
Рассмотрим также равносильные преобразования уравнения вида
Как уже отмечалось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Поскольку логарифмическая функция возрастает (при ) или убывает (при ) на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Учитывая ОДЗ, получаем, что уравнение (4) равносильно системе
Полученный результат символично зафиксирован в п. 4, а коротко его можно сформулировать так:
- чтобы решить уравнение вида с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в табл. 23.
Замечание 1.
Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения и между собой равны, поэтому если одно из них будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств). Например, уравнение рассмотренное в табл. 23, равносильно системе
Но учитывая, что ограничения ОДЗ этого уравнения:
мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, приведенное упрощение не дает существенного выигрыша при решении.
Замечание 2.
Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4). Поэтому для нахождения корней уравнения (4): достаточно найти корни уравнения-следствия (5): и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)
Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений и обоснован в курсе 10 класса):
- 1) Учитываем ОДЗ данного уравнения,
- 2) Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение
с помощью равносильных преобразований. Для этого достаточно учесть ОДЗ уравнения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем не только перейти от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.) Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма:
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: — корень, поскольку удовлетворяет условиям ОДЗ;
не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень
Замечание:
Рассмотренное уравнение можно было решить и с использованием уравнений-следствий, не учитывая явно ОДЗ, но проверив полученные решения подстановкой их в исходное уравнение. Поэтому каждый имеет право выбирать способ решения: использовать уравнения- следствия или равносильные преобразования данного уравнения. Однако для многих уравнений проверку полученных корней выполнить достаточно непросто, а для неравенств вообще нельзя использовать следствия.
Это обусловлено тем, что не удается проверить все решения — их количество у неравенств, как правило, бесконечно. Таким образом, для неравенств приходится выполнять только равносильные преобразования (по ориентирам, аналогичным приведенным выше).
Пример №13
Решите уравнение
Решение:
Проверка. — посторонний корень (под знаком логарифма получаем 0), — корень, поскольку имеем
Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. При использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство верно, то и все последующие также будут верны. Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) верно). Если равенства (1) и (2) верны (при значениях , которые являются корнями этих уравнений), то при таких значениях существуют все записанные логарифмы. Тогда выражения — положительны. Следовательно, для положительных можно воспользоваться формулами: таким образом, равенства (3) и (4) также верны.
Учитывая, что функция возрастающая, а значит, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5). Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих его частей на получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы использовали уравнения-следствия, то в конце необходимо выполнить проверку.
Пример №14
Решите уравнение
Решение:
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что х = 1 входит в ОДЗ, таким образом, является корнем; не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.
Комментарий:
Решим данное уравнение с по мощью равносильных преобразований. Для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства. Заметим, что на ОДЗ выражение может быть как положительным, так и отрицательным, поэтому мы не имеем права применять к выражению формулу: (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) равносильны. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 213. Равносильность уравнений (2) и (3) можно обосновать также через возрастание функции которая каждое свое значение принимает только при одном значении аргумента.
Пример №15
Решите уравнение
Решение:
На ОДЗ данное уравнение равносильно уравнению
Замена: Получаем:
(оба корня входят в ОДЗ). Ответ: 16; 64.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному и тому же основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Выполним замену Поскольку по ограничениям ОДЗ Тогда полученное дробное уравнение (1) равносильно квадратному уравнению (2). Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.
Пример №16
Решите уравнение
Решение:
ОДЗ: На ОДЗ данное уравнение равносильно уравнениям:
Замена: Получаем:
Обратная замена дает
Ответ: 0,1; 1000
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе его части (только если они положительны). В запись уравнения входит десятичный логарифм , поэтому прологарифмируем обе части по основанию 10 (на ОДЗ они обе положительны ). Поскольку функция возрастающая, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При применение формулы является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны . Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.
Пример №17
Решите уравнение
Решение:
Замена: Получаем
Обратная замена дает
— корней нет. Ответ: 2.
Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Как уже отмечалось (с. 211), ОДЗ данного уравнения для всех корней уравнения (1) учитывается автоматически, поскольку всегда. После этого уравнение (1) решается по схеме решения показательных уравнений (табл. 19, с. 178). Поскольку поэтому уравнение (2) равносильно уравнению (3).
Пример №18
Решите систему уравнений
Решение:
По определению логарифма имеем
Из второго уравнения последней системы получаем и подставляем в первое уравнение:
Проверка — решение данной системы.
— постороннее решение
(под знаком логарифма получаем отрицательные числа). Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что если данная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы следить за равносильностью выполненных у – х > 0 , преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел удовлетворяет условиям ОДЗ, а пара не удовлетворяет условиям ОДЗ).
Пример №19
Решите систему уравнений
Решение:
Тогда из первого уравнения имеем Замена дает уравнения
Обратная замена дает то есть Тогда из второго уравнения системы имеем (не принадлежит ОДЗ), (принадлежит ОДЗ). Таким образом, решение данной системы
Ответ: (5; 5).
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию (на ОДЗ
На ОДЗ следовательно, Тогда после замены имеем и поэтому переход в решении от дробного уравнения к квадратному является равносильным. Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением получаем систему, равносильную данной (на ее ОДЗ).
Решение логарифмических неравенств
1. График функции
2. Равносильные преобразования простейших логарифмических неравенств
Знак неравенства не меняется, и учитывается ОДЗ.
Знак неравенства меняется, и учитывается ОДЗ.
Примеры:
Функция возрастающая, тогда
Учитывая ОДЗ, имеем
Ответ:
Функция убывающая, тогда
Учитывая ОДЗ, имеем
Ответ:
3. Решение более сложных логарифмических неравенств
Ориентир:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
- 1. Учитываем ОДЗ данного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
- 2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было вы полнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
II. Применяется метод интервалов (данное неравенство приводится к неравенству ) и используется схема:
Пример №20
1)
ОДЗ: На этой ОДЗ данное неравенство равносильно неравенствам: Замена Тогда то есть Решение этого неравенства
Обратная замена дает
Тогда
Учитывая, что функция возрастающая, получаем:
С учетом ОДЗ имеем:
Ответ:
Пример №21
2) Решим неравенство методом интервалов. Оно равносильно неравенству Обозначим
1.
2. Нули функции: Тогда На ОДЗ это уравнение равносильно уравнению (полученному по определению логарифма). То есть В ОДЗ входит только Итак, имеет единственный нуль функции 3. Отмечаем нули функции на ОДЗ, находим знак на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства
Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ:
и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).
I. При логарифмическая функция возрастает на всей своей области определения (при ), поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При логарифмическая функция убывает на всей области определения (при ), поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так:
Суммируя полученные результаты, отметим, что для решения неравенства вида с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумент а (выражениям, стоящим под знаком логарифма) — значение : при знак неравенства не меняется, при знак неравенства меняется на противоположный
Примеры использования этих ориентиров приведены в табл. 24. Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): и неравенство (4): то из этих неравенств следует, что Следовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. п. 2 табл. 24). Аналогично обосновывается, что в случае II неравенство (4) в системе является следствием неравенств (3) и (5), и его также можно не записывать в систему. Например, решим неравенство
(ОДЗ данного неравенства учтено автоматически, поскольку, если то выполняется и неравенство ) Решаем неравенство Тогда отсюда (см. рисунок) или — решение данного неравенства (его можно записать и так:
Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства равносильны (на ОДЗ). Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в табл. 24. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №22
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу для положительных и можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ). Чтобы применить свойства логарифмической функции, запишем число (-1 ) как значение логарифмической функции: (разумеется, эту формулу можно применить как в прямом, так и в обратном направлениях) и учтем, что
Решение:
На этой ОДЗ данное неравенство равносильно неравенству
Функция убывающая, поэтому
Получаем Последнее неравенство имеет решения:
(см. рисунок).
Учитывая ОДЗ, получаем
Ответ:
Пример №23
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция убывающая, получаем
то есть
Тогда
Так как функция возрастающая, получаем
Это неравенство равносильно системе
которая равносильна системе
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок)
Для неравенства (4) ОДЗ:
нуль функции
Для неравенства (5) ОДЗ:
нуль функции
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное — учесть ОДЗ в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего остается выражение для которого ОДЗ:
Следовательно, при таком переходе ограничение (7) будет неявно учтено, поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала (и учитываем, что а затем —
При переходе от неравенства (2) к неравенству (3) получаем таким образом, и в этом случае не равенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.
Определение логарифмической функции
Если величины и связаны уравнением , то называют логарифмической функцией от . Возьмем и будем придавать независимому переменному значения, равные целым положительным числам. Составим для значений таблицу:
Заметим, что в этой таблице значения растут в геометрической прогрессии, в то время как значения растут в арифметической прогрессии. Это будет иметь место во всех случаях, когда а больше единицы. Если давать значения, образующие убывающую геометрическую прогрессию с положительными членами, то будет принимать значения убывающей арифметической прогрессии, как это видно из таблицы:
Напомним, что отрицательные числа и нуль не имеют логарифмов, точнее, они не имеют действительных логарифмов.
При график функции имеет вид, указанный на рис. 33 ().
Логарифм числа. Исследование
1)Запишите вместо х такие числа, чтобы равенства были верными.
а) 2х = 16 б) 3х = 9 в) 4х = 64
2)При каких значениях аргумента функция у = 2х получает значение равное 6? Является ли это значение х единственным?
3)Между какими двумя целыми числами находятся значения х удовлетворяющие равенствам? а) 2х = 24 б) 3х = 18 в) 4 х = 56
Что такое логарифм
Логарифмом по основанию а числа b, называется такое число, что
при возведении числа а в эту степень получится число b .
Это записывается так . Здесь, при число а и b положительные действительные числа. Запись является логарифмической записью равенства и наоборот запись
является экспоненциальной записью для равенства .
То есть записи и эквивалентны.
Равенство называется основным логарифмическим тождеством.
Пример №24
Заменим логарифмическую запись экспоненциальности.
Решение:
логарифмическая запись: экспоненциальная запись:
Пример №25
Найдём значение логарифмического выражения.
Решение:
Логарифм чисел по основанию 10 и е соответственно обозначаются как . Логарифм по основанию 10 называется десятичным логарифмом, по основанию е – натуральным логарифмом.
При вычислении логарифмов можно пользоваться калькулятором. Например, виртуальным калькулятором по адресу http://web2.0calc.com
Исследование. Постройте в тетради таблицу значений и график функций обратной ей функции . Запишите своё мнение о полученных функциях.
Логарифмическая функция
Для каждого значения области определения функции соответствует единственное значение из области значений, т.е. для функции существует обратная функция .
Значит, если график функции отразить симметрично относительно прямой у = х, то получим график функции .
1)Область определения логарифмической функции все
положительные числа:
2)Множество значений логарифмической функции множество всех действительных чисел:
3)При логарифмическая функция является возрастающей, при убывающей.
4)График функции пересекает ось абсцисс в точке (1; 0). В качестве примера для на рисунке даны графики .
Постройте графики в тетради.
Если , то при логарифмическая функция принимает отрицательные значения, при принимает положительные значения.
В качестве примера для на рисунке даны графики функций у = log_i_ х, у .
Постройте графики в тетради.Если , то при логарифмическая функция принимает положительные значения, при принимает отрицательные значения.
Логарифмическая шкала и решение задач
В химии: Показатель рН-мера активности ионов водорода в растворе, количественно выражающая его кислотность. Для вычисления уровня рН в растворах используется формула
Здесь, Н+ концентрация ионов в мол/л. Из формулы следует, что при увеличении показателя рН па 1 единицу, концентрация ионов в растворе увеличивается в 10 раз. По шкале рН значения показателя рН изменяются от 0 до 14. Если рН равно 7, то раствор считается нейтральным, меньше 7 – кислым, больше 7 – щелочным.
В физике: Громкость звука измеряется в децибелах и вычисляется по формуле . Здесь I – интенсивность звука (ватт/м2), I0 – наименьшая интенсивность звука, которую различает человеческое ухо (принято 10-12 ватт/м2). Человеческое ухо может различать звуки в очень большом диапазоне от 0 dB (тишина) до 180 dB.
Землетрясение. В 1935 году американский сейсмолог Чарлз Рихтер вывел формулу и создал логарифмическую шкалу определения силы землетрясения (она называется шкалой Рихтера). Здесь М -сила землетрясения (в баллах), А – максимальная амплитуда волны (в микронах), зарегистрированная на сейсмографе, Ао– амплитуда (принято 1 микрон (10 -6 м)) самой маленькой сейсмической волны зарегистрированной сейсмографом (её называют “нулём землетрясения”). Формулу можно записать иначе, как . Таким образом, по шкале Рихтера, амплитуда сейсмической волны в 4 балла в 10 раз больше амплитуды сейсмической волны в 3 балла.
Биология. Биологи по длине следа слона, могут, приблизительно, определить его возраст ( а). Для этого они используют формулу .
Свойства логарифмов
- произведение степеней:
- отношение степеней:
- возведение степени в степень:
1. Логарифм произведения:
Логарифм произведения двух положительных чисел равен сумме логарифмов множителей. Здесь и , х и у – положительные действительные числа.
2. Логарифм частного:
Логарифм частного двух положительных чисел равен разности логарифмов. Здесь и , х и у – положительные действительные числа.
3. Логарифм степени:
Логарифм степени числа равен произведению степени и логарифма этого числа. Здесь и , х – положительное действительное число.
Свойство 1.
Доказательство свойства 1:
Обозначим
Свойство 2.
Доказательство свойства 2:
Обозначим .
Свойство 3.
Доказательство свойства 3:
Обозначим
Используя свойства логарифмов, запишите данные выражения через логарифмы положительных чисел х, у и z.
Пример:
Используя свойства логарифмов запишите в виде логарифма какого-либо числа вида .
Пример:
Запишите в виде логарифма следующие выражения, зная, что переменные могут принимать только положительные значения.
Пример:
Переход к новому основанию:
По основному логарифмическому тождеству и свойству степени логарифма имеем:
Отсюда:
В частном случае при
На многих калькуляторах существуют кнопки для вычисления только десятичного логарифма (lg) и натурального логарифма (In). Поэтому, возникает необходимость представлять логарифмы в виде десятичных и натуральных логарифмов.
Пример:
Запишите в виде : а) десятичного; б) натурального логарифма и вычислите.
Логарифм числа и его свойства
Логарифм числа:
Логарифмом положительного числа b по основанию называется показатель степени, в которую необходимо возвести а, чтобы получить b. Обозначение:
поскольку
так как
поскольку
Десятичный логарифм — это логарифм по основанию 10. Обозначение:
Натуральный логарифм — это логарифм по основанию — иррациональное число, приближенное значение которого:
Обозначение:
2. Основное логарифмическое тождество
3. Свойства логарифмов и формулы логарифмирования
Логарифм единицы по любому основанию равен нулю.
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
4. Формула перехода к логарифмам с другим основанием
Следствия
Объяснение и обоснование:
Логарифм числа в высшей математике
Если рассмотреть равенство то, зная любые два числа из этого равенства, мы можем найти третье:
Первые две операции, представленные в этой таблице (возведение в степень и извлечение корня степени), нам уже известны, а с третьей — логарифмированием, то есть нахождением логарифма данного числа — мы познакомимся в этом параграфе.
В общем виде операция логарифмирования позволяет из равенства (где найти показатель Результат выполнения этой операции обозначается Таким образом, логарифмом положительного числа по основанию называется показатель степени, в которую необходимо возвести чтобы получить
2) Например: 1) поскольку поскольку
3) поскольку
Отметим, что при положительных уравнение всегда имеет единственное решение, поскольку функция принимает все значения из промежутка является возрастающей, а при — убывающей (рис. 126).
Итак, каждое свое значение функция принимает только при одном значении Следовательно, для любых положительных чисел уравнение имеет единственный корень
При уравнение не имеет корней, таким образом, при значение выражения не существует.
Например, не существуют значения
Отметим, что логарифм по основанию 10 называется десятичным логарифмом и обозначается
Например,
В недалеком прошлом десятичным логарифмам отдавали предпочтение и составляли очень подробные таблицы их значений, которые использовались в разных вычислениях. В эпоху всеобщей компьютеризации десятичные логарифмы утратили свою ведущую роль. В современной науке и технике широко используются логарифмы, основанием которых является особенное число (такое же знаменитое, как и число Число как и число — иррациональное, Логарифм по основанию называется натуральным логарифмом и обозначается
Например,
Основное логарифмическое тождество
По определению логарифма, если Подставляя в последнее равенство вместо его значение, получаем равенство, которое называется основным логарифмическим тождеством:
где
Например:
Свойства логарифмов и формулы логарифмирования
Во всех приведенных ниже формулах
1) Из определения логарифма получаем, что
поскольку Таким образом, логарифм единицы по любому основанию равен нулю.
2) Поскольку то
3) Чтобы получить формулу логарифма произведения обозначим Тогда по определению логарифма
Перемножив почленно два последних равенства, имеем По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм произведения положительных чисел равен сумме логарифмов множителей.
4) Аналогично, чтобы получить формулу логарифма частного достаточно разделить почленно равенства (1). Тогда По определению логарифма и с учетом введенных обозначений из последнего равенства получаем Таким образом,
Логарифм частного положительных чисел равен разности логарифмов делимого и делителя.
5) Чтобы получить формулу логарифма степени обозначим По определению логарифма Тогда и по определению логарифма с учетом обозначения для имеем Таким образом,
Логарифм степени положительного числа равен произведению показателя степени на логарифм основания этой степени.
Учитывая, что при по формуле (4) имеем: To есть при можно пользоваться формулой (можно не запоминать эту формулу, а каждый раз записывать корень из положительного числа как соответствующую степень).
Замечание. Иногда приходится находить логарифм произведения и в том случае, когда числа оба отрицательные Тогда и существует, но формулой (2) воспользоваться нельзя — она обоснована только для положительных значений В случае имеем и теперь
Таким образом, для логарифма произведения можно воспользоваться формулой (2). Поэтому при можем записать:
Отметим, что полученная формула справедлива и при поскольку в этом случае Таким образом, при
Аналогично можно обобщить и формулы (3) и (4):
при при
Формула перехода к логарифмам с другим основанием
Пусть Тогда по определению логарифма Прологарифмируем обе части последнего равенства по основанию Получим
Используя в левой части этого равенства формулу логарифма степени, имеем Тогда Учитывая, что получаем где
Таким образом, логарифм положительного числа по одному основанию а равен логарифму этого же числа по новому основанию деленному на логарифм прежнего основания а по новому основанию
С помощью последней формулы можно получить следующие следствия.
- Учитывая, что имеем где
- Аналогично, учитывая формулу перехода от одного основания логарифма к другому и формулу логарифма степени, получаем (при
Записав полученную формулу справа налево, имеем где
Примеры решения задач:
Пример №26
Вычислите:
Решение:
1) поскольку
2) так как
Комментарий:
Учитывая определение логарифма, необходимо подобрать такой показатель степени, чтобы при возведении основания логарифма в эту степень получить число, стоящее под знаком логарифма.
Пример №27
Запишите решение простейшего показательного уравнения:
Комментарий:
Для любых положительных чисел уравнение имеет единственный корень. Показатель степени в которую необходимо возвести основание чтобы получить называется логарифмом по основанию поэтому
Решение:
По определению логарифма:
Пример №28
Выразите логарифм по основанию 3 выражения (где и
через логарифмы по основанию 3 чисел (Коротко говорят так «Прологарифмируйте заданное выражение по основанию 3».)
Комментарий:
Сначала запишем выражения, стоящие в числителе и знаменателе данного выражения, как степени чисел и букв. Далее учтем, что логарифм частного положительных чисел равен разности логарифмов числителя и знаменателя, а затем то, что логарифм произведения равен сумме логарифмов множителей.
После этого учтем, что каждый из логарифмов степеней равен произведению показателя степени на логарифм основания этой степени, а также то, что
Решение:
Пример №29
Известно, что Выразите через
Решение:
Комментарий Сначала представим число 700 как произведение степеней данных чисел 5 и 7 и основания логарифма 2, а далее используем свойства логарифмов и подставим в полученное выражение значения
Пример №30
Прологарифмируйте по основанию 10 выражение
Комментарий:
Поскольку логарифмы существуют только для положительных чисел, то мы можем прологарифмировать данное выражение только в случае когда Из условия не следует, что в данном выражении значения с положительны. Поэтому будем пользоваться обобщенными формулами логарифмирования а также учтем, что
Решение:
Иногда приходится искать выражение, зная его логарифм. Такую операцию называют потенцированием.
Пример №31
Найдите х по его логарифму:
Решение:
Комментарий:
Пользуясь формулами логарифмирования справа налево, запишем правые части данных равенств в виде логарифма какого-то выражения.
Из полученного равенства получаем (значение удовлетворяющее равенству (1), — единственное).
Пример №32
Вычислите значение выражения
Комментарий:
Попытаемся привести показатель степени данного выражения к виду чтобы можно было воспользоваться основным логарифмическим тождеством:
Для этого перейдем в показателе степени к одному основанию логарифма (к основанию 5).
Решение:
Поскольку то
Кроме того,
Тогда
Итак
Логарифмическая функция, ee свойства и график
Определение. Логарифмической функцией называется функция вида
График логарифмической функции:
Функции — взаимно обратные функции, поэтому их графики симметричны относительно прямой
Свойства логарифмической функции:
1. Область определения:
2. Область значений:
3. Функция ни четная, ни нечетная.
4. Точки пересечения с осями координат: с осью с осью
5. Промежутки возрастания и убывания:
функция возрастает при на всей области определения
функция убывает при на всей области определения
6. Промежутки знакопостоянства:
7. Наибольшего и наименьшего значений функция не имеет.
8.
Объяснение и обоснование:
Понятие логарифмической функции и ее график
Логарифмической функцией называется функция вида
Покажем, что эта функция является обратной к функции Действительно, показательная функция возрастает на множестве а при — убывает на множестве . Область значений функции — промежуток Таким образом, функция обратима (с. 141) и имеет обратную функцию с областью определения и областью значений Напомним, что для записи формулы обратной функции достаточно из равенства выразить через и в полученной формуле аргумент обозначить через а функцию — через Тогда из уравнения по определению логарифма получаем — формулу обратной функции, в которой аргумент обозначен через а функция — через Изменяя обозначения на традиционные, имеем формулу — функции, обратной к функции
Как известно, графики взаимно обратных функций симметричны относительно прямой Таким образом, график функции можно получить из графика функции у = ах симметричным отображением относительно прямой На рисунке 127 приведены графики логарифмических функций при и при График логарифмической функции называют логарифмической кривой.
Свойства логарифмической функции
Свойства логарифмической функции, указанные в пункте 8 таблицы 54. Другие свойства функции прочитаем из полученного графика этой функции или обоснуем, опираясь на свойства функции
Поскольку область определения прямой функции является областью значений обратной, а область значений прямой функции — областью определения обратной, то, зная эти характеристики для функции получаем соответствующие характеристики для функции
- Областью определения функции является множество всех положительных чисел
- Областью значений функции является множество всех действительных чисел (тогда функция не имеет ни наибольшего, ни наименьшего значений).
- Функция не может быть ни четной, ни нечетной, поскольку ее область определения не симметрична относительно точки 0.
- График функции не пересекает ось поскольку на оси а это значение не принадлежит области определения функции График функции пересекает ось в точке поскольку при всех значениях
- Из графиков функции приведенных на рисунке 127, видно, что прu функция возрастает на всей области определения, а при — убывает на всей области определения. Это свойство можно обосновать, опираясь не на вид графика, а только на свойства функции Например, при возьмем По основному логарифмическому тождеству можно записать: Тогда, учитывая, что имеем Поскольку при функция является возрастающей, то из последнего неравенства получаем А это и означает, что при функция возрастает на всей области определения. Аналогично можно обосновать, что при функция убывает на всей области определения.
- Промежутки знакопостоянства. Поскольку график функции пересекает ось в точке то, учитывая возрастание функции при и убывание при имеем:
Примеры решения задач:
Пример №33
Найдите область определения функции:
Решение:
- Область определения функции задается неравенством Отсюда То есть
- Область определения функции задается неравенством Это неравенство выполняется при всех действительных значениях Таким образом,
- Область определения функции задается неравенством Решая это квадратное неравенство, получаем или (см. рисунок).
То есть
Комментарий:
Поскольку выражение, стоящее под знаком логарифма, должно быть положительным, то для нахождения области определения заданной функции необходимо найти те значения аргумента при которых выражение, стоящее под знаком логарифма, будет положительным.
Пример №34
Изобразите схематически график функции:
Комментарий:
Область определения функции — значения следовательно, график этой функции всегда расположен справа от оси Этот график пересекает ось в точке
При логарифмическая функция возрастает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента поднимаются.
При логарифмическая функция убывает, таким образом, графиком функции будет логарифмическая кривая, точки которой при увеличении аргумента опускаются.
Чтобы уточнить поведение графиков данных функций, найдем координаты нескольких дополнительных точек.
Решение:
Пример №35
Изобразите схематически график функции
Решение:
Последовательно строим графики:
Комментарий:
Составим план последовательного построения графика данной функции с помощью геометрических преобразований.
Пример №36
Сравните положительные числа зная, что:
Решение:
Комментарий:
В каждом задании данные выражения — это значения логарифмической функции в точках
Используем возрастание или убывание соответствующей функции:
Пример №37
Сравните с единицей положительное число зная, что
Решение:
Поскольку а из условия получаем, что (то есть то функция убывающая, поэтому
Комментарий:
Числа — это два значения функции Исходя из данного неравенства, выясняем, является эта функция возрастающей или убывающей, и учитываем, что она возрастает при и убывает при
- Заказать решение задач по высшей математике
Решение логарифмических уравнении и неравенств
Основные определения и соотношения:
Определение: Логарифмом положительного числа b по основанию называется показатель степени, в которую необходимо возвести чтобы получить
График функции
– возрастает
– убывает
Решение простейших логарифмических уравнений:
Если — число то (используем определение логарифма)
Пример №38
Ответ: 10.
Если из предположения, что первое равенство верно, следует, что каждое следующее верно, то гарантируем, что получаем уравнения следствия. При использовании уравнений”следствий не происходит потери корней исходного уравнения, но возможно появление по” сторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения.
Пример №39
По определению логарифма получаем
Проверка. — посторонний корень (в основании логарифма получаем отрицательное число);
— корень
Ответ: 2.
Равносильные преобразования логарифмических уравнений:
Если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Пример №40
Замена переменных:
Замена:
Следовательно, Тогда
Ответ:
Пример №41
Уравнение вида
(учитываем ОДЗ и приравниваем выражения, стоящие под знаками логарифмов)
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:
— посторонний корень (не удовлетворяет условиям ОДЗ);
— корень (удовлетворяет условиям ОДЗ).
Ответ: 3.
1. Учитываем ОДЗ данного уравнения (и избегаем преобразований, приводящих к сужению ОДЗ);
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и обратном направлениях с сохранением верного равенства
ОДЗ:
На этой ОДЗ данное уравнение равносильно уравнениям:
— корень (удовлетворяет условиям ОДЗ);
— посторонний корень (не удовлетворяет условиям ОДЗ).
Ответ:1.
Объяснение и обоснование:
Решение простейших логарифмических уравнений
Простейшим логарифмическим уравнением обычно считают уравнение
Логарифмическая функция возрастает (или убывает) на всей своей области определения, то есть при (см. графики в пункте 1 табл. 55), и поэтому каждое свое значение принимает только при одном значении аргумента. Учитывая, что логарифмическая функция принимает все действительные значения, уравнение всегда имеет единственный корень, который можно записать, исходя из определения логарифма:
Если рассмотреть уравнение и выполнить замену переменной: то получим простейшее логарифмическое уравнение имеющее единственный корень Выполняя обратную замену, получаем, что решения уравнения (2) совпадают с корнями уравнения
Следовательно, уравнения (2) и (3) — равносильны. Таким образом, мы обосновали, что для равносильного преобразования простейшего логарифмического уравнения (1) или уравнения (2) (которое мы также будем относить к простейшим при условии, что основание — число) достаточно применить определение логарифма. Если обозначить равносильность уравнений значком то коротко этот результат можно записать так:
Напомним, что все равносильные преобразования уравнения выполняются на его области допустимых значений (ОДЗ). Для уравнения (2) ОДЗ задается условием Но для всех корней уравнения (3) это условие выполняется автоматически (потому что Поэтому в явном виде ОДЗ для простейших логарифмических уравнений можно не записывать (поскольку оно учитывается автоматически при переходе от уравнения (2) к уравнению (3)).
Например, уравнение равносильно уравнению корень которого и является корнем заданного уравнения.
Аналогично записано и решение простейшего уравнения в таблице 55.
Использование уравнений-следствий при решении логарифмических уравнений
При решении уравнения главное — не потерять его корни, и поэтому важно следить за тем, чтобы каждый корень первого уравнения оставался корнем следующего уравнения — в этом случае получаем уравнения-следствия. Напомним, что каждый корень заданного уравнения обращает его в верное числовое равенство. Используя это определение, можно обосновать, что в случае, когда преобразования уравнений проводятся так: если из предположения, что первое равенство верно, следует, что каждое следующее верно, то мы получаем уравнения-следствия (поскольку каждый корень первого уравнения будет и корнем следующего уравнения). Напомним, что хотя при использовании уравнений-следствий не происходит потери корней исходного уравнения, но возможно появление посторонних корней. Поэтому проверка полученных корней подстановкой в исходное уравнение является составной частью решения при использовании уравнений-следствий.
Пример решения логарифмического уравнения с помощью уравнений-следствий и оформление такого решения приведены в пункте 3 таблицы 55.
Равносильные преобразования логарифмических уравнений
Одним из часто используемых способов равносильных преобразований уравнений является замена переменной.
Напомним общий ориентир, которого мы придерживались при решении уравнений из других разделов: если в уравнение (неравенство или тождество) переменная входит в одном и том же виде, то удобно соответствующее выражение с переменной обозначить одной буквой (новой переменной).
Например, в уравнение переменная входит только в виде поэтому для его решения целесобразно применить замену получить квадратное уравнение имеющее корни а затем выполнить обратную замену и получить простейшие логарифмические уравнения: Тогда, по определению логарифма, корнями данных уравнений являются
Принимая во внимание то, что замена переменной (вместе с обратной заменой) является равносильным преобразованием уравнения на любом множестве, для выполнения замены не обязательно находить ОДЗ данного уравнения. После выполнения обратной замены мы получили простейшие логарифмические уравнения, ОДЗ которых (как было показано выше) учитываются автоматически и могут также не записываться. Таким образом, в приведенном решении ОДЗ данного уравнения учтена автоматически, и поэтому в явном виде ОДЗ можно не записывать в решение. Именно так и оформлено решение этого уравнения в пункте 4 таблицы 55.
Рассмотрим также равносильные преобразования уравнения вида
Как уже говорилось, все равносильные преобразования уравнения выполняются на его области допустимых значений. Для уравнения (4) ОДЗ задается системой неравенств Поскольку логарифмическая функция возрастает (при или убывает (при на всей своей области определения и каждое свое значение принимает только при одном значении аргумента, то равенство (4) может выполняться (на ОДЗ) тогда и только тогда, когда Учитывая ОДЗ, получаем, что уравнение (4) равносильно системе Символично полученный результат зафиксирован в пункте 4 таблицы 55, а коротко его можно сформулировать так:
- чтобы решить уравнение с помощью равносильных преобразований, учитываем ОДЗ этого уравнения и приравниваем выражения, стоящие под знаками логарифмов.
Пример использования этого ориентира приведен в таблице 55.
Замечание 1. Полученную систему (5)-(7) можно несколько упростить. Если в этой системе выполняется равенство (5), то значения между собой равны, поэтому, если одно из этих значений будет положительным, то второе также будет положительным. Таким образом, уравнение (4) равносильно системе, состоящей из уравнения (5) и одного из неравенств (6) или (7) (обычно выбирают простейшее из этих неравенств).
Например, уравнение рассмотренное в таблице 55, равносильно системе Но, учитывая, что ограничения ОДЗ этого уравнения: мы не решали, а только проверяли, удовлетворяют ли найденные корни этим ограничениям, то приведенное упрощение не дает существенного выигрыша при решении этого уравнения.
Замечание 2. Как было обосновано выше, если выполняется равенство (4), то обязательно выполняется и равенство (5). Таким образом, уравнение (5) является следствием уравнения (4), и поэтому для нахождения корней уравнения (4): достаточно найти корни уравнения-следствия (5): и выполнить проверку найденных корней подстановкой в данное уравнение. (При таком способе решения ОДЗ уравнения (4) будет учтено опосредствованно, в момент проверки полученных корней, и его не придется явно записывать.)
Выполняя равносильные преобразования логарифмических уравнений в более сложных случаях, можно придерживаться следующего ориентира (он следует из определения равносильных уравнений):
- Учитываем ОДЗ данного уравнения.
- Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Например, решим уравнение с помощью равносильных преобразований.
Для этого достаточно учесть ОДЗ уравнения а затем, выполняя каждое преобразование уравнения, все время следить за тем, можно ли на ОДЗ выполнить это преобразование и в обратном направлении. Если ответ положителен, то выполненные преобразования равносильны. Если же какое-то преобразование для всех значений переменной из ОДЗ можно выполнить только в одном направлении (от исходного уравнения к следующему), а для его выполнения в обратном направлении необходимы какие-то дополнительные ограничения, то мы получим только уравнение-следствие, и полученные корни придется проверять подстановкой в исходное уравнение.
Применим этот план к решению уравнения (8).
Чтобы привести это уравнение к простейшему, перенесем все члены уравнения с логарифмами влево. Получим равносильное уравнение
(Равносильность уравнений (8) и (9) следует из известной теоремы: если из одной части уравнения перенести в другую слагаемые с противоположным знаком, то получим уравнение, равносильное данному на любом множестве. Равносильность этих уравнений следует также из того, что мы можем перейти не только от равенства (8) к равенству (9), но и выполнить обратное преобразование, пользуясь свойствами числовых равенств.)
Учитывая, что сумма логарифмов положительных (на ОДЗ) чисел равна логарифму произведения, получаем уравнение
На ОДЗ данного уравнения можно выполнить и обратное преобразование: поскольку то логарифм произведения положительных чисел равен сумме логарифмов множителей. Таким образом, от равенства (10) можно вернуться к равенству (9), то есть этот переход также приводит к равносильному уравнению. Уравнение (10) — это простейшее логарифмическое уравнение. Оно равносильно уравнению, которое получается по определению логарифма:
Выполняя равносильные преобразования полученного уравнения, имеем:
Поскольку все равносильные преобразования выполнялись на ОДЗ данного уравнения, учтем ее, подставляя полученные корни в ограничения ОДЗ: — корень, потому что удовлетворяет условиям ОДЗ; не является корнем (посторонний корень), потому что не удовлетворяет условиям ОДЗ. Таким образом, данное уравнение имеет только один корень
Замечание. Рассмотренное уравнение можно было решить и с использованием уравнений-следствий.
Примеры решения задач:
Пример №42
Решите уравнение
Решение:
Проверка. — посторонний корень (под знаком логарифма получаем 0),
— корень, поскольку имеем
Ответ: 14
Комментарий:
Решим данное уравнение с помощью уравнений-следствий. Напомним, что при использовании уравнений-следствий главное — гарантировать, что в случае, когда первое равенство будет верным, то и все последующие также будут верными.
Чтобы избавиться от дробного коэффициента, умножим обе части уравнения (1) на 2 (если равенство (1) верно, то и равенство (2) также верно). Если равенства (1) и (2) верны (при тех значениях которые являются корнями этих уравнений), то при таких значениях существуют все записанные логарифмы, и тогда выражения — положительны. Следовательно, для положительных можно воспользоваться формулами: таким образом, равенства (3) и (4) также будут верны. Учитывая, что функция является возрастающей и, следовательно, каждое свое значение принимает только при одном значении аргумента, из равенства логарифмов (4) получаем равенство соответствующих аргументов (5).
Если равенство (5) верно, то знаменатель дроби не равен нулю, и после умножения обеих ее частей на получаем верное равенство (6) (а значит, и верное равенство (7)). Поскольку мы пользовались уравнениями-следствиями, то в конце необходимо выполнить проверку.
Пример №43
Решите уравнение
Комментарий:
Решим данное уравнение с помощью равносильных преобразований. Напомним, что для этого достаточно учесть ОДЗ данного уравнения и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного равенства.
Заметим, что на ОДЗ выражение может быть как положительным, так и отрицательным, и поэтому мы не имеем права применять к выражению формулу: (это приведет к потере корня). Применение обобщенной формулы логарифмирования приведет к уравнению с модулем. Используем другой способ преобразований, учтя, что Поскольку на ОДЗ все выражения, стоящие под знаками логарифмов, положительны, то все преобразования от уравнения (1) к уравнению (2) будут равносильными. Выполнить равносильные преобразования уравнения (2) можно с использованием ориентира, приведенного на с. 377. Также равносильность уравнений (2) и (3) может быть обоснована через возрастание функции которая каждое свое значение принимает только при одном значении аргумента.
Решение:
ОДЗ: Тогда
На этой ОДЗ данное уравнение равносильно уравнениям:
Учитывая ОДЗ, получаем, что входит в ОДЗ, таким образом, является корнем;
не входит в ОДЗ, следовательно, не является корнем данного уравнения. Ответ: 1.
Пример №44
Решите уравнение
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ Поскольку в уравнение входят логарифмы с разными основаниями, то приведем их к одному основанию (желательно числовому, иначе можно потерять корни уравнения). В данном случае приводим к основанию 4 по формуле
После приведения логарифмов к одному основанию переменная входит в уравнение только в одном виде Выполним замену Поскольку по ограничениям ОДЗ Тогда полученное дробное уравнение (1) равно-сильно квадратному уравнению (2).
Поскольку замена и обратная замена являются равносильными преобразованиями на ОДЗ, то для полученных решений достаточно проверить, входят ли они в ОДЗ.
Решение:
ОДЗ: На ОДЗ данное уравнение равносильно уравнению
Замена: Получаем:
(оба корня входят в ОДЗ).
Ответ: 16; 64.
Пример №45
Решите уравнение
Решение:
ОДЗ:
На ОДЗ данное уравнение равносильно уравнениям:
Замена:
Получаем:
Обратная замена дает
Отсюда или
Ответ: 0,1; 1000.
Комментарий:
Выполним равносильные преобразования данного уравнения. Для этого найдем его ОДЗ и используем ориентир: если переменная входит и в основание, и в показатель степени, то для решения такого уравнения можно попытаться прологарифмировать обе части уравнения (только если они положительны). В запись уравнения уже входит десятичный логарифм, поэтому прологарифмируем обе части по основанию 10 (на ОДЗ обе части данного уравнения положительны).
Поскольку функция является возрастающей, то каждое свое значение она принимает только при одном значении аргумента. Следовательно, если выполняется равенство (1), то выполняется и равенство (2), и наоборот: если выполняется равенство (2), то выполняется и равенство (1). Таким образом, уравнения (1) и (2) равносильны на ОДЗ. При применение формулы является равносильным преобразованием, а значит, уравнения (2) и (3) также равносильны.
Обоснование равносильности дальнейших преобразований полностью совпадает с аналогичным обоснованием в предыдущей задаче.
Пример №46
Решите уравнение
Решение:
Замена: Получаем
Обратная замена дает – корней нет.
Ответ: 2
Комментарий:
Если сначала рассмотреть данное уравнение как простейшее логарифмическое, то по определению логарифма оно равносильно уравнению Как уже отмечалось (с. 376), ОДЗ данного уравнения для всех корней уравнения (1) учитывается автоматически, поскольку всегда. После этого уравнение (1) решается по схеме решения показательных уравнений.
Поскольку и поэтому уравнение (2) равносильно уравнению (3).
Пример №47
Решите систему уравнений
Решение:
По определению логарифма имеем Из второго уравнения последней системы получаем и подставляем в первое уравнение:
Тогда:
Проверка: решение заданной системы.
– постороннее решение
(под знаком логарифма получаем отрицательные числа).
Ответ: (1; 4).
Комментарий:
Как и логарифмические уравнения, системы логарифмических уравнений можно решать как с помощью систем-следствий (каждое решение первой системы является решением второй), так и с помощью равносильных преобразований систем (все решения каждой из них являются решениями другой).
Кроме того, при решении логарифмических систем можно применить те же способы, что и при решении других видов систем (способ алгебраического сложения, подстановка некоторого выражения из одного уравнения в другое, замена переменных).
Например, решим данную систему с помощью систем-следствий. Для этого достаточно гарантировать, что в случае, когда заданная система состоит из верных равенств, каждая следующая система также будет содержать верные равенства. Как и для уравнений, при использовании систем-следствий необходимо выполнить проверку полученных решений подстановкой в исходную систему.
Замечание. Данную систему можно было решить и с помощью равносильных преобразований систем. При этом пришлось бы учесть ОДЗ данной системы следить за равносильностью выполненных преобразований (в данном случае все написанные преобразования являются равносильными на ОДЗ), а в конце проверить, удовлетворяют ли полученные решения условиям ОДЗ (пара чисел удовлетворяет условиям ОДЗ, а не удовлетворяет условиям ОДЗ).
Пример №48
Решите систему уравнений
Решение:
ОДЗ:
Тогда из первого уравнения имеем
Замена дает уравнения
Обратная замена дает
Тогда из второго уравнения системы имеем
(не принадлежит ОДЗ),
(принадлежит ОДЗ).
Таким образом, решение данной системы
Ответ: (5:5)
Комментарий:
Решим данную систему с помощью равносильных преобразований. Для этого достаточно учесть ее ОДЗ и гарантировать, что на каждом шагу были выполнены именно равносильные преобразования уравнения или всей системы. В первом уравнении системы все логарифмы приведем к одному основанию
На ОДЗ следовательно, Тогда после замены имеем и поэтому переход в решении от дробного уравнения к квадратному является равносильным.
Поскольку замена (вместе с обратной заменой) является равносильным преобразованием, то, заменяя первое уравнение системы равносильным ему (на ОДЗ) уравнением получаем систему, равносильную данной (на ее ОДЗ).
Решение логарифмических неравенств
График функции :
Равносильные преобразования простейших логарифмических неравенств:
Знак неравенства не меняется, и учитывается ОДЗ:
Знак неравенства меняется, и учитывается ОДЗ:
ОДЗ:
Функция возрастающая, тогда
Учитывая ОДЗ, имеем
Ответ:
ОДЗ:
Функция убывающая, тогда Учитывая ОДЗ, имеем
Ответ:
Решение более сложных логарифмических неравенств:
I. С помощью равносильных преобразований данное неравенство приводится к неравенству известного вида.
Схема равносильных преобразований неравенства:
1. Учитываем ОДЗ заданного неравенства (и избегаем преобразований, приводящих к сужению ОДЗ).
2. Следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
ОДЗ: На этой ОДЗ данное неравенство равносильно неравенствам: Замена Тогда то есть Решение этого неравенства (см. рисунок).
Обратная замена дает Тогда Учитывая, что функция является возрастающей, получаем: С учетом ОДЗ имеем:
Ответ:
II. Применяется общий метод интервалов (данное неравенство приводится к неравенству и используется схема:
- Найти ОДЗ;
- Найти нули
- Отметить нули функции на ОДЗ и найти знак на каждом из промежутков, на которые разбивается ОДЗ;
- Записать ответ, учитывая знак неравенства.
Решим неравенство методом интервалов. Оно равносильно неравенству Обозначим
1. ОДЗ:
2. Нули функции: Тогда На ОДЗ это уравнение равносильно уравнению (полученному по определению логарифма). То есть В ОДЗ входит только x = 3. Итак, f(x) имеет единственный нуль функции
3. Отмечаем нули функции на ОДЗ, находим знак на каждом из промежутков, на которые разбивается ОДЗ, и записываем решения неравенства
Ответ:
Объяснение и обоснование:
Решение простейших логарифмических неравенств
Простейшими логарифмическими неравенствами обычно считают неравенства вида
Для решения такого неравенства можно применять равносильные преобразования. Для этого необходимо учесть его ОДЗ: и рассмотреть два случая: основание логарифма больше 1 и основание меньше 1 (но больше 0).
I. При логарифмическая функция возрастает на всей своей области определения (то есть при и поэтому большему значению функции соответствует большее значение аргумента. Таким образом, переходя в неравенстве (1) от значений функции к значениям аргумента (в данном случае переходя к выражениям, стоящим под знаком логарифма), мы должны оставить тот же знак неравенства, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (большему положительному значению аргумента соответствует большее значение функции), получаем, что на ОДЗ неравенство (1) равносильно неравенству (2). Коротко это можно записать так:
II. При логарифмическая функция убывает на всей своей области определения (то есть при и поэтому большему значению функции соответствует меньшее значение аргумента. Следовательно, переходя в неравенстве (1) от значений функции к значениям аргумента, мы должны знак неравенства изменить на противоположный, то есть
Учитывая, что на ОДЗ указанный переход можно выполнить и в обратном направлении (меньшему положительному значению аргумента соответствует большее значение функции), получаем, что при неравенство (1) на его ОДЗ равносильно неравенству (5). Коротко это можно записать так:
Суммируя полученные результаты, отметим, что для решения неравенства вида с помощью равносильных преобразований необходимо учесть его ОДЗ, а при переходе от значений функции к значениям аргумента (то есть к выражениям, стоящим под знаком логарифма) — значение
- при знак неравенства не меняется,
- при знак неравенства меняется на противоположный.
Примеры использования этих ориентиров приведены в таблице 56.
Замечание. Системы неравенств, полученные для случаев I и II, можно несколько упростить. Например, если в системе выполняются неравенство (2): и неравенство (4): то из этих неравенств следует, что Следовательно, неравенство (3) этой системы выполняется автоматически, когда выполняются неравенства (2) и (4), и его можно не записывать в эту систему (см. пункт 2 табл. 56).
Аналогично обосновывается, что в случае II в системе неравенство (4) является следствием неравенств (3) и (5), и его также можно не записывать в систему.
Например, решим неравенство
(ОДЗ данного неравенства учтено автоматически, поскольку, если то выполняется и неравенство
Решаем неравенство Тогда отсюда (см. рисунок) — решение заданного неравенства (его можно записать и так:
Решение более сложных логарифмических неравенств
Решение более сложных логарифмических неравенств выполняется или с помощью равносильных преобразований данного неравенства (и приведения его к известному виду неравенств), или с помощью метода интервалов.
Схема равносильных преобразований логарифмических неравенств полностью аналогична схеме равносильных преобразований логарифмических уравнений:
- учитываем ОДЗ данного неравенства;
- следим за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства.
В этом случае на ОДЗ каждое решение данного неравенства будет и решением второго и, наоборот, каждое решение второго неравенства будет решением первого, то есть эти неравенства будут равносильными (на ОДЗ).
Примеры решения логарифмических неравенств с помощью равносильных преобразований и методом интервалов и оформления такого решения приведены в таблице 56. Рассмотрим еще несколько примеров.
Примеры решения задач:
Пример №49
Решите неравенство
Комментарий:
Решим данное неравенство с помощью равносильных преобразований. Как и для уравнений, для этого достаточно учесть ОДЗ данного неравенства и следить за тем, чтобы на ОДЗ каждое преобразование можно было выполнить как в прямом, так и в обратном направлениях с сохранением верного неравенства. Поскольку на ОДЗ выражения, стоящие под знаком логарифмов, положительны, то формулу для положительных можно применить как в прямом, так и в обратном направлениях. Таким образом, выполняя преобразование неравенства по этой формуле, получим неравенство, равносильное данному (на его ОДЗ).
Чтобы применить свойства логарифмической функции, запишем число (-1) как значение логарифмической функции: (понятно, что эту формулу можно применить как в прямом, так и в обратном направлении и учтем, что
Решение:
ОДЗ: Тогда
На этой ОДЗ данное неравенство равносильно неравенству
Функция убывающая, таким образом,
Получаем Последнее неравенство имеет решения:
(см. рисунок).
Учитывая ОДЗ, получаем
Ответ:
Пример №50
Решите неравенство
Решение:
Учитывая ОДЗ данного неравенства и то, что функция убывающая, получаем
то есть
Тогда
Учитывая, что функция возрастающая, получаем
Это неравенство равносильно системе которая равносильна системе
Решаем неравенства (4) и (5) методом интервалов и находим их общее решение (см. рисунок).
Для неравенства (4) ОДЗ: нули функции
Для неравенства (5) ОДЗ: нули функции
Ответ:
Комментарий:
ОДЗ данного неравенства задается системой
При выполнении равносильных преобразований главное не записать ОДЗ, а учесть ее в ходе решения. При переходе от неравенства (1) к неравенству (2) в записи последнего неравенства остается выражение
для которого ОДЗ:
Следовательно, при таком переходе ограничение (7) будет неявно учтено и поэтому достаточно учесть только ограничение (6) (что и сделано в левой части неравенства (2)). Чтобы применить свойства соответствующих логарифмических функций, записываем сначала (и учитываем, что а затем — При переходе от неравенства (2) к неравенству (3) получаем таким образом, и в этом случае неравенство (7) учтено автоматически. Для нахождения общих решений неравенств (4) и (5) удобно их решения методом интервалов разместить одно над другим так, чтобы одинаково обозначенные точки находились одна над другой. Тогда из приведенного рисунка легко увидеть общее решение системы неравенств.
Логарифмические функции и их нахождение
Как известно, если то каждому положительному значению соответствует единственное значение Поэтому равенство задаёт некоторую функцию с областью определения
Функцию, заданную формулой называют логарифмической функцией с основанием
Примеры логарифмических функций:
Как связаны между собой функции
Равенство выражает ту же зависимость между что и этим двум равенствам отвечает один и тот же график {рис. 29). Чтобы от равенства перейти к нужно поменять местами переменные Поэтому и на графике следует поменять местами оси (рис. 30). Этот рисунок –
график функции только его оси размещены не так, как принято. Чтобы изобразить график функции в общепринятой системе координат, нужно весь рисунок отразить симметрично относительно прямой (рис. 31).
Итак, графики функций построенные в одной системе координат, симметричны относительно прямой
Последовательность описанных преобразований рассматриваемых функций для схематически изображена на рисунке 32.
Функции, графики которых симметричны относительно прямой являются взаимно обратными. В частности, функция обратная для функции
Если две функции взаимно обратные, то область определения одной из них является областью значений другой и наоборот.
Следует обратить внимание и на такое. Если одна из двух взаимно обратных функций на всей области определения возрастает, то и другая возрастает. Например, если функция
возрастает, то большему значению соответствует большее значение а большему значению — большее значение Тогда и в соотношениях большему значению соответствует большее значение т. е. функция также возрастает.
Из всего сказанного вытекают следующие свойства функции
- Область определения — промежуток
- Область значений — множество
- Функция возрастает на всей области определения, если а если убывает.
- Функция ни чётная, ни нечётная, ни периодическая.
- Если то значения функции положительные при и отрицательные при
- Если то значения функции положительные при и отрицательные при
- График функции всегда проходит через точку
Несколько графиков логарифмических функций показано на рисунке 33.
Если известно значение основания логарифма, то график логарифмической функции можно построить по точкам, составив предварительно таблицу значений. Постройте таким образом графики функций и убедитесь, что первая из них — возрастающая, а вторая — убывающая.
Обратите внимание на такие утверждения:
- если
- если
- если
Вы уже знаете, что графики функций симметричны относительно прямой А как расположены графики функций
Поскольку то понятно, что функции для одинаковых значений аргументов принимают противоположные значения. Это означает, что их графики симметричны относительно оси Примером являются графики функций изображённые на рисунке 34.
Показательные и логарифмические функции удобны для моделирования процессов, связанных с ростом населения, капитала, размножением бактерий, изменением атмосферного давления, радиоактивным распадом и т. п.
Пример №51
Найдите область определения функции
Решение:
Областью определения логарифмической функции является промежуток поэтому Корни уравнения равны поэтому множество решений неравенства такое:
Ответ.
Пример №52
Сравните числа:
Решение:
а) Функция убывающая, ибо Поскольку б) Приведём второй логарифм к основанию 0,5:
Из последнего неравенства следует, что Поскольку
- Логарифмические выражения
- Показательная функция, её график и свойства
- Производные показательной и логарифмической функций
- Показательно-степенные уравнения и неравенства
- Дифференциал функции
- Дифференцируемые функции
- Техника дифференцирования
- Дифференциальная геометрия
Решая логарифмические неравенства, мы пользуемся свойством монотонности логарифмической функции. Также мы используем определение логарифма и основные логарифмические формулы.
Давайте повторим, что такое логарифмы:
Логарифм положительного числа по основанию — это показатель степени, в которую надо возвести , чтобы получить .
При этом
Основное логарифмическое тождество:
Основные формулы для логарифмов:
(Логарифм произведения равен сумме логарифмов)
(Логарифм частного равен разности логарифмов)
(Формула для логарифма степени)
Формула перехода к новому основанию:
Алгоритм решения логарифмических неравенств
Можно сказать, что логарифмические неравенства решаются по определенному алгоритму. Нам нужно записать область допустимых значений (ОДЗ) неравенства. Привести неравенство к виду Знак здесь может быть любой: Важно, чтобы слева и справа в неравенстве находились логарифмы по одному и тому же основанию.
И после этого «отбрасываем» логарифмы! При этом, если основание степени , знак неравенства остается тем же. Если основание такое, что знак неравенства меняется на противоположный.
Конечно, мы не просто «отбрасываем» логарифмы. Мы пользуемся свойством монотонности логарифмической функции. Если основание логарифма больше единицы, логарифмическая функция монотонно возрастает, и тогда большему значению х соответствует большее значение выражения .
Если основание больше нуля и меньше единицы, логарифмическая функция монотонно убывает. Большему значению аргумента х будет соответствовать меньшее значение
Важное замечание: лучше всего записывать решение в виде цепочки равносильных переходов.
Перейдем к практике. Как всегда, начнем с самых простых неравенств.
1. Рассмотрим неравенство log3x > log35.
Поскольку логарифмы определены только для положительных чисел, необходимо, чтобы x был положительным. Условие x > 0 называется областью допустимых значений (ОДЗ) данного неравенства. Только при таких x неравенство имеет смысл.
Что делать дальше? Стандартный ответ, который дают школьники, — «Отбросить логарифмы!»
Что ж, эта формулировка лихо звучит и легко запоминается. Но почему мы все-таки можем это сделать?
Мы люди, мы обладаем интеллектом. Наш разум устроен так, что все логичное, понятное, имеющее внутреннюю структуру запоминается и применяется намного лучше, чем случайные и не связанные между собой факты. Вот почему важно не механически вызубрить правила, как дрессированная собачка-математик, а действовать осознанно.
Так почему же мы все-таки «отбрасываем логарифмы»?
Ответ простой: если основание больше единицы (как в нашем случае), логарифмическая функция монотонно возрастает, значит, большему значению x соответствует большее значение y и из неравенства log3x1 > log3x2 следует, что x1 > x2.
Обратите внимание, мы перешли к алгебраическому неравенству, и знак неравенства при этом — сохраняется.
Итак, x > 5.
Следующее логарифмическое неравенство тоже простое.
2. log5(15 + 3x) > log52x
Начнём с области допустимых значений. Логарифмы определены только для положительных чисел, поэтому
Решая эту систему, получим: x > 0.
Теперь от логарифмического неравенства перейдем к алгебраическому — «отбросим» логарифмы. Поскольку основание логарифма больше единицы, знак неравенства при этом сохраняется.
15 + 3x > 2x.
Получаем: x > −15.
Итак,
Ответ: x > 0.
А что же будет, если основание логарифма меньше единицы? Легко догадаться, что в этом случае при переходе к алгебраическому неравенству знак неравенства будет меняться.
Приведем пример.
3.
Запишем ОДЗ. Выражения, от которых берутся логарифмы, должны быть положительно, то есть
Решая эту систему, получим: x > 4,5.
Поскольку , логарифмическая функция с основанием монотонно убывает. А это значит, что большему значению функции отвечает меньшее значение аргумента:
И если , то
2x − 9 ≤ x.
Получим, что x ≤ 9.
Учитывая, что x > 4,5, запишем ответ:
x ∈ (4,5; 9].
В следующей задаче логарифмическое неравенство сводится к квадратному. Так что тему «квадратные неравенства» рекомендуем повторить.
Теперь более сложные неравенства:
4. Решите неравенство
Ответ:
5. Решите неравенство
ОДЗ:
Если , то . Нам повезло! Мы знаем, что основание логарифма больше единицы для всех значений х, входящих в ОДЗ.
Сделаем замену
Обратите внимание, что сначала мы полностью решаем неравенство относительно новой переменной t. И только после этого возвращаемся к переменной x. Запомните это и не ошибайтесь на экзамене!
Ответ:
6.
Запомним правило: если в уравнении или неравенстве присутствуют корни, дроби или логарифмы — решение надо начинать с области допустимых значений. Поскольку основание логарифма должно быть положительно и не равно единице, получим систему условий:
Упростим эту систему:
Это область допустимых значений неравенства.
Мы видим, что переменная содержится в основании логарифма. Перейдем к постоянному основанию. Напомним, что
В данном случае удобно перейти к основанию 4.
Сделаем замену
Упростим неравенство и решим его методом интервалов:
Итак,
Вернемся к переменной x:
Мы добавили условие x > 0 (из ОДЗ).
Ответ:
7. Следующая задача тоже решается с помощью метода интервалов
Как всегда, решение логарифмического неравенства начинаем с области допустимых значений. В данном случае
Это условие обязательно должно выполняться, и к нему мы вернемся. Рассмотрим пока само неравенство. Запишем левую часть как логарифм по основанию 3:
Правую часть тоже можно записать как логарифм по основанию 3, а затем перейти к алгебраическому неравенству:
Видим, что условие (то есть ОДЗ) теперь выполняется автоматически. Что ж, это упрощает решение неравенства.
Решаем неравенство методом интервалов:
Ответ:
Получилось? Что же, повышаем уровень сложности:
8. Решите неравенство:
Неравенство равносильно системе:
Ответ:
9. Решите неравенство:
Выражение 5–x2навязчиво повторяется в условии задачи. А это значит, что можно сделать замену:
Поскольку показательная функция принимает только положительные значения, t > 0. Тогда
Неравенство примет вид:
Уже лучше. Найдем область допустимых значений неравенства. Мы уже сказали, что t > 0. Кроме того, (t − 3) (59 · t − 1) > 0
Если это условие выполнено, то и частное будет положительным.
А еще выражение под логарифмом в правой части неравенства должно быть положительно, то есть (625t − 2)2.
Это означает, что 625t − 2 ≠ 0, то есть
Аккуратно запишем ОДЗ
и решим получившуюся систему, применяя метод интервалов.
Итак,
Ну что ж, полдела сделано — разобрались с ОДЗ. Решаем само неравенство. Сумму логарифмов в левой части представим как логарифм произведения:
«Отбросим» логарифмы. Знак неравенства сохраняется.
Перенесем все в левую часть и разложим по известной формуле разности квадратов:
Вспомним, что (это ОДЗ неравенства) и найдем пересечение полученных промежутков.
Получим, что
Вернемся к переменной x
Поскольку
Ответ:
10. Еще один прием, упрощающий решение логарифмических неравенств, — переход к постоянному основанию. Покажем, как использовать переход к другому основанию и обобщенный метод интервалов.
Запишем ОДЗ:
Воспользуемся формулой и перейдем к основанию 10:
Применим обобщенный метод интервалов. Выражение в левой части неравенства можно записать как функцию
Эта функция может менять знак в точках, где она равна нулю или не существует.
Выражение lg |x − 3| равно нулю, если |x − 3| = 1, то есть x = 4 или x = 2.
Выражение lg (|x| − 2) равно нулю, если |x| = 3, то есть в точках 3 и −3.
Отметим эти точки на числовой прямой, с учетом ОДЗ неравенства.
Найдем знак функции g(x) на каждом из промежутков, на которые эти точки разбивают область допустимых значений. Точно так же мы решали методом интервалов обычные рациональные неравенства.
Ответ:
11. А в следующей задаче спрятаны целых две ловушки для невнимательных абитуриентов.
Запишем ОДЗ:
Итак, Это ОДЗ.
Обратите внимание, что .
Это пригодится вам при решении неравенства.
Упростим исходное неравенство:
Теперь главное – не спешить. Мы уже говорили, что задача непростая – в ней расставлены ловушки. В первую вы попадете, если напишете, что Ведь выражение в данном случае не имеет смысла, поскольку x < 18.
Как же быть? Вспомним, что (x – 18)2=(18 – x)2. Тогда:
Вторая ловушка – попроще. Запись означает, что сначала надо вычислить логарифм, а потом возвести полученное выражение в квадрат. Поэтому:
Дальше – всё просто. Сделаем замену
Выражение в левой части этого неравенства не может быть отрицательным, поэтому t = 2. Тогда
– не удовлетворяет ОДЗ;
Ответ: 2.
Мы рассмотрели основные приемы решения логарифмических неравенств — от простейших до сложных, которые решаются с помощью обобщенного метода интервалов. Однако есть еще один интересный метод, помогающий справиться и показательными, и с логарифмическими, и с многими другими видами неравенств. Это метод рационализации (замены множителя). О нем — в следующей статье.
Читайте также: Неравенства. Метод замены множителя (метод рационализации)
Логарифмические неравенства повышенной сложности
Спасибо за то, что пользуйтесь нашими публикациями.
Информация на странице «Логарифмические неравенства» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к ЕГЭ и ОГЭ.
Чтобы успешно сдать необходимые и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
08.05.2023
Основные сведения об области определения логарифмической функции
Содержание:
- Логарифм числа и его свойства
- Логарифмическая функция, ее свойства и график
- Область определения функции с корнем
- Примеры решения задач
Логарифм числа и его свойства
Логарифм некого числа b по основанию а является показателем степени, в которую требуется возвести основание а для получения в результате числа b.
В качестве обозначения логарифма используют: (log _{a}b)
Данную запись можно прочитать, как «логарифм b по основанию а».
Осторожно! Если преподаватель обнаружит плагиат в работе, не избежать крупных проблем (вплоть до отчисления). Если нет возможности написать самому, закажите тут.
Рассмотрим следующее равенство:
(x=log _{a}b)
Согласно записанному ранее определению логарифма, получим, что данное соотношение является равносильным следующему:
(a^{x}=b)
Пример
Рассмотрим пример логарифмического уравнения:
(log _{2}8=3)
Равенство является справедливым по той причине, что:
(2^{3}=8)
Логарифмирование — операция по определению логарифма.
В определении логарифма принято использовать числа а и b из множества вещественных чисел. В некоторых случаях применима теория комплексных логарифмов.
С помощью логарифмов удается значительно упростить решение многих задач. Например, в процессе перехода к логарифмическому уравнению умножение может быть заменено на операцию сложения, а вместо деления используют вычитания, также возведение в степень и извлечение корня трансформируются в умножение и деление на показатель степени соответственно.
Примечание 1
Математик из Шотландии Джон Непер в 1614 году первым сформулировал определение логарифмов и представил таблицу со значениями тригонометрических функций. Со временем таблицы были уточнены и дополнены. До появления калькуляторов и компьютерной техники эти таблицы активно применялись на протяжении веков для выполнения расчетов в математике, инженерии и других научных областях знаний.
Изобразим в качестве примера двоичный логарифм на графике:
Рассмотрим логарифм какого-то числа из множества вещественных:
(x=log _{a}b)
Исходя из определения логарифма, данное соотношение представляет собой решение следующего уравнения:
(a^{x}=b)
В том случае, когда a=1 при (bneq 1), у записанного уравнения отсутствуют решения. Если b=1, то в качестве решения можно представить любое число. Эти два варианта приводят к неопределенности логарифма. Таким же образом, можно сделать вывод об отсутствии логарифма, когда а принимает нулевое или отрицательное значение.
Зная, что показательная функция (a^{x}) во всех случаях положительна, исключим также случаи, при которых b имеет отрицательное значение. Обобщая вышесказанное, запишем: вещественный логарифм (log _{a}b) обладает смыслом, если (a>0,aneq 1,b>0.)
Распространенными являются следующими виды логарифмов:
- Натуральные: (log _{e},b) или (ln ,b) с основанием в виде числа Эйлера (e).
- Десятичные: (log _{10},b) или (lg ,b ) с основанием в виде числа 10.
- Двоичные: (log_{2},b) или (operatorname {lb},b) с основанием 2, которые нашли применение в теории информации, информатике, в разных разделах дискретной математики.
Свойства логарифма удобно использовать при решении различных задач. Рассмотрим главное логарифмическое тождество.
Основным логарифмическим тождеством называют справедливое равенство, которое вытекает из определения логарифма и имеет следующий вид: ( a^{log _{a}b}=b)
Следствие
Согласно равенству пары вещественных логарифмов, логарифмируемые выражения равны, то есть при (log _{a}b=log _{a}) c справедливо, что (a^{log _{a}b}=a^{log _{a}c},) тогда по основному логарифмическому тождеству получаем: b=c.
Исходя из определения логарифма, можно вывести следующие справедливые равенства:
(log _{a}1=0)
(log _{a}a=1.)
Рассмотрим, как вычисляют логарифм произведения, частного от деления, степени и корня при положительных значениях переменных.
Произведение:
(log _{a}(xy)=log _{a}(x)+log _{a}(y))
К примеру:
(log _{3}(243)=log _{3}(9cdot 27)=log _{3}(9)+log _{3}(27)=2+3=5)
Частное от деления:
(log _{a}!left({frac {x}{y}}right)=log _{a}(x)-log _{a}(y))
Например:
(lg left({frac {1}{1000}}right)=lg(1)-lg(1000)=0-3=-3)
Степень:
(log _{a}(x^{p})=plog _{a}(x))
Докажем это равенство:
(log _{a}{x^{p}}=y)
(a^{y}=x^{p}{displaystyle }a^{y}=x^{p})
(a^{frac {y}{p}}=x{displaystyle }a^{frac {y}{p}}=x)
(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})
(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)
Применим данную формулу для решения примера:
(log _{2}(64)=log _{2}(2^{6})=6log _{2}(2)=6)
Степень в основании:
(log _{(a^{p})}(x)={frac {1}{p}}log _{a}(x)={frac {log _{a}(x)}{p}})
Докажем, что записанное равенство является справедливым:
(log _{a^{p}}{x}=y)
(a^{ycdot p}=x{displaystyle} a^{ycdot p}=x)
(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)
(frac {log_{a}{x}}{p}=y)
В качестве примера упростим выражение:
(log _{2^{10}}{sin {left({frac {pi }{6}}right)}}={frac {log _{2}{frac {1}{2}}}{10}}=-{frac {1}{10}}=-0{,}1)
Корень:
(log _{a}{sqrt[{p}]{x}}={frac {1}{p}})
Докажем данное свойство:
(log _{a}{sqrt[{p}]{x}}=y)
(a^{y}={sqrt[{p}]{x}}{displaystyle} a^{y}={sqrt[{p}]{x}})
(a^{pcdot y}=x{displaystyle} a^{pcdot y}=x)
(log_{a}{x}=pcdot y{displaystyle} log_{a}{x}=pcdot y)
({frac {log_{a}{x}}{p}}=y{displaystyle} {frac {log_{a}{x}}{p}}=y)
Рассмотрим наглядный пример:
(lg {sqrt {1000}}={frac {1}{2}}lg 1000={frac {3}{2}}=1{,}5)
Корень в основании:
(log _{sqrt[{p}]{a}}(x)=plog _{a}(x))
Представим доказательства:
(log _{sqrt[{p}]{a}}{x}=y)
(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)
(a^{y}=x^{p}{displaystyle} a^{y}=x^{p})
(a^{frac {y}{p}}=x{displaystyle} a^{frac {y}{p}}=x)
(log_{a}{x}={frac {y}{p}}{displaystyle} log_{a}{x}={frac {y}{p}})
(pcdot log_{a}{x}=y{displaystyle} pcdot log_{a}{x}=y)
Применим записанное свойство на практике:
(log _{sqrt {pi }}{(4cdot operatorname {arctg} {1})}=2cdot log _{pi }{left(4cdot {frac {pi }{4}}right)}=2cdot log _{pi }{(pi )}=2)
В том случае, когда переменная обладает отрицательным значением, следует обратиться к обобщенной записи перечисленных свойств логарифма:
(log _{a}|xy|=log _{a}|x|+log _{a}|y|)
(log _{a}!left|{frac {x}{y}}right|=log _{a}|x|-log _{a}|y|)
Формулы для вычисления произведения допустимо обобщить с расчетом на любое число сомножителей:
(log _{a}(x_{1}x_{2}dots x_{n})=log _{a}(x_{1})+log _{a}(x_{2})+dots +log _{a}(x_{n}))
(log _{a}|x_{1}x_{2}dots x_{n}|=log _{a}|x_{1}|+log _{a}|x_{2}|+dots +log _{a}|x_{n}|)
Многозначные числа x, y можно умножать с помощью таблиц логарифмов таким образом:
- определить по таблице логарифмы x, y;
- суммировать полученные логарифмы, что соответствует (исходя из первого свойства логарифма) логарифму произведения xcdot y;
- согласно логарифму произведения определить по таблице значение самого произведения.
Аналогичным способом выполняют деление. Только при этом вместо умножения применяют операцию вычитания, а алгоритм действий остается прежним.
Логарифм (log _{a}b) по основанию a допустимо записать в виде логарифма по другому основанию c:
(log _{a}b={frac {log _{c}b}{log _{c}a}})
Следствием из данной формулы, если b=c, является перестановка местами основания и логарифмируемого выражения:
(log _{a}b={frac {1}{log _{b}a}})
Обратим внимание на то, что коэффициент ({frac {1}{log _{c}a}}=log _{a}c) в рассматриваемом выражении замены основания носит названием модуля перехода от одного основания к другому.
При решении логарифмических неравенств следует помнить, что логарифм (log _{a}{b}) обладает положительным значение в том случае, когда a, b расположены с одной стороны относительно единицы, то есть оба больше, либо меньше по сравнению с 1. В противном случае логарифм имеет знак минуса.
Какое-либо неравенство в случае положительных чисел допустимо логарифмировать:
- при основании больше, чем единица, знак неравенства остается без изменений;
- при основании меньше, чем единица, знак неравенство нужно поменять на противоположный.
Существует тождество, которое поможет упростить действия, когда в основании или логарифмируемом выражении содержится степень:
({log _{a^{q}}{b}}^{p}={frac {p}{q}}log _{a}{b})
Данное соотношение получают путем замены в левой части логарифма основания (a^{q}) на a по ранее рассмотренной формуле замены основания. Из этого справедливого равенства можно вывести следующее:
(log _{a^{k}}b={frac {1}{k}}log _{a}b;quad log _{sqrt[{n}]{a}}b=nlog _{a}b;quad log _{a^{k}}b^{k}=log _{a}b)
Другим полезным тождеством является:
(c^{log _{a}b}=b^{log _{a}c})
В этом случае, можно заметить совпадение логарифмов слева и справа по основанию а, то есть являются равными (log _{a}bcdot log _{a}c). По следствию из главного логарифмического тождества получим, что части слева и справа равны друг другу тождественно.
С помощью логарифмирования предыдущего тождества по какому-либо произвольно выбранному основанию d можно получить дополнительное тождество для замены оснований:
(log _{a}bcdot log _{d}c=log _{d}bcdot log _{a}c.)
Логарифмическая функция, ее свойства и график
При рассмотрении какого-либо логарифмируемого числа в качестве переменной получается логарифмическая функция, имеющая следующий вид: (y=log _{a}x).
Областью определения данной функции являются такие значения, которые соответствуют интервалу:
(a>0; aneq 1;x>0.)
Область значений логарифмической функции определена таким образом:
(E(y) = (-infty ;+infty).)
На графике логарифмическая функция имеет вид кривой, которую часто называют логарифмикой. Согласно формуле, с помощью которой осуществляют замену основания логарифма, сделаем вывод о том, что:
- графики логарифмических функций, имеющих разные основания, больше единицы, различаются по масштабу относительно оси y;
- графики логарифмических функций для оснований, меньших, чем единица, представляют собой их зеркальное отражение по отношению к горизонтальной оси.
Изобразим графики логарифмических функций:
Согласно определению, логарифмическая функция является обратной для показательной функции (y=a^{x}). По этой причине графические изображения данных функций будут симметричными по отношению к биссектрисе первого и третьего квадрантов. Обе эти функции трансцендентны.
Заметим следующие особенности логарифмической функции:
- строгое возрастание графика, если a>1;
- строгое убывание графика, если 0<a<1.
Графически изображенная логарифмическая функция в любом случае будет пересекать точку с координатами (1;0). Функция не прерывается и дифференцируется без ограничений на любом участке в рамках собственной области определений.
Ось ординат при x=0 представляет собой вертикальную асимптоту, так как:
- (lim _{xto 0+0}log _{a}x=-infty) при a>1;
- (lim _{xto 0+0}log _{a}x=+infty) при 0<a<1.
Производную логарифмической функции вычисляют по формуле:
({frac {d}{dx}}log _{a}x={frac {1}{xcdot ln a}})
Логарифмическая функция представляет собой непрерывное решение, которое считают единственно верным, для следующего функционального уравнения:
(f(xy)=f(x)+f(y).)
Свойства функции (y={{log}_a x }), при a >1:
- Областью определения данной функции является интервал ((0,+infty )).
- Значения функции определяются, как множество действительных чисел.
- Данную функцию нельзя отнести к типу четных или нечетных.
- График пересекает оси координат. С осью Oy точки пересечения отсутствуют. Если (y=0), ({{log}_a x }=0, x=1). Функция пересекается с осью Ox в точке (1,0).
- Функция является положительной, если (xin (1,+infty )). Функция является отрицательной в том случае, когда (xin (0,1)).
- (y’=frac{1}{xlna}).
- Точки минимума и максимума: (frac{1}{xlna}=0), при этом корни отсутствуют, то есть максимальные и минимальные точки также отсутствуют.
- Функция является возрастающей на всей области определения.
- (y^{”}=-frac{1}{x^2lna}).
- Промежутки выпуклости и вогнутости: (-frac{1}{x^2lna}). Функция является выпуклой на всей области, в которой определяется.
- ({mathop{lim}_{xto 0} y }=-infty , {mathop{lim}_{xto +infty } y }=+infty.)
Рассмотрим свойства функции (y={{log}_a x }, 0 < a < 1:)
- Функция определяется на интервале ((0,+infty).)
- Значениями функции являются все числа из множества действительных.
- Данную функцию нельзя отнести к типу четных или нечетных.
- Отсутствуют пересечения графика с осью Oy. Если (y=0, {{log}_a x }=0, x=1).Функция пересекает ось Ox в точке с координатами: (1,0).
- Функция является положительной, если (xin (0,1)). Функция является отрицательной в том случае, когда (xin (1,+infty).)
- (y’=frac{1}{xlna}.)
- Точки минимума и максимума: ( frac{1}{xlna}=0); в этом случае корни отсутствуют — значит, отсутствуют максимальные и минимальные точки.
- Функция является убывающей на всей области, в которой она определена.
- (y^{”}=-frac{1}{x^2lna}).
- Промежутки выпуклости и вогнутости: ( -frac{1}{x^2lna}>0). Функция является вогнутой на всей области, в которой она определена.
- (mathop{lim}_{xto 0} y =+infty , {mathop{lim}_{xto +infty } y }=-infty).
Область определения функции с корнем
По определению, логарифмическая функция имеет вид:
(y=log _{a} x,; a,, x>0,; ane 1.)
Областью определения функции (Dleft(yright)) является такое множество, на котором задана функция (y=fleft(xright)), при этом каждая точка рассматриваемого множества соответствует определенному значению функции.
В случае логарифмической функции, в том числе, с корнем квадратным, дробью со знаменателем, отличным от нуля, область определения соответствует какому-либо числу со знаком плюс из множества действительных чисел:
(Dleft(log _{a} xright):xin left(0;; +infty right))
Рассмотрим несколько примеров логарифмических функций, чтобы узнать область их определений:
(y=log _{ frac{2}{3} } x;)
(y=log _{ sqrt{5}} x;)
(y=log _{7} x.)
Областью определения записанных логарифмических функций, в том числе, с корнем, является интервал ((0, +infty)).
Попробуем решить задачу. Здесь требуется искать область определения в случае функции:
(f(x)=frac{1}{ln(x+3)})
Условия следующие:
х + 3 > 0
(x + 3 neq 1)
Тогда:
х > -3
(x neq -2)
Тогда область определения соответствует следующим значениям:
(D(f) = (-3, -2) cup (-2, +infty).)
Примеры решения задач
Задача 1
Дана функция:
(y=log _{pi } left(2x-4right).)
Требуется обозначить область определения данной функции.
Решение
Область определения рассматриваемой функции можно задать с помощью следующего неравенства:
(2x-4>0.)
Найдем решения для этого линейного неравенства:
(2x>4Rightarrow x>2Rightarrow xin left(2;; +infty right).)
В результате:
(Dleft(yright):xin left(2;; +infty right))
Ответ: (Dleft(yright):xin left(2;; +infty right).)
Задача 2
Имеется некая функция:
(y=log _{2} left(left(x-1right)left(x+5right)right).)
Нужно найти область, на которой определяется данная функция.
Решение
Логарифм определен в том случае, когда подлогарифмическая функция обладает положительным значением. Исходя из этого, запишем:
(Dleft(yright):left(x-1right)left(x+5right)>0.)
Решим получившееся неравенство:
(left(x-1right)left(x+5right)>0.)
Воспользуемся способом интервалов. В процессе определим, каковы нули всех сомножителей:
(begin{array}{c} {x-1=0Rightarrow x=1,} \ {x+5=0Rightarrow x=-5,} end{array})
В результате:
(Dleft(yright):xin left(-infty ;; -5right)bigcup left(1;; +infty right).)
Ответ: (xin left(-infty ;; -5right)bigcup left(1;; +infty right).)
Задача 3
Построен график логарифмической функции (fleft(xright)={{log}_a left(x+bright)}):
Требуется определить (fleft(11right)).
Решение
Заметим, что изображенный график функции (y={{log}_a left(x+bright) }) пересекает следующие точки:
(-3; 1)
(-1; 2)
Следует выполнить подстановку данных точек в уравнение функции. Получим:
(left{ begin{array}{c}{{log}_a left(-3+bright)=1 } \{{log}_a left(-1+bright) }=2 end{array}right.)
Тогда:
(left{ begin{array}{c}b-3=a \b-1=a^2 end{array};right.)
Путем вычитания из второго уравнения первого получим:
(a^2-a=2; a^2-a-2=0;)
a=2 или a=-1
Отрицательное значение является посторонним, так как a = 0, исходя из определения основания логарифма.
В результате:
(b=a+3=5; fleft(xright)={{log}_2 left(x+5right) })
(fleft(11right)={{log}_2 16=4.})
Ответ: 4.
Задача 4
Представлено графическое изображение функции (fleft(xright)=a{{log}_5 x }-c:)
Требуется вычислить (f(0,2)).
Решение
Заметим, что функция на графике пересекает следующие точки:
(left(1;-2right))
(left(5;3right))
Тогда путем поочередной подстановки координат данных точек в уравнение функции получим:
(left{ begin{array}{c}a{{log}_5 1 }-c=-2 \a{{log}_5 5 }-c=3 end{array}right.)
(left{ begin{array}{c}-c=-2 \a-c=3 end{array}right.)
(left{ begin{array}{c}c=2 \a=5 end{array}right.)
Уравнение функции:
(fleft(xright)=5{{log}_5 x }-2.)
Определим значение (fleft(0,2right)=fleft(frac{1}{5}right):)
(displaystyle 5cdot {{log}_5 frac{1}{5} }-2=-5-2=-7.)
Ответ: -7.
На этой странице вы узнаете
- Что значит расти по экспоненте?
- Как быстро избавиться от логарифмов с одинаковым основанием?
- Как не попасть в аварию в погоне за результатом?
Математики иногда скучают. Иначе как объяснить то, что для понимания этой пугающей многих учеников темы, нужно запомнить единственный факт: «Степень числа и логарифм — разная запись одного и того же математического события». В этой статье мы ближе познакомимся с логарифмами и увидим, что ничего экстремально сложного в них на самом деле нет.
Понятие логарифма
Математика очень интересная наука, действия в которой можно повернуть в обе стороны. Например, возведение в степень и извлечение корня — одно и то же действие, но совершаемое «в разные направления». Это как шарик-маятник, который качается туда-сюда.
Однако помимо извлечения корня степень числа имеет еще одно противодействие: это логарифм. Разберемся, чем же они отличаются.
Итак, извлекая корень, мы находим первоначальное число, которое возвели в степень. Например, если мы вычислим, чему равно (4^3), то получим 64. А если извлечем (sqrt[3]{64}), то получим число, которое возводили в степень. Иными словами, извлекая корень, мы находим основание степени.
Но что, если мы знаем основание степени и число, полученное при возведении, но при этом не знаем показатель степени? Можем ли мы как-нибудь найти, в какую именно степень возвели то или иное число?
Ответ: да! Для этого и существуют логарифмы. Логарифм отвечает на вопрос: «В какую степень возвести число a, чтобы получилось число b?»
Например, мы возвели двойку в неизвестную степень и получили 4:
(2^x=4)
Зададим вопрос: в какую степень нужно возвести 2, чтобы получился такой результат? Ответ приходит сразу — это 2:
(2^2=4)
Эту же операцию можно записать значительно короче, если использовать логарифм. Запись будет выглядеть так:
(log_24=2)
Вот и всё!
Если понятие «степень» все еще звучит устрашающе, мы написали для вас статью «Действия с натуральными числами».
А теперь внедрим в нашу статью немного научности. Что такое логарифм во вселенной математики?
Логарифм — это число, в которое нужно возвести основание a, чтобы получить число b.
У каждого элемента любой математической функции есть название. Как называются элементы логарифма?
Снова вспомним корни. Корень степени 2 мы записываем без показателя степени, например, (sqrt{25}). Это связано с его распространенностью и «особенностью». Так и в логарифмах существуют свои «краткие записи», применяемые для «особенных» логарифмов. Такими логарифмами являются десятичный и натуральный. Рассмотрим их чуть подробнее.
Десятичный логарифм — это логарифм числа по основанию 10.
Например, нам нужно узнать, в какую степень нужно возвести 10, чтобы получить 100. То есть мы находим (log_{10}100=2). Аналогично (log_{10}1000=3) или (log_{10}100000=5).
Для сокращения записи мы не пишем основание, а само название логарифма немного меняем. Выглядит запись десятичного логарифма следующим образом:
Запись такого логарифма нужно просто запомнить. Но не будет и ошибкой, если записать обычным способом.
Что же с натуральным логарифмом? Аналогично десятичному, в его основании стоит особое число — экспонента.
Экспонента — это такая математическая константа, постоянная (как, например, ускорение свободного падения в физике), которая примерно равна 2,72.
Натуральный логарифм — это логарифм по основанию е (e ≈ 2,72).
Такой логарифм тоже имеет «свою» запись, которую нужно запомнить:
У натурального логарифма в основании стоит число e, которое называется числом Эйлера. На самом деле, это иррациональное число, которое имеет бесконечное количество знаков после запятой, но мы ограничиваемся краткой записью 2,72. Число e играет важную роль во многих разделах математики.
Экспонента — это показательная функция (y=e^x), где (e) — число Эйлера, равное примерно 2,72.
Особенность такой функции в том, что число Эйлера многократно умножается на само себя, а значит, неравномерно увеличивается. Примером такого увеличения может быть падение камушка: чем дольше он летит, тем выше его скорость. Другим примером может быть сложный процент, когда сумма вклада или долга увеличивается каждый год на определенное число процентов (про сложные проценты можно узнать в статье «Финансовые задачи. Проценты»). Такой рост называют ростом по экспоненте.
На самом деле, экспонента имеет множество интересных свойств, например, ее производная равна ей самой.
График экспоненты будет выглядеть как непрерывно и «неравномерно» возрастающая кривая.
Нельзя обходить такую важную тему, как логарифмы, стороной. Они часто встречаются в заданиях 5, 12 и 14 профильного ЕГЭ по математике или в №17 ЕГЭ по базовой математике. При умелом использовании их свойств можно упростить выражение или заменить запись логарифма на более удобную.
Рассмотрим пример задания из номера 5 первой части ЕГЭ по профильной математике.
Найдите корень уравнения (log_5(x+121)=4).
Решение. Немного изменим запись: если возвести 5 в степень 4, то мы получим (x+121). Значит, мы можем составить и решить уравнение:
(x+121=5^4)
(x+121=625)
(x=504)
Ответ: 504
Может возникнуть вопрос: неужели при решении каждого логарифмического уравнения или неравенства придется прибегать к «переформулировке»? На самом деле, нет, ведь для упрощения решений существуют свои правила, а главное, свойства логарифмов. Рассмотрим их чуть подробнее.
Основное логарифмическое тождество
Итак, какими свойствами обладает логарифм? Начнем с одного из самых важных, а именно — основного логарифмического тождества.
Возможно, вас смутило, что логарифм стоит в степени числа. На самом деле, логарифм — это тоже какое-то число, просто в другой записи. Так, (3^2) и (3^{log_24}=32) — одно и то же число, но в разных записях.
Разберемся чуть подробнее, как работает тождество. Путь (a=2, b=4). Тогда получаем запись:
(2^{log_24}=4)
Решим отдельно левую часть:
(2^{log_24}=2^2=4)
Получаем, что тождество верно. Но почему это так работает?
Заметим, что при вычислении логарифма мы получаем значение степени x, в которую должны возвести основание а, чтобы получить аргумент b.
(log_ab=x), тогда (a^x=b)
После этого мы снова возводим то же основание а в ту же степень, и снова получаем аргумент b. То есть делаем одно и то же действие дважды.
(a^{log_ab}=a^x=b)
Следовательно, это тождество позволяет сократить вычисление на несколько шагов. Важно: оно будет работать только в случае, когда основания степени и логарифма будут совпадать. Тогда совпадут и аргумент с ответом.
Рассмотрим, почему это не работает при несовпадающих основаниях. Для этого найдем значение выражения (3^{log_24}). Итак, (log_24=2), значит, мы получаем выражение (3^2=9). Очевидно, что (9neq4), соответственно, применить основное тождество логарифмов мы здесь не можем (поскольку (3neq2)).
Данное тождество часто используется для преобразований.
Свойства логарифмов
Логарифмы, как и числа, можно складывать, умножать и делать множество действий с ними. Как не запутаться в них, не производить лишних вычислений и не ошибиться? Для этого нужно хорошо знать все свойства, которые представлены в таблице ниже. Каждое из рассмотренных в таблице свойств можно использовать для преобразований.
Рассмотрим каждое свойство чуть подробнее.
Свойство 1. (log_ab^m=m*log_ab).
Попробуем найти значение выражения (log_28^2) без применения свойства. Тогда возведем аргумент в степень и получим:
(log_28^2=log_264)
Воспользовавшись определение логарифма, заметим, что (log_264=6).
Но что делать, если числа окажутся большими, или, более того, у логарифма не будет точного значения — примером такого логарифма может служить (log_57). Да и вычисление в несколько действий с большими числами может занять много времени.
Именно поэтому мы применяем это свойство!
(log_28^2=2*log_28=2*3=6)
Свойство 2. (log_{a^n}b=frac{1}{n}*log_ab)
Рассмотрим на примере логарифма (log_{2^2}4). Посчитаем без свойства:
(log_{2^2}4=log_44=1)
Заметим, что:
- в первом свойстве мы увеличивали аргумент логарифма (то есть конечный результат, который получается при возведении числа в степень);
- в этот раз мы увеличиваем уже число, которое возводим в степень.
Сравните:
(2^2=4) или (3^2=9)
Следовательно, когда мы будем производить «обратные» действия, то есть считать логарифм, то при увеличении основания степени (и сохранении результата возведения в степень), у нас должна уменьшиться сама степень, в которую мы возводим.
Например:
(2^4=16) и (4^2=16)
Именно поэтому у нас появляется дробь: она уменьшает степень во столько раз, во сколько мы увеличили первоначальное число:
(log_{2^2}4=frac{1}{2}log_24=frac{1}{2}*2=1)
Свойство 3. (log_{a^n}b^m=frac{m}{n}*log_ab)
Это свойство вытекает из двух предыдущих, просто их соединили вместе. Иначе пришлось бы отдельно выносить степень из аргумента и отдельно из основания логарифма. Сравните:
(log_{2^3}5^7=7*log_{2^3}5=7*frac{1}{3}*log_25=frac{7}{3}log_25)
или
(log_{2^3}5^7=frac{7}{3}log_25)
Свойство 4. (log_ab+log_ac=log_a(b*c))
Найдем значение выражения (log_24+log_28):
(log_24+log_28=2+3=5)
Но в случае, когда числа не будут так легко считаться (или вовсе не будут считаться), на помощь придет это свойство:
(log_512,5+log_52=log_525=2)
Свойство 5. (log_ab-log_ac=log_afrac{b}{c})
Аналогично с предыдущим свойством это нужно для упрощения вычислений.
Например:
(log_318-log_32=log_3frac{18}{2}=log_39=2)
Свойства 6 и 7. (log_aa=1) и (log_a1=0)
Эти свойства напрямую связаны с возведением числа в степень. Достаточно лишь ответить на два вопроса:
- В какую степень нужно возвести число, чтобы получилось такое же число?
- В какую степень нужно возвести любое число, чтобы получить 1?
Ответы на эти вопросы будут 1 и 0. Отсюда и эти свойства:
- Число в степени 1 будет равно само себе: (log_aa=1).
- Число в степени 0 будет равно 1: (log_a1=0).
Свойство 8. (log_ab=frac{log_cb}{log_ca})
Это свойство используется в случаях, когда нам нужно представить логарифм с любым другим основанием.
Например:
(log_25=frac{log_35}{log_25})
Это свойство может пригодиться в решении уравнений и неравенств для упрощения выражений.
Свойство 9. (log_ab=frac{1}{log_ba})
Что делать, если нам нужно представить логарифм с определенным основанием, которое равно аргументу этого логарифма? Все просто: мы можем поменять основание и аргумент местами, если воспользуемся свойством (log_ab=frac{1}{log_ba}).
Например:
(log_{27}3=frac{1}{log_327}=frac{1}{3})
Заметим, что это же выражение можно было решить немного по-другому:
(log_{27}3=log_{3^3}3=frac{1}{3}*log_33=frac{1}{3}).
В этом случае мы воспользовались свойствами 2 и 6.
Свойство 10. (a^{log_cb}=b^{log_ca})
Еще одно свойство, которое позволяет изменить аргумент логарифма, и при этом не менять значение выражения.
Рассмотрим на примере (2^{log_24}):
(2^{log_24}=2^2=4)
(2^{log_24}=4^{log_22}=4^1=4)
Для более простого запоминания свойств логарифмов предлагаем вам воспользоваться нашими забавными ассоциациями.
Теперь, когда мы знаем свойства логарифмов, мы можем перейти к более сложным преобразованиям — к решениям уравнений и неравенств.
Простейшие логарифмические уравнения
В других статьях мы уже рассматривали разные виды уравнений: линейные, квадратные, показательные и т.п. Настало время узнать про логарифмические уравнения.
Логарифмическое уравнение — это уравнение, в котором неизвестная стоит в аргументе или основании логарифмов.
Иными словами, если в уравнении мы видим логарифм с неизвестной — это логарифмическое уравнение.
Например, (log_2x=4) — логарифмическое уравнение.
А вот (log_25+x=x^2) не будет логарифмическим уравнением, поскольку неизвестная не стоит ни в аргументе, ни в основании логарифма.
Как решать логарифмические уравнения?
Логарифмическое уравнение нужно привести к такому виду:
(log_af(x)=log_ag(x)).
При решении таких уравнений нужно обязательно учитывать, что по определению аргумент логарифма всегда должен быть больше нуля, а основание больше нуля и не должно равняться единице. Эти ограничения называются областью допустимых значений или ОДЗ логарифма.
Область допустимых значений — это те значения, которые может принимать переменная x (или другая буква латинского алфавита) в выражении.
(log_ab)
ОДЗ логарифма: a > 0, a ≠ 0, b> 0.
Это можно сделать, приравняв аргументы. Почему мы можем так сделать? Представим, что мы возводим некоторое число в степень, это число будет стоять в основании логарифма. Если два логарифма равны, то и степени, в которые мы возвели число, равны. Следовательно, будет равен и результат возведения в степень, то есть аргумент логарифма!
(a^x=b)
(log_ab=x)
Тогда пусть (log_ab=log_ac)
(x=log_ac)
(a^x=c => b=c)
При этом проверить ОДЗ можно только у одного из логарифмов, поскольку если один из них положителен, а второй равен первому, то и второй будет положительным.
Например, если b=2, то из равенства b=c получаем c=b=2.
В логарифмических уравнениях встречаются более сложные выражения, которые в дальнейшем мы будем выражать в виде функций — например, f(x) или g(x).
Например:
Алгоритм решения логарифмического уравнения:
1. Написать ОДЗ.
2. Упростить выражения слева и справа от знака равенства, используя свойства логарифмов, если это возможно.
3. Если основания логарифмов одинаковые, избавиться от логарифмов. В противном случае — используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
4. Решить уравнение и сравнить с ОДЗ, выписать в ответ корни.
Рассмотрим на примере:
(log_2(5x-4)=log_2(x+8))
- В первую очередь найдем ОДЗ. Для этого вспомним, что аргумент логарифма всегда строго положителен:
(5x-4>0) и (x+8>0)
Найдем возможные значения х:
(5x>4) и (x>-8)
(x>frac{4}{5}) и (x>-8)
Нанесем найденные промежутки на числовую прямую и определим, какие значения может принимать х. Для этого нам нужно будет найти промежутки, которые удовлетворяют обоим неравенствам:
Теперь мы можем определить ОДЗ: (x in(frac{4}{5};+{infty}))
- Если в обеих частях уравнения находится логарифм по одинаковому основанию, то можно «скинуть» логарифмы и записать равенство аргументов. Поскольку и у первого, и у второго логарифма основания равны 2, то мы можем приравнять их аргументы:
(5x-4=x+8)
- Решим полученное уравнение:
(5x-x=8+4)
(4x=12)
(x=3)
- Подставим в ОДЗ и проверим, подходит ли корень. Поскольку (3>frac{4}{5}), то корень нам подходит.
Ответ: 3.
А теперь немного усложним задачу. Допустим, переменная будет стоять и в основании, и в аргументе логарифма.
Рассмотрим еще одно уравнение:
(log_2(x-4)=log_{4x}4+log_{4x}x)
- Найдем ОДЗ. Аргумент логарифма всегда строго больше 0, а основание больше 0 и не равно 1. Тогда получаем следующие неравенства для аргументов логарифмов:
(x>0)
(x-4>0)
И для оснований логарифмов:
(4x>0)
(4xneq1)
Решим неравенства:
(x>0)
(x>4)
(x>0)
(xneqfrac{1}{4})
Теперь отметим все ограничения на числовой прямой и найдем, чему равна ОДЗ:
Поскольку нам нужно, чтобы ограничение удовлетворяло всем полученным неравенствам и уравнениям, то (xin(4;+{infty})).
- Теперь перейдем к решению самого уравнения. По свойствам логарифма (свойства 4 и 6) преобразуем правую часть уравнения:
(log_2(x-4)=log_{4x}4x)
(log_2(x-4)=1)
- Чтобы отбросить логарифмы и перейти к уравнению с аргументами, необходимо, чтобы их основания были равны. Поскольку основание левого логарифма равно 2, то представим правую часть в виде логарифма с таким же основанием 2:
(log_2(x-4)=log_22)
- Отбросим логарифмы и перейдем к уравнению с ними:
(x-4=2)
(x=6)
Поскольку (6>4), то корень принадлежит ОДЗ, а значит, его можно записать в ответ.
Ответ: 6.
Мы разобрали уравнения с логарифмами. Остался вопрос: а как решать неравенства с ними?
Простейшие логарифмические неравенства
Логарифмическое неравенство — это неравенство, в котором переменная стоит в аргументе или основании логарифма.
Для решения логарифмических неравенств тоже можно избавляться от логарифмов.
Делается это уже известным способом — если основания равны, то можно перейти к неравенству с аргументами. При этом нужно обращать внимание на основание логарифма.
Важно!
Если (0<a<1), тогда знак неравенства меняется на противоположный.
Если (a>1), тогда знак неравенства не меняется.
Разберемся, почему это так работает. Рассмотрим два примера:
(log_24=2)
(log_{frac{1}{2}}4=log_{2^{-1}}4=-1*log_24=-2)
Как можно увидеть, если основание логарифма меньше 1, то результат вычислений отрицательный (в случае, если аргумент больше 1). Это связано с тем, что при возведении дробного числа в степень, большую 1, это число только уменьшается, например:
((frac{1}{3})^2=frac{1}{9})
Но если мы возведем такое число в отрицательную степень, то получим больший результат:
((frac{1}{3})^{-2}=3^2=9)
Именно поэтому ради избежания путаницы со знаками, при отбрасывании логарифмов с основанием (0<a<1) мы меняем знак на противоположный: тем самым мы сразу избавляемся от минуса.
Например:
(log_{frac{1}{3}}9>0)
(log_{3^{-1}}9>0)
(-log_39>0 |*(-1))
(log_39<0)
А теперь чуть подробнее рассмотрим, как действовать с логарифмическими неравенствами:
Алгоритм решения логарифмического неравенства:
1. Написать ОДЗ.
2. Упростить выражения слева и справа от знака неравенства, используя свойства логарифмов, если это возможно.
3. Если основания логарифмов одинаковые, избавиться от логарифмов по схеме выше. В противном случае — используя свойства логарифмов, привести к одинаковому основанию, а уже потом совершить эти действия.
4. Решить неравенство, пересечь с ОДЗ, записать ответ.
Обратим ваше внимание еще раз. Решая как логарифмические уравнения, так и неравенства, можно разогнаться слишком сильно и вылететь с дороги…
Чтобы такого не случилось, есть специальный ограничитель неправильных ответов — ОДЗ.
Работая с логарифмами и избавляясь от них, всегда следите за показаниями ОДЗ, иначе в ответ попадут лишние корни.
Логарифмические неравенства могут встретиться в номере 14 ЕГЭ по профильной математике. Рассмотрим один из их примеров:
Решите неравенство: (log_3^2x-10log_3xgeq-21)
Решение. Первым делом, найдем ОДЗ. Поскольку переменная стоит только в аргументе логарифма, то и ограничения вводим лишь на аргумент:
(x>0)
Перейдем к решению. Заметим, что (log_3x) — повторяющееся выражение, а значит, мы можем сделать замену.
Обратим внимание, что у первого логарифма степень стоит именно у логарифма, а не у аргумента.
Пусть (log_3x=t), тогда:
(t^2-10tgeq-21)
(t^2-10t+21geq0)
Теперь слева у нас получилось квадратное неравенство. Для его решения найдем нули функции, приравняв левую часть к 0:
(t^2-10t+21=0)
Найдем корни уравнения с помощью дискриминанта:
(D=b^2-4ac=10^2-4*1*21=100-84=16)
(t_1=frac{-b+sqrt{D}}{2a}=frac{10+4}{2}=7)
(t_2=frac{-b-sqrt{D}}{2a}=frac{10-4}{2}=3)
Воспользуемся методом интервалов (подробнее об этом методе можно прочитать в одноименной статье). Отметим корни на числовой прямой, расставим знаки и найдем промежутки:
Получаем промежутки:
Сделаем обратную замену:
Представим правые части неравенства в виде логарифмов с основанием 3:
Теперь у нас справа и слева логарифмы с одинаковым основанием, соответственно, мы можем отбросить логарифмы и перейти к неравенствам с аргументами. Поскольку 3>1, то знаки неравенства менять не нужно:
Отметим на числовой прямой полученные промежутки, а также нанесем ОДЗ:
С учетом ОДЗ получаем промежутки: ((0;27]bigcup[2187;+{infty})). Это и будет ответ.
Ответ: ((0;27]bigcup[2187;+{infty}))
Теперь давайте рассмотрим решение неравенства с основанием, которое меньше 1.
(log_{frac{1}{5}}x^2geq log_{frac{1}{5}}x+2)
Шаг 1. Напишем ОДЗ. Аргумент логарифма должен быть строго больше 0, поэтому получаем два неравенства:
Шаг 2. Преобразуем правую часть. Для этого воспользуемся свойством логарифмов и вынесем степень аргумента перед логарифмом.
Поскольку степень положительная, то мы должны поставить аргумент в модуль, чтобы не потерять отрицательные значения:
(2*log_{frac{1}{5}}|x|geq log_{frac{1}{5}}x+2)
Шаг 3. Раскроем модуль. По ОДЗ мы получили, что x>0, а значит, мы можем убрать модуль, поскольку под ним всегда будет стоять положительное число:
(2*log_{frac{1}{5}}xgeq log_{frac{1}{5}}x+2)
Шаг 4. Перенесем одно слагаемое влево и упростим:
(2*log_{frac{1}{5}}x-log_{frac{1}{5}}xgeq 2)
(log_{frac{1}{5}}xgeq 2)
Представим правую часть в виде логарифма с основанием (frac{1}{5}):
(log_{frac{1}{5}}xgeq log_{frac{1}{5}}frac{1}{25})
Шаг 5. Отбросим логарифмы. Поскольку (frac{1}{5}<1), то знак неравенства меняется на противоположный:
(xgeq 125)
Шаг 6. Отметим полученный промежуток на числовой прямой и нанесем ОДЗ:
С учетом ОДЗ получаем промежуток ((0;frac{1}{25}]).
Ответ: ((0;frac{1}{25}])
Мы рассмотрели логарифмы, уравнения и неравенства с ними. Научиться решать их не так сложно. Практикуйтесь побольше, тогда все обязательно получится. А чтобы продолжить освоение математической науки, рекомендуем вам познакомиться со статьей «Тригонометрическая окружность и графики функций».
Термины
Дискриминант в квадратном уравнении — это выражение, которое ищется по формуле (D=b^2-4⋅a⋅c), где а, b и с берутся из уравнения. Подробнее о нем рассказано в статье «Линейные, квадратные и кубические уравнения».
Иррациональные числа — это числа, которые нельзя представить в виде обыкновенной дроби, то есть они не имеют точного значения.
Квадратное неравенство — это такое неравенство, которое можно привести к виду (ax^2+bx+c ⋁ 0), где a, b и с — любые числа (причем a ≠ 0), x — неизвестная переменная, а ⋁ — любой из знаков сравнения (> , < , ≤ , ≥ ). Решение таких неравенств мы обсуждаем в статье «Метод интервалов».
Модуль числа — это его абсолютная величина. При взятии модуля мы не учитываем знак этого числа — положительное оно или отрицательное. Модуль числа всегда неотрицателен и обозначается с помощью модульных скобок: |a| ≥ 0. Этому математическому понятию посвящена отдельная статья Учебника.
Нули функции — это значения аргумента, при которых функция равна нулю.
Показательная функция — это функция, у которой неизвестная находится в показателе степени. Например, (y = 2^x). Подробнее о ней мы рассказываем в одноименной статье.
Производная функции — это математическое понятие, показывающее скорость изменения функции в определенной точке. Подробнее про производные можно прочесть в статье «Исследование функции с помощью производной».
Фактчек
- Логарифм — это степень, в которую возводится основание логарифма, чтобы получить аргумент.
- Десятичный логарифм — это логарифм числа по основанию 10. Записывается так: lg a.
- Натуральный логарифм — это логарифм по основанию е (e ≈ 2,72). Записывается как ln a.
- Основное логарифмическое тождество: (a^{log_ab}=b), при (a >0, a ≠ 1, b>0).
- Существуют специальные свойства логарифмов, благодаря которым можно совершать преобразования.
- При решении уравнений и неравенств нельзя забывать про ОДЗ на аргумент и основание логарифма: основание больше нуля и не равно единице, аргумент больше нуля.
- В логарифмических неравенствах при переходе к неравенству аргументов логарифмов знак меняется на противоположный, если значение основания логарифма находится на промежутке от 0 до 1.
Проверь себя
Задание 1.
Решите уравнение (log_3(x^2+4)=log_3(4x)).
- 1 и -1
- 2 и -2
- 2
- -1
Задание 2.
Решите уравнение (log_28=log_{16}(x)+2).
- 16
- 12
- 1
- 8
Задание 3.
Решите уравнение (log_2(2x^2)-5=log_2(x) +log_2(x-5)).
- 0 и (frac{16}{3})
- 0 и (frac{32}{3})
- 32
- (frac{16}{3})
Задание 4.
Решите неравенство (log_9(x+4)geq log_9(2x)^2).
- ([-frac{4}{3};0)bigcup(0;4])
- ((0;4])
- ([-frac{4}{3};0))
- ([-frac{4}{3};4])
Задание 5.
Решите неравенство (log_{500}500geq log_2(1+3x)).
- ((0;frac{1}{3}])
- ((-frac{1}{3};frac{1}{3}])
- ([-frac{1}{3};frac{1}{3}])
- ((-frac{1}{3};0)
Ответы:1. — 3; 2. — 1; 3. — 4; 4. — 1; 5. — 2.
Как решать логарифмические неравенства?
Решение неравенств с логарифмами похоже на решение обычных логарифмических уравнений. Но есть несколько моментов, которые необходимо учитывать.
Для начала вспомним, что такое логарифм (log_{a}b) – это в какую степень нужно возвести число (a), чтобы получить (b). Кстати, число (a) называют основанием логарифма, а число (b) – аргументом. Например:
$$log_{3}(27)=3;$$
$$log_{frac{1}{3}}(9)=log_{frac{1}{3}}((frac{1}{3})^{-2})=-2;$$
$$log_{2}(sqrt{2})=log_{2}(2^{frac{1}{2}})=frac{1}{2};$$
Если у вас возникают сложности с вычислением логарифмов настоятельно рекомендую сначала почитать про логарифмы и их свойства.
При этом нужно помнить про ограничения, которые накладываются на логарифм (log_{a}b):
$$ begin{cases}
b>0, \
a>0, \
a neq 1.
end{cases}$$
Начнем изучение неравенств с небольшого примера:
$$log_{2}x>log_{2}4;$$
Сравниваются два логарифма с ОДИНАКОВЫМ основанием, значит вполне логично предположить, что (log_{2}x) будет больше (log_{2}4), при условии, что (x>4). Это и будет решением нашего простого неравенства.
Действительно, согласно определению логарифма, чем больше (х), тем в бОльшую степень нужно возвести (2-ку) в основании логарифма, а значит, и тем больше будет сам логарифм. Подставим в неравенство (х=16) – число большее (4):
$$log_{2}16>log_{2}4;$$
Посчитаем получившиеся логарифмы:
$$4>2;$$
Получили верное неравенство.
И подставляя любые числа большие (4), вы всегда будете получать верное неравенство. Некоторые логарифмы мы не можем посчитать, как например (log_{2}15), но логика сохраняется, если подставлять (x>4), неравенство будет верным. Кстати, калькулятор вам любезно подскажет, что (log_{2}15=3,907>log_{2}4), что нас устраивает.
Ответ: (x>4).
Теперь рассмотрим другой пример:
$$log_{frac{1}{2}}(x)>log_{frac{1}{2}}(4);$$
Обратите внимание, я поменял основания на (frac{1}{2}). Интересно, изменится ли логика рассуждений? Подставим (х=16>4):
$$log_{frac{1}{2}}(16)>log_{frac{1}{2}}(4);$$
$$log_{frac{1}{2}}(2^4)>log_{frac{1}{2}}(2^2);$$
$$log_{frac{1}{2}}((frac{1}{2})^{-4})>log_{frac{1}{2}}((frac{1}{2})^{-2});$$
Посчитаем логарифмы слева и справа:
$$-4>-2;$$
Опа! Получилось неверное неравенство! (-4) конечно же не больше (-2). Мы подставили под левый логарифм число большее, чем у правого, но получили, что значение логарифма меньше.
Другими словами, если основание логарифма будет меньше единицы, то чем бОльший аргумент мы подставляем, тем меньший логарифм будем получать.
Оказывается, если основание у логарифма больше единицы, то логарифм будет возрастающей функцией: чем БОЛЬШЕЕ значение аргумента, тем БОЛЬШЕ сам логарифм. Если основание логарифма меньше единицы, то логарифм будет убывающей функцией: чем БОЛЬШЕЕ значение аргумента, тем МЕНЬШЕ значение логарифма.
Для примера на рисунке показан график логарифмов (log_{2}(x)) с основанием 2 (красным цветом) – возрастающая функция. И (log_{frac{1}{2}}(x)) с основанием 0,5 – синим цветом (убывающая функция).
Находим пересечение указанных областей. И видим, что все (x>8) удовлетворяют ОДЗ, записываем ответ.
Ответ: (x>8.)
Пример 2
$$log_{3}(x+3)>log_{3}(2x-4);$$
Любой пример начинаем с ОДЗ:
$$ begin{cases}
x+3>0, \
2x-4>0. \
end{cases}$$
$$ begin{cases}
x>-3, \
x>2. \
end{cases}$$
Итого ОДЗ получается (x>2).
Теперь приступаем к решению самого неравенства. Слева и справа стоят логарифмы с одинаковыми основаниями большими единицы. Значит просто избавляемся от логарифмов:
$$x+3>2x-4;$$
$$x-2x>-4-3;$$
$$-x>-7;$$
$$x lt 7.$$
Сверяем с ОДЗ ((x>2)) – получается (хin(2;7)).
Ответ: (xin(2;7)).
В примере 2 был важный момент в ОДЗ, на который стоит отдельно обратить внимание. Мы накладывали условия, что оба выражения под логарифмами должны быть больше нуля:
$$ begin{cases}
x+3>0, \
2x-4>0. \
end{cases}$$
Но на самом деле, в этом случае в ОДЗ можно рассмотреть только (2x-4>0). А условие (x+3>0) необязательно! Это следует из простой логики, что если (2x-4>0), то (x+3>0) выполняется автоматически, так как, когда при решении примера избавляемся от логарифмов, мы ищем такие значения (х), при которых (x+3>2x-4>0).
Конкретно в этом примере это не критично, но дальше, когда будут гораздо более сложные примеры, решение дополнительных неравенств в ОДЗ может существенно усложнить жизнь. Особенно это касается заданий с параметром. Настоятельно рекомендую думать, а не просто по схеме накладывать ОДЗ на все подряд.
Пример 3
$$ log_{0,1}(x^2-x-2)>log_{0,1}(3-x);$$
ОДЗ:
$$ begin{cases}
x^2-x-2>0, \
3-x>0. \
end{cases}$$
Для того, чтобы решить первое неравенство в ОДЗ, необходим метод интервалов. Через дискриминант или по теореме Виета (как кому удобно) находим корни квадратного многочлена:
$$D=1-4*(-2)=9;$$
$$x_1=frac{1+3}{2}=2;$$
$$x_2=frac{1-3}{2}=-1;$$
Раскладываем на множители по формуле:
$$ax^2+bx+c=a(x-x_1)(x-x_2);$$
$$x^2-x-2=(x-2)(x+1);$$
$$(x-2)(x+1)>0;$$
Рисуем ось (х), расставляем знаки, отмечаем подходящие промежутки и на этой же оси отмечаем решение второго неравенства в ОДЗ:
$$3-х>0;$$
$$x lt 3;$$
Метод замены переменной в неравенствах с логарифмом
Еще один очень популярный тип неравенств – это неравенства, которые решаются при помощи замены переменной. Как всегда, проще разобраться с этим на примерах:
Пример 5
$$log_{3}^{2}(x)+2>3log_{3}(x);$$
Сперва найдем ОДЗ, здесь оно крайне простое:
$$x>0.$$
Очень легкий пример, который решается при помощи замены. Действительно, обратите внимание, что логарифмы в неравенстве абсолютно одинаковые. Заменим их на какую-нибудь переменную (t):
$$Пусть t=log_{3}(x)$$
Тогда неравенство примет вид:
$$t^2+2>3t;$$
$$t^2-3t+2>0;$$
Получили обыкновенное квадратное неравенство, только относительно переменной не (х), а (t).
Находим корни (t), раскладываем на множители и решаем методом интервалов:
$$(t-1)(t-2)>0;$$
$$tin(-infty;1)cup(2;+infty);$$
То же самое можно переписать в виде совокупности неравенств, смысл остается такой же:
$$left[
begin{gathered}
t lt 1, \
t gt 2. \
end{gathered}
right.$$
Не путайте совокупность и систему! Знак системы используется, когда нужно найти значения (х), удовлетворяющие ОДНОВРЕМЕННО всем неравенствам, входящим в систему.
А знак совокупности используется, когда нужно объединить решение каждого неравенства – то есть решением совокупности будут все корни, полученные в каждом неравенстве по отдельности.
В данном примере мы используем совокупность, так как нас устраивают и (t<1), и (t>2). И то, и то является решением нашего неравенства.
Понимание разницы между совокупностью и системой – принципиальный момент при решении логарифмических и показательных неравенств. С совокупностью мы познакомились в этом примере, а когда используется система, поговорим чуть позже.
Итак, у нас совокупность из двух неравенств относительно переменной (t). Время сделать обратную замену – вместо (t) подставляем выражение, на которое мы его заменяли. Напоминаю (t=log_{3}(x)):
$$left[
begin{gathered}
log_{3}(x) lt 1, \
log_{3}(x) gt 2. \
end{gathered}
right.$$
Ну вот, перед нами два простеньких логарифмических неравенства, которые мы уже научились решать выше:
$$log_{3}(x)<1;$$
$$log_{3}(x)<log_{3}(3);$$
$$x<3.$$
$$log_{3}(x)>2;$$
$$log_{3}(x)>log_{3}(3^2);$$
$$x>9.$$
С учетом ОДЗ ((x>0)), и не забыв про совокупность, получаем:
Ответ: (xin(0;3),cup ,(9;+infty)).
Пример 6
$$frac{log_{4}(64x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{log_{4}(64x)}geqfrac{log_{4}(x^4)+16}{log_{4}^{2}(x)-9}.$$
Неравенство, на первый взгляд, выглядит немного страшно. Но именно такой пример был на ЕГЭ 2017 года, да и на самом деле оно совсем не страшное.
Запишем ОДЗ:
$$ begin{cases}
x>0, \
log_{4}(x)-3neq 0, \
log_{4}(64x)neq 0, \
log_{4}^{2}(x)-9 neq 0.
end{cases}$$
$$ begin{cases}
x>0, \
log_{4}(x)neq log_{4}(4^3), \
log_{4}(64x)neq log_{4}(4^0), \
(log_{4}(x)-3)(log_{4}(x)+3) neq 0.
end{cases}$$
$$ begin{cases}
x>0, \
log_{4}(x)neq log_{4}(4^3), \
log_{4}(64x)neq log_{4}(4^0), \
log_{4}(x)neq log_{4}({4}^{-3}).
end{cases}$$
В итоге, ОДЗ получается: (xin (0;frac{1}{64}) , cup , (frac{1}{64};64) , cup , (64;+infty).)
Главное помнить про правило: мы должны стараться сделать так, чтобы все логарифмы были с одинаковым основанием, и, по возможности, привести их к одинаковым аргументам.
Здесь у каждого логарифма основание (4) – с этим тут все в порядке. А вот подлогарифмические функции постараемся сделать одинаковыми, воспользовавшись свойствами логарифмов. А именно, нам понадобятся следующие формулы:
$$a=log_{b}(b^a);$$
$$log_{a}(bc)=log_{a}(b)+log_{a}(c);$$
$$log_{a}(b^n)=n*log_{a}(b);$$
Воспользуемся ими для преобразования логарифмов в неравенстве:
$$frac{log_{4}(64)+log_{4}(x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{log_{4}(64)+log_{4}(x)}geqfrac{4*log_{4}(x)+16}{log_{4}^{2}(x)-9};$$
Заметим, что (log_{4}(64)=3)
$$frac{3+log_{4}(x)}{log_{4}(x)-3}+frac{log_{4}(x)-3}{3+log_{4}(x)}geqfrac{4*log_{4}(x)+16}{log_{4}^{2}(x)-9};$$
Теперь у нас везде одинаковые логарифмы, можно сделать замену. Пусть (t=log_{4}(x):)
$$frac{3+t}{t-3}+frac{t-3}{3+t}geqfrac{4*t+16}{t^2-9};$$
Получилось обыкновенное неравенство из 9-го класса, которое решается методом интервалов. Для этого перекинем все налево, приведем к общему знаменателю, приведем подобные и разложим на множители:
$$frac{3+t}{t-3}+frac{t-3}{3+t}geqfrac{4*t+16}{(t-3)(t+3)};$$
$$frac{(3+t)(t+3)}{(t-3)(t+3)}+frac{(t-3)(t-3)}{(t+3)(t-3)}-frac{4*t+16}{(t-3)(t+3)}geq0;$$
$$frac{9+6t+t^2+t^2-6t+9-4t-16}{(t-3)(t+3)}geq 0;$$
$$frac{2*t^2-4t+2}{(t-3)(t+3)}geq 0;$$
$$frac{2(t-1)^2}{(t-3)(t+3)}geq 0;$$
Воспользуемся методом интервалов, для этого нарисуем ось (х) и расставим знаки:
Обратите внимание, на точку (t=1), она нас устраивает, ведь при этом значении (t) все выражение равно нулю. В ЕГЭ очень часто попадаются отдельные точки, про которые надо не забыть.
$$left[
begin{gathered}
t lt -3, \
t=1, \
t gt 3.\
end{gathered}
right.$$
Сделаем обратную замену (t=log_{4}(x)):
$$left[
begin{gathered}
log_{4}(x)<-3, \
log_{4}(x)=1, \
log_{4}(x)>3. \
end{gathered}
right.$$
Решаем получившиеся простенькие логарифмические неравенства и, неожиданно, одно уравнение. Обратите внимание, что мы решаем опять не систему, а совокупность. Нас устраивают все решения, полученные в каждом уравнениинеравенстве по отдельности.
$$log_{4}(x)<log_{4}({4}^{-3});$$
$$x<{4}^{-3};$$
$$x<frac{1}{64}.$$
$$log_{4}(x)=1;$$
$$log_{4}(x)=log_{4}(4^1);$$
$$x=4.$$
$$log_{4}(x)>3;$$
$$log_{4}(x)>log_{4}(4^3);$$
$$x>64.$$
C учетом ОДЗ записываем ответ:
Ответ: (xin(-infty;frac{1}{64}) , cup , [1] , cup , (64;+infty).)
С основными стандартными типами логарифмических неравенств мы познакомились. Теперь обсудим «подводные камни», которые часто встречаются при решении логарифмических неравенств.
ОДЗ в логарифмических неравенствах. Как сделать проще?
Иногда можно немного упростить себе жизнь при поиске ОДЗ в неравенствах. Для этого нам понадобится немного логики. Разберем на примере:
Пример 7
$$1+log_{6}(4-x)leqlog_{6}(16-x^2).$$
Выпишем ОДЗ, но не будем его решать – да, так можно делать!
ОДЗ:
$$ begin{cases}
4-x>0, \
16-x^2>0.
end{cases}$$
ОДЗ выписали, теперь преобразуем исходное неравенство. Для этого (1) представим в виде логарифма с основанием (6): (1=log_{6}(6)). И воспользуемся формулой:
$$log_{a}(bc)=log_{a}(b)+log_{a}(c).$$
$$log_{6}(6)+log_{6}(4-x)leqlog_{6}(16-x^2).$$
$$log_{6}(6*(4-x))leqlog_{6}(16-x^2).$$
Сравниваются два логарифма с одинаковым основанием, можем смело избавляться от логарифмов, сохраняя знак неравенства:
$$6*(4-x)leq16-x^2;$$
И вот здесь остановимся и поговорим.
Согласно ОДЗ
$$begin{cases}
4-x>0, \
16-x^2>0.
end{cases}$$
Обратите внимание! Что если: (6*(4-x)geq0), то и (16-x^2) будем больше (0) автоматически, так как мы решаем неравенство (6*(4-x)leq16-x^2).
Для нас это означает радостную новость – оказывается необязательно решать все ОДЗ. В данном примере достаточно соблюдать условие (6*(4-x)geq0), а все остальное ОДЗ будет выполняться автоматически, исходя из логики примера. Таким образом, наш пример сводится к решению системы:
$$ begin{cases}
6*(4-x)leq16-x^2, \
6*(4-x)>0.
end{cases}$$
Что избавляет нас от необходимости решать (16-x^2>0), это будет лишним действием.
Конкретно в этом примере нет большой трудности решить все условия из ОДЗ и не думать. Но часто встречаются примеры, в которых выше представленная логика поможет вам не запутаться, ведь иногда это спасает от необходимости решения очень сложных неравенств. Особенно это касается решения заданий с параметрами в профильном ЕГЭ по математике. Вот там каждое лишнее условие в разы увеличивает объем работы.
Дорешаем пример:
$$ begin{cases}
6*(4-x)leq16-x^2, \
6*(4-x)>0.
end{cases}$$
$$ begin{cases}
24-6xleq16-x^2, \
4-x>0.
end{cases}$$
$$ begin{cases}
x^2-6x+8leq0, \
x>4.
end{cases}$$
$$ begin{cases}
2 leq x leq 4, \
4-x>0.
end{cases}$$
Ответ: (x in [2;4).)
Запишем эти правила в общем виде:
$$log_{a}(f(x)>log_{a}(g(x));$$
Эквивалентно
При (a>1):
$$ begin{cases}
f(x)>g(x), \
g(x)>0.
end{cases}$$
При (0 lt a lt 1:)
$$ begin{cases}
f(x) lt g(x), \
f(x) gt 0.
end{cases}$$
Неравенства с логарифмами по переменному основанию
Что, если в основании логарифма будет стоять не положительное число, а некоторое выражение, зависящее от (х – log_{g(x)}(f(x)))? Такие логарифмы называются логарифмами с переменным основанием.
Разберемся, как решать, на примере:
Пример 8
$$ log_{frac{x}{3}}(3x^2-2x+1) ge 0);$$
Начнем решение с ОДЗ. Обратите внимание, что условия накладываются еще и на основание логарифма – оно должно быть больше нуля и не равно единице:
$$ begin{cases}
3x^2-2x+1>0;, \
frac{х}{3}>0; ,\
frac{x}{3}neq1.
end{cases}$$
Заметим, что данный квадратный многочлен больше нуля при любых значениях (х). Второе неравенство имеет решения при (х>0). А третье дает нам (xneq 1).
Объединяя все решения, получаем итоговое ОДЗ:
$$xin(0;3)cup(3;+infty);$$
Приступим к решению.
Мы знаем, чтобы решить неравенство, нужно представить (0) справа в виде логарифма с таким же основанием. Но проблема в том, что основание логарифма слева не число, а выражение, зависящее от (х). Нас не должно это смущать, продолжаем решать точно так же, как если бы в основании было число, то есть, приводим к одинаковому основанию:
$$ log_{frac{x}{3}}(3x^2-2x+1) ge log_{frac{x}{3}}((frac{x}{3})^0);$$
$$ log_{frac{x}{3}}(3x^2-2x+1) ge log_{frac{x}{3}}(1);$$
Получилось, что сравниваются два логарифма с одинаковым основанием. Вот только это основание может быть совершенно любым. Это важно, если вспомнить, как решать классические логарифмические неравенства: знак неравенства должен меняться, если в основании логарифмов стоит число от нуля до единицы, и оставаться таким же, если основание больше единицы. У нас в основании стоит (frac{x}{3}) – выражение, зависящее от (х). Оно может принимать значения, как больше единицы, так и меньше. Поэтому логично было бы рассмотреть два случая, когда основание больше (1), и когда от (0) до (1).
Рассмотрим первый случай:
$$ frac{x}{3}>1;$$
$$ frac{x}{3}-1>0;$$
$$frac{x-3}{3}>0;$$
$$x>3.$$
То есть при (х>3) основание будет больше (1) и знак неравенства должен сохраняться:
$$ begin{cases}
3x^2-2x+1 ge 1, \
х>3.
end{cases}$$
$$ begin{cases}
3x^2-2x ge 0, \
х>3.
end{cases}$$
$$ begin{cases}
x(3x-2) ge 0, \
х>3.
end{cases}$$
Решаем методом интервалов первое неравенство в системе и находим пересечения с условием (x>3):
Метод сужения ОДЗ в логарифмических неравенствах
Эта неприятная штука часто встречается в ЕГЭ по профильной математике и приводит к множеству ошибок и потерянным баллам.
Оказывается, при решении логарифмических неравенств не всегда можно применять формулы из свойств логарифмов (вынесение степени, логарифм от произведения или частного и т.д.). Это связано с изменением области определения логарифмов.
Что это все значит? Проще обсудить на примерах. Рассмотрим простое неравенство с логарифмом:
Пример 11
$$log_{3}(x^2)>4;$$
Как обычно, начинаем с ОДЗ:
$$x^2>0;$$
$$x neq 0.$$
Решаем сам пример, для этого представим (4)-ку справа в виде логарифма с основанием (3).
$$log_{3}(x^2)>log_{3}(3^4);$$
$$x^2>3^4;$$
Разложим в разность квадратов и методом интервалов решим:
$$(x-9)(x+9)>0;$$
$$xin(-infty;-9)cup(9;+infty);$$
А теперь обратите внимание, что этот же самый пример можно было решить по-другому. Согласно формуле вынесения степени из-под логарифма (log_{a}(b^n)=n*log_{a}(b)), можно вынести 2-ю степень. Сделаем это и посмотрим, к чему все это приведет.
$$log_{3}(x^2)>4;$$
$$2*log_{3}(x)>4;$$
Сократим на (2):
$$log_{3}(x)>2;$$
Отдельно обратим внимание на то, как изменилось ОДЗ неравенства после вынесения степени.
$$ОДЗ: x>0;$$
Продолжаем решать неравенство:
$$log_{3}(x)>log_{3}(3^2);$$
$$x>9;$$
Итак, мы решили одно и то же неравенство двумя способами, но ответ получился разный. Как вы думаете, почему? Какое из решений будет верным?
На самом деле, все очень просто. Напоминаю, что логарифм существует только от положительных чисел. Значит, когда под логарифмом стоит (x^2), то вместо (x) можно подставлять любые значения, кроме 0. Вторая степень будет превращать подлогарифмическое выражение в положительное, что нас устраивает. Поэтому могут существовать отрицательные значения (x), при подстановке которых ничего не нарушается. Собственно говоря, у нас так и получилось в первом случае: (xin(-infty;-9)cup(9;+infty)). Есть отрицательные корни, которые удовлетворяют ОДЗ.
А во втором случае, как только мы вынесли из-под логарифма четную степень, отрицательные корни (x) больше не подходят, ведь логарифм не будет существовать, и положительные корни – единственные, которые могут получиться. Другими словами, наше ОДЗ СУЗИЛОСЬ!
И, как мы увидели, ответ получился другой, без отрицательных промежутков. Что, разумеется, неправильно.
Очень важное общее правило. Нельзя с логарифмами производить такие преобразования, при которых происходит сужение области допустимых значений ВСЕГО ПРИМЕРА. Если ОДЗ после преобразования остается прежним или увеличивается, то такое преобразование разрешено.
Отдельная очень важная оговорка про то, что ОДЗ не должно сужаться у всего примера. Посмотрите еще раз на разобранный выше пример 6. Там в одном из логарифмов была четная четвертая степень, которую мы не постеснялись вынести, и ни про какое сужение ОДЗ даже речи не было. Неужели неправильно решили пример? Нет, все абсолютно верно, ведь ОДЗ всего неравенства не сузилось, а значит, можно было пользоваться формулой.
Кстати, все эти размышления касаются не только формул вынесения степени, а всех свойств логарифма (суммы, разности и т.д.), нужно быть внимательными! Но чаще всего встречаются ловушки, связанные с вынесением четной степени.
Пример 12
$$9*log_{7}(x^2+x-2)leq10+log_{7}left(frac{(x-1)^9}{x+2}right).$$
Найдем ОДЗ:
$$ begin{cases}
x^2+x-2>0, \
frac{(x-1)^9}{x+2}>0.
end{cases}$$
$$ begin{cases}
(x+2)(x-1)>0, \
frac{(x-1)^9}{x+2}>0.
end{cases}$$
Решаем методом интервалов: