План урока:
Предел функции на бесконечности
Предел функции в точке
Приращение аргумента и функции
Средняя скорость изменения функции
Мгновенная скорость и понятие производной
Предел функции на бесконечности
Рассмотрим довольно простую функцию
y = 1/x
Её график называется гиперболой и выглядит так:
Можно заметить, что при больших положительных значениях х график функции приближается к горизонтальной оси Ох, но не пересекает её. Действительно, если мы будем вычислять значение у при всё больших значениях х, то будем получать всё меньшие, но всё же положительные числа:
Получается, что при бесконечном росте аргумента х функция стремится к нулю. Можно ли эту особенность функции как-то записать, используя математические символы? Оказывается, можно, и выглядит это запись так:
которая означает, что х стремится к бесконечности. После символа lim записана сама функция 1/х. В целом вся запись читается так: «предел функции у = 1/х при х, стремящемся к бесконечности, равен нулю».
Вернемся к графику функции у = 1/х. Видно, что если мы будем брать всё меньшие отрицательные значения х, то функция также будет стремится к нулю. Действительно, попробуем подставлять в нее как можно меньшие значения аргумента:
Чтобы записать эту особенность функции, используется следующая запись:
который может быть получен параллельным переносом графика у = 1/х на две единицы вверх:
Очевидно, что пределы этой функции при х → + ∞ и х → – ∞ равны 2:
Возможны случаи, когда при бесконечном увеличении аргумента функции она не стремится к какому-то конкретному числу, а сама также неограниченно возрастает. Для примера посмотрим на график у = х3:
Видно, что при х → ∞ сама функция неограниченно растет, что можно показать расчетами:
Возникает вопрос – для всякой ли функции можно указать ее предел на бесконечности? Оказывается, что нет. Для примера рассмотрим тригонометрическую функцию у = sinx, графиком которой является синусоида:
С одной стороны, sinx явно не стремится к какому-то конкретному числу при увеличении х, он «колеблется» между числами 1 и (– 1). С другой стороны, нельзя и сказать, что он стремится к бесконечности. Получается, что у этой функции просто нет пределов на бесконечности.
Предел функции в точке
Порою нас интересует поведение функции не на бесконечности, а вблизи конкретной точки х0. Конечно, в большинстве случае можно просто вычислить функцию в этой точке, однако иногда это невозможно сделать. Для примера рассмотрим функцию
Очевидно, что точка х = 2 не входит в ее область определения, ведь при подстановке этого значения в функцию знаменатель дроби обратится в ноль. Однако в любой другой точке значение функции будет равняться единице:
График такой функции будет выглядеть как прямая у = 1, у которой есть одна «выколотая точка», соответствующая х = 2:
Итак, функция не определена в точке х = 2, однако можно вычислить предел функции в точке х = 2. Действительно, при любом, сколь угодно близком к 2 значении х функция будет равна единице:
Попробуем также приблизиться к точке 2 с другой стороны, подставляя в функцию числа, меньшие двух:
Снова всё время получается единица. Поэтому мы можем уверенно записать, что
Значительно чаще приходится иметь дело с пределами в точке, которые равны бесконечности. Снова посмотрим на график функции у = 1/х:
Видно, график не пересекает ось Оу, ведь число х = 0 не входит в область определения функции. Однако можно заметить, что при приближении х к нулю функция неограниченно возрастает:
Обратите внимание, что под пределом мы использовали запись «х → + 0», а не «х → 0». Почему? Дело в том, что если мы будем приближаться к нулю с «противоположной» стороны, подставляя в функцию не положительные, а отрицательные числа, то функция будет стремится к – ∞:
Получается, что предел функции в точке х = 0 зависит от того, с какой стороны мы приближаемся к этой точке, слева или справа. В связи с этим в математике существует понятие односторонних пределов. Для обозначения пределов, получаемых при приближении к нулю справа, то есть со стороны бОльших чисел, перед ним ставят знак плюс, а при указании предела слева, то есть со стороны мЕньших чисел – знак минус:
Предел и односторонние пределы – это два разных понятия. Считается, что функция имеет предел в точке только тогда, когда оба односторонних предела в этой точке совпадают.
В качестве ещё одного примера предела функции в точке можно привести зависимость у = tg х, график которой выглядит следующим образом:
В точке х = π/2 функция не определена. Однако видно, что при приближении к этой точке слева функция неограниченно возрастает, а при приближении справа – неограниченно убывает. Это записывается следующим образом:
До этого мы вычисляли пределы функций в точках, где сами функции не определены. Однако пределы можно вычислять и в тех точках, где функция определена. В большинстве случаев (но не всегда) они как раз равны значению функции в этой точке. Например, найдем предел
В точке х = 2 значение функции будет равно 4:
Будут ли односторонние пределы в этой точке также равняться 4? Сначала проверим предел справа
Действительно, получаем значения у, всё более близкие к 4. Аналогично можно убедиться, что и предел слева также равен 4:
Приведем несколько искусственный пример функции, у которой предел в точке не совпадает со значением функции в этой точке. Пусть функция задается с помощью такого графика
Он представляет собой параболу у = х2 с выколотой точкой (2; 4). При этом функция определена в точке х = 2, но имеет там значение, равное единице. Аналитически эту функцию можно описать так:
Понятно, что у(2) = 1, однако попытаемся приблизиться к точке х = 2 справа и слева и посмотрим, что получится:
Мы видим, что при х→2 функция и справа, и слева стремится к четверке, а не к единице. То есть получается, что предел функции в точке х = 2 не совпадает со значением функции этой функции в этой же точке. Такая ситуация произошла именно из-за того, что точка х = является выколотой.
Сразу заметим, что непосредственно в практических задачах пределы почти не используются. В связи с этим эта тема изучается в школьном курсе довольно поверхностно, не дается строгое определение предела функции (предполагается, что это понятие интуитивно понятно), а также не рассматриваются примеры на вычисление пределов функций. С другой стороны, на понятии предела построены почти все строгие рассуждения и доказательства в математическом анализе. В частности, определение понятие производной (которая имеет огромное практическое применение) дается именно с помощью предела. Поэтому полностью исключить пределы из школьного курса нельзя.
Приращение аргумента и функции
Часто нас интересует, как изменяется функция при изменении аргумента. Например, известно, что объем куба вычисляется по формуле
где а – ребро куба. Предположим, что мы провели измерения какого-то куба и выяснили, что длина его ребра равна 2 см. Тогда объем куба составит 23 = 8 см3. Но ведь любое измерение производится не с абсолютной точностью, а с некоторой погрешностью. Как оценить погрешность вычисления объема, если известна погрешность измерения его ребра?
Пусть с учетом погрешности линейки, составляющей 0,1 см, известно, что длина ребра находится в диапазоне от 2 до 2 + 0,1 = 2,1 см. Тогда максимально возможный объем куба составит 2,13 = 9,261 см3. Получается, что погрешность в измерении объема куба составляет 9,261 – 8 = 1,261 см3.
С точки зрения математического анализа мы в данном случае рассматривали поведение функции у = х3 в точке х = 2. Мы допустили некоторое изменение величины х, которое называют приращением аргумента и обозначают как ∆х. Далее мы высчитали, какое изменение величины у, или приращение функции, обозначаемое как ∆у, соответствует этому приращению аргумента. Выяснилось, что приращению ∆х = 0,1 соответствует приращение ∆у = 1,261.
В более общем случае произвольной функции у = f(x) можно дать некоторое приращение ∆х в некоторой точке х0. В результате этого изменится и само значение f(x), причем величину этого изменения обозначают как ∆у. Это можно проиллюстрировать графически:
Задание. Дана функция у = 3х2 + х + 4. Вычислите приращение функции в точке х0 = 5, если ∆х = 1.
Решение. Сначала вычислим новое значение аргумента функции, с учетом данного ему приращения:
Далее вычислим значения функции, соответствующие старому и новому аргументу:
Задание. Радиус круга, измеренный с погрешностью не более 0,5 см в меньшую сторону, равен 10 см. Оцените погрешность вычисления его площади.
Решение. Площадь круга рассчитывается по формуле:
Средняя скорость изменения функции
Часто в физике и других естественнонаучных дисциплинах одни величины характеризуют изменение других величин. Классический случай – это скорость, которая характеризует, насколько быстро изменилось положение тела (или материальной точки в пространстве). Рассмотрим пример. Пусть пешеход движется по прямой улице с постоянной скоростью 2 м/с. Попытаемся построить график, который иллюстрирует зависимость пройденного пешеходом пути и его скорости от времени. Известно, что при равномерном прямолинейном движении пройденный путь можно найти по формуле:
S = v*t
Где s – путь;
V – скорость;
t – время.
Так как скорость равна 2 м/с, то зависимость пути от времени будет выглядеть так:
s(t) = 2t
которая является прямой пропорциональностью. Поэтому ее график будет прямой линией:
Так как скорость во время всего движения остается равной 2 м/с, то зависимость скорости от времени будет иметь вид v = 2, а выглядеть она будет как горизонтальная линия:
В данном случае найти зависимости s(t) и v(t) было очень легко. Но теперь усложним задачу. Пусть зависимость s(t) задается не прямой линией, а некоторой кривой:
Можно ли теперь что-то сказать о скорости движения пешехода?
Ясно, что в различные моменты времени скорость пешехода различна. Но мы можем найти среднюю скорость пешехода в какой-то момент времени. Например, рассмотрим промежуток времени со 2-ой по 10-ую секунду.
Его протяженность, очевидно, равна 10 – 2 = 8 секундам. Если первый момент времени обозначить как t1, а второй как t2, то протяженность этого промежутка времени (∆t) можно вычислить по формуле
Судя по графику, к моменту времени t1 пешеход прошел только 1 метр, а на момент t2он преодолел уже 9,5 м. Сколько же метров он прошел за промежуток времени ∆t? Если первое расстояние обозначить как s1, а второе как s2, то пройденное расстояние (∆s) можно рассчитать так:
Тогда средняя скорость на рассматриваемом участке можно вычислить, поделив ∆s на ∆t
В данной ситуации мы рассматривали функцию, которая задает зависимость между перемещением пешехода и временем. Средняя скорость характеризует, как быстро двигается пешеход, то есть как быстро функция s(t) меняет своё значение. Очевидно, что в данном случае величина ∆t – это некоторое приращение аргумента функции s(t), в то время как ∆s– это приращение самой функции. Получается, что с помощью приращений можно вычислять среднюю скорость объектов.
Однако в физике рассматривается не только скорость перемещения вточек пространстве. Например, можно говорить о скорости остывания горячего чайника. Пусть его температура меняется по закону, график которого представлен на рисунке:
Можно ли узнать, с какой средней скоростью остывал чайник на промежутках от 2-ой до 4-ой минуты? Да, для этого надо в точке t = 2 мин дать приращение аргумента ∆t = 2мин и посмотреть, какое приращение ∆T получит сама функция:
Пусть t1 = 2 мин, а t2 = 4 мин. Тогда
По графику видно, что в момент t1 температура чайника составляет Т1 = 40°С. Через две минуты она уже упала до отметки Т2 = 20°С. Получается, что за промежуток ∆t функция T(t) получила приращение
Обратите внимание, что приращение оказалось отрицательным. Дело в том, что температура чайника падала, то изменялась в меньшую сторону. Знак минус указывает именно на направление изменения функции. Если бы чайник нагревался, то приращение оказалось бы положительным.
Теперь мы можем вычислить среднюю скорость остывания чайника на промежутке между 2-ой и 4-ой минутой:
Знак минус указывает на то, что температура на этом промежутке времени уменьшается, а не возрастает.
В более общем случае, когда у нас есть произвольная функция у = f(x), с помощью приращений можно вычислить среднюю скорость её изменения на каком-нибудь промежутке. Пусть первая точка промежутка обозначается как х0, а его протяженность составляет ∆х. Тогда первой точке соответствует значение функции у(x0), а концу промежутка – значение у(x0 + ∆x):
Тогда средняя скорость изменения функции на промежутке [x0;x0 + ∆x] рассчитывается по формуле:
Мгновенная скорость и понятие производной
Итак, зная функцию, можно вычислить среднюю скорость ее изменения на любом промежутке. Но, когда автомобиль едет по шоссе, его спидометр показывает не среднее, а конкретное значение скорости в каждый момент времени. Другими словами, у автомобиля есть мгновенная скорость, и именно ее показывает спидометр. Как же узнать ее?
Пусть у нас есть функция s(t), определяющая пройденной машиной путь, и нам требуется найти мгновенную скорость в некоторый момент времени t1. Мы можем дать функции s(t) приращение ∆t, а потом найти и среднюю скорость на промежутке [t1; t1 + ∆t]. Естественно, она будет являться лишь некоторым приближением, с помощью которого мы оцениваем мгновенную скорость в момент t1. Однако далее мы можем уменьшить промежуток ∆t. Тогда у нас получится иное значение средней скорости, которое будет более близким к мгновенной скорости. Чем меньший промежуток ∆t мы возьмем, тем ближе к мгновенной скорости в точке t0 будет полученное нами значение средней скорости.
Например, пусть путь, пройденный машиной, задается функций s = t2. Нас интересует скорость автомобиля в момент t1 = 5 сек. Мы можем найти среднюю скорость на интервале от 5-ой до 6-ой секунды. Так, к пятой секунде машина успеет проехать 52 = 25 метров, а к шестой секунде она проедет 62 = 36 метров. Получится, что за промежуток ∆t, равный 6 – 5 = 1 секунде, машина проедет путь ∆s = 36 – 25 = 11 метров. Тогда средняя скорость на промежутке составит
Теперь возьмем более короткий промежуток ∆t, равный всего лишь 0,1 с. То есть мы рассмотрим период времени между моментом t1 = 5 cи t2 = 5,1 c. Снова-таки, к 5-ой секунде машина проедет 25 метров, а к моменту 5,1 сона пройдет 5,12 = 26,01 м. То есть за 0,1 с автомобиль преодолеет 26,01 – 25 – 1,01 м, а средняя скорость при этом составит
Ещё раз уменьшим промежуток ∆t. Пусть теперь он составляет всего 0,01с. Тогда средняя скорость будет определяться так:
Видно, что при уменьшении промежутка ∆t средняя скорость стремится к величине 10 м/с. Поэтому логично считать именно эту величину мгновенной скоростью машины в момент времени t = 5 c. Однако возникает вопрос – уверены ли мы, что мгновенная скорость стремится именно к 10 м/с, а не, скажем, к 10,001 м/с? Как точно определить это число? Здесь как раз помогают пределы. Можно записать, что мгновенная скорость – это предел отношения ∆s/∆t при ∆t, стремящемся к нулю. То есть
Получили, что мгновенная скорость в момент t1 = 5 действительно равна 10 м/с.
Задание. Вычислите мгновенную скорость разгоняющегося самолета через 10 секунд после начала разгона, если пройденное им расстояние задается законом s(t) = 5t2.
Решение. За 10 секунд самолет успеет преодолеть
Дадим функции s(t) приращение ∆t и обозначим как t1 момент времени, когда со старта прошло 10 секунд. Тогда к моменту t1 + ∆t самолет успеет пройти
Решая данную задачу, мы дали функции s(t) приращение ∆t и записали отношение ∆s/∆t. Далее мы устремили величину ∆t к нулю и посмотрели, к какому числу устремится отношение ∆s/∆t. Это число и оказалось мгновенной скоростью. В более общем случае произвольной функции у = f(x)в точке х0 можно дать приращение аргумента ∆х, которому будет соответствовать некоторое приращение функции ∆у. Далее можно вычислить предел отношения ∆у/∆х, который будет характеризовать, как быстро в точке х0 функция меняет свое значение. Этот предел называют производной функции в точке х0. Для обозначения производной над функцией ставят штрих.
В общем случае алгоритм вычисления производной в некоторой точке следующий:
1.Фиксируем точку х0, вычисляем для нее значение функции у(х). Это значение будет конкретным числом
- Даем функции приращение аргумента ∆х, переходим в новую точку х0 + ∆х, вычисляем в ней значение функции у(х0 + ∆х). Это значение будет не числом, а выражением, содержащим переменную ∆х.
- Находим приращение функции ∆у, используя формулу
Это приращение также должно содержать величину ∆х.
- Составляем соотношение ∆у/∆х.
- Находим предел этого отношения при ∆х→0. Этот предел и есть значение производной.
Задание. Найдите производную функции у = 4х2 + 7х в точке х0 = 2.
Решение. Сначала вычислим значение функции в точке х0:
Далее определяем величину у(х0 + ∆х) (это будет не конкретное число, а некоторое выражение, содержащее переменную ∆х):
Задание. Найдите производную функции у = 1/х в точке х0 = 5.
Решение. Высчитаем у(х0):
Пусть у функции есть приращение ∆х, тогда в точке х0 + ∆х ее значение составит:
В рассмотренных примерах для вычисления производной мы использовали ее определение. Однако на практике такой метод почти не используется. В будущем мы узнаем более эффективные способы для нахождения производной.
Мы уже убедились, что использование производной помогает находить мгновенную скорость тел. По этой причине понятие производной функции играет огромную роль в механике (разделе физике, изучающем движение). Однако этим ее практическое применение не ограничивается. По сути, она является основой для всей классической физики, и именно ее появление в XVII в. обеспечило выдающийся прогресс в науке вплоть до конца XIX в. При этом производная используется и в геометрии для анализа графиков функций. Более подробно ее применение будет также рассмотрено позже.
Производная положительна только тогда, когда функция возрастает. То есть, нам необходимо найти точки, в которых функция растет. Смотрим на график нашей функции: функция растет на промежутках: от (x=-7) до (x=0) и от (x = 6) до (x=12).
Так как по условию нам нужны только ЦЕЛЫЕ точки, в которых производная положительна, то это будут: (x=—6); (x=-5), (x=-4), (x=-3), (x=-2), (x=-1), (x=7), (x=8), (x=9), (x=10), (x=11). Всего точек получилось (11). Я отметил их зеленым цветом.
Обратите внимание, что точки (x=-7), (x=0), (x=6), (x=12) мы не считаем, так как в этих точках у нас будут минимумы и максимумы функции, а в них производная равна нулю, то есть не положительна.
Ответ: (11.)
Пример 2
На рисунке 6 изображен график функции, определенной на промежутке ((-10;12)). Найдите количество точек, в которых производная функции равна нулю.
Исследовать функцию — это значит установить её свойства: указать её область определения и область значений; промежутки возрастания и убывания; промежутки, на которых функция приобретает положительные значения, на которых — отрицательные; выяснить, не является ли данная функция чётной или нечётной и т. д.
Содержание:
Что такое исследование функции
Одна из важных задач исследования функции — определение промежутков её возрастания и убывания. Как отмечалось, в тех точках, в которых функция возрастает, её производная (угловой коэффициент касательной) положительная, а в точках убывания функции её производная отрицательная {рис. 70).
Правильными будут следующие утверждения.
- Если производная функции в каждой точке некоторого промежутка положительная, то функция на этом промежутке возрастает.
- Если производная в каждой точке промежутка отрицательная, то функция на этом промежутке убывает.
- Если производная в каждой точке промежутка тождественно равна нулю, то на этом промежутке функция постоянная.
Строгое доказательство этого утверждения достаточно громоздкое, поэтому мы его не приводим. Заметим только, что в нём выражается достаточный признак возрастания или убывания функции, но не необходимый. Поэтому функция может возрастать и на промежутке, в некоторых точках которого она не имеет производной. Например, функция
Из сказанного следует, что два соседних промежутка, на одном из которых функция возрастает, а на другом — убывает, могут разделяться только такой точкой, в которой производная функции равна нулю или не существует.
Внутренние точки области определения функции, в которых её производная равна нулю или не существует, называют критическими точками функции.
Следовательно, чтобы определить промежутки возрастания и убывания функции нужно решить неравенства или найти все критические точки функции,разбить ими область определения функции на промежутки, а потом исследовать, на каких из них функция возрастает, а на каких — убывает.
Пример:
Найдите промежутки возрастания и убывания функции
Решение:
Уравнение имеет корни Это — критические точки. Область определения данной функции — множество — они разбивают на три промежутка: (рис. 72). Производная функции на этих промежутках имеет соответственно такие знаки: Следовательно, данная функция на промежутках возрастает, а на убывает.
Замечание: Если функция непрерывна в каком-нибудь конце промежутка возрастания или убывания, то эту точку можно присоединить к рассматриваемому промежутку. Поскольку функция в точках 0 и 2 непрерывна, то можно утверждать, что она возрастает на промежутках на — убывает.
Пример:
Найдите промежутки убывания функции
Решение:
Критические точки: Они всю область определения функции разбивают на интервалы: (рис. 73). Производная на этих промежутках имеет соответственно такие знаки: Следовательно, функция убывает на промежутках Поскольку в точках данная функция непрерывна, то ответ можно записать и так:
Пример:
Найдите критические точки функции
Решение:
Найдем произвольную функции:
Найдём точки, в которых производная равна нулю или не существует: — не существует, если знаменатель равен нулю, отсюда и Точка не входит в область определения функции. Следовательно, функция имеет две критические точки:
Ответ. 0 и 4.
Пример:
Докажите, что функция возрастает на
Решение:
При любом значении выражение имеет положительное значение. Следовательно, данная функция возрастает на всей области определения, т.е. на множестве
Пример:
Установите, на каком промежутке функция возрастает, а на каком убывает.
Решение:
Способ 1. Найдём производную функции:
Найдём критические точки функции:
Эта точка разбивает область определения функции на два промежутка (рис. 74). Определим знак производной на каждом из них.
Следовательно, функция возрастает на промежутке а убывает на
Способ 2. Решим неравенство и
Ответ. Возрастает, если убывает если
Применение второй производной к исследованию функций и построению их графиков
При помощи первой производной можно исследовать функцию на монотонность и экстремумы и схематично построить график. Оказывается, что поведение некоторых функций не всегда можно охарактеризовать, используя первую производную. Более детальное исследование проводится при помощи второй производной. Вспомним, что такое вторая производная.
Пусть функция является дифференцируемой, её производная — функция, которая также дифференцируема. Тогда можно найти производную Это производная второго порядка, или вторая производная функции
Например, найти производную 2-го порядка функции означает найти производную этой функции и полученную функцию продифференцировать:
Кривая называется выпуклой на интервале если все её точки, кроме точки касания, лежат ниже произвольной её касательной на этом интервале (на рис. 86 — 1).
Кривая называется вогнутой на интервале если все её точки, кроме точки касания, лежат выше произвольной её касательной на этом интервале (на рис. 86 — 2).
Точкой перегиба называется такая точка кривой, которая отделяет её выпуклую часть от вогнутой.
Интервалы выпуклости и вогнутости находят при помощи такой теоремы.
Теорема. Если вторая производная дважды дифференцируемой функции отрицательна на интервале то кривая выпуклая на данном интервале; если вторая производная функции положительная то кривая вогнутая на
Из теоремы следует, что точками перегиба кривой могут быть только точки, в которых вторая производная равна нулю или не существует. Такие точки называют критическими точками второго рода.
Установим до статочное условие существования точки перегиба.
Теорема. Пусть — критическая точка второго рода функции Если при переходе через точку производная меняет знак, то точка является точкой перегиба кривой
Для нахождения промежутков выпуклости и точек перегиба графика функции целесообразно пользоваться следующей схемой:
- найти область определения функции;
- найти критические точки второго рода;
- определить знак второй производной на образованных интервалах. Если то кривая выпуклая; если — кривая вогнутая;
- если производная меняет знак при переходе через точку то точка является точкой перегиба кривой
Пример №1
Найдите интервалы выпуклости, вогнутости и точки перегиба кривой
Решение:
1) Область определения функции:
2) Найдём вторую производную: Критические точки второго рода: Других критических точек нет.
3) Разбиваем область определения на интервалы и определяем знак второй производной на каждом из них.
Если поэтому кривая вогнутая.
Если поэтому кривая выпуклая.
Если — кривая вогнутая.
Следовательно, точки — точки перегиба кривой. Рассмотрим ещё один компонент в исследовании функций, благодаря которому упрощается построение некоторых графиков. Это асимптоты. В предыдущих параграфах рассматривались горизонтальные и вертикальные асимптоты. Повторим, расширим и обобщим это понятие. Асимптоты бывают вертикальные, наклонные и горизонтальные (рис. 87).
Напомним, что прямая будет вертикальной асимптотой кривой если при (справа или слева) значение функции стремится к бесконечности, т.е. выполняется одно из условий:
Уравнение наклонной асимптоты:
Если записанные пределы существуют, то существует наклонная асимптота; если хотя бы один из них не существует или равен то кривая наклонной асимптоты не имеет.
Если поэтому — уравнение горизонтальной асимптоты.
Замечание: Рассмотренные пределы могут быть односторонними, а под символом следует понимать и При этом указанные пределы могут быть разными при
Пример №2
Найдите асимптоты кривых:
Решение:
а) Найдём вертикальные асимптоты. Поскольку функция не определена в точках и то прямые — вертикальные асимптоты.
Найдём наклонную асимптоту: Кривая имеет горизонтальную асимптоту, её уравнение:
Следовательно, заданная кривая имеет три асимптоты:
Найдем вертикальные асимптоты.
Поскольку функция не определена в точках и то прямые — вергикальные асимптоты.
Для наклонной асимптоты
Значит прямая — наклонная асимптота. Горизонтальной асимптоты нет.
Итак, асимптоты кривой:
Будем искать наклонные асимптоты:
Следовательно, — наклонная асимптота, если
2) если (проверьте самостоятельно), отсюда — наклонная асимптота, если
Следовательно, заданная кривая имеет две асимптоты:
Определение точек перегиба, интервалов выпуклости и асимптот существенно помогает в построении графиков различных функций.
Нахождение промежутков возрастания и убывания функции
Интервалы возрастания и убывания функции
возрастающая функция
Если для любых и из некоторого промежутка области определения при выполняется условие то на этом промежутке функция возрастающая.
убывающая
Если для любых и из некоторого промежутка области определения при выполняется условие на этом промежутке функция убывающая.
Связь промежутков возрастания и убывания функции с угловым коэффициентом секущей можно выразить следующим образом.
Если на заданном промежутке угловой коэффициент любой секущей положителен, то на этом промежутке функция возрастает.
Если на заданном промежутке угловой коэффициент любой секущей отрицателен, то на этом промежутке функция убывает.
Промежутки возрастания и убывания функции
Пусть на определенном промежутке производная функции положительна, т. е. Так как то угловой коэффициент касательной будет положительным. А это значит, что касательная с положительным направлением оси абсцисс образует острый угол и на заданном промежутке график “поднимается “, т. е. функция возрастает. Если тогда касательная с положительным направлением оси абсцисс образует тупой угол, график “спускается”, т. е. функция убывает.
Теорема. Если функция дифференцируема в каждой точке заданного промежутка, то:
Примечание: если функция непрерывна в каком-либо из концов промежутка возрастания (убывания), то эту точку присоединяют к этому промежутку.
По графику функции исследуйте промежутки возрастания и убывания функции.
На интервалах и угловой коэффициент касательной положительный, поэтому на каждом из промежутков и функция возрастает.
На интервале угловой коэффициент касательной отрицателен, поэтому на промежутке функция убывает.
Пример №3
При помощи производной определите промежутки возрастания и убывания функции
Решение: 1. Алгебраический метод.
Найдем производную функции
Функция на промежутке удовлетворяющем неравенству т. е. возрастает.
Для решения неравенства сначала надо решить соответствующее уравнение
Значит, при и Точки разбивают область определения функции на три интервала: и В каждом из интервалов выберем контрольную точку для проверки и установим знак производной.
Из таблицы и непрерывности функции видно, что данная функция возрастает на промежутках и и убывает на промежутке Из графика так же видно, что задания решение верно.
2. Промежутки возрастания и убывания функции можно определить но графику производной. На рисунке изображен график производной
График производной при и расположен выше оси значит, При график производной расположен ниже оси значит Так как функция в точках и непрерывна, то на промежутках и она возрастает, а на промежутке убывает.
Пример №4
Изобразите схематично график непрерывной функции согласно еле дующим условиям:
a) при при
b) при или при
Решение:
а) при знак производной положительный: значит,
функция возрастает. При знак производной отрицательный: значит, функция убывает, при значение функции равно 5.
b) При и знак производной положительный: значит, функция возрастает. При знак производной отрицательный: значит, функция убывает, при значение функции равно 0.
Критические точки и экстремумы функции
В некоторых точках из области определения производная функции может быть равна нулю или вообще может не существовать. Такие точки из области определения называются критическими точками функции. Покажем критические точки на графике заданной функции.
1. Для значений равных угловой коэффициент касательной к графику равен 0. Т. e.Эти точки являются критическими точками функции.
2. В точках функция не имеет производной. Эти тоже критические точки функции.
3. Для рассматриваемой нами функции критические точки делят ее область определения на чередующиеся интервалы возрастания и убывания. Точки – критические точки, которые не изменяют возрастание и убывание (или наоборот).
По графику видно, что в точках внутреннего экстремума( и ) производная функции равна нулю, а в точке производная не существует. Точки, в которых производная функции равна нулю, также называются стационарными точками.
Теорема Ферма (Необходимое условие существовании экстремумов)
Во внутренних точках экстремума производная либо равна нулю, либо не существует.
Примечание. Точка, в которой производная равна нулю, может и не быть точкой экстремума. Например, в точке производная функции равна нулю, но эта точка не является ни точкой максимума, ни точкой минимума.
На отрезке непрерывности функция может иметь несколько критических точек, точек максимума и минимума. Существование экстремума в точке зависит от значения функции в данной точке и в точках, близких к данной, т. е. имеет смысл локального (местного) значения. Поэтому иногда используют термин локальный максимум и локальный минимум.
Достаточное условие существования экстремума
Пусть функция непрерывна на промежутке и Если является критической точкой, в окрестности которой функция дифференцируема, то, если в этой окрестности:
- слева от точки положительна, а справа – отрицательна, то точка является точкой максимума.
- слева от отрицательна, а справа – положительна, то точка является точкой минимума
- с каждой стороны от точки имеет одинаковые знаки, то точка не является точкой экстремума.
Чтобы найти наибольшее (абсолютный максимум) или наименьшее (абсолютный минимум) значение функции, имеющей конечное число критических точек на отрезке, надо найти значение функции во всех критических точках и на концах отрезка, а затем из полученных значений выбрать наибольшее или наименьшее.
Соответствующие наибольшее и наименьшее значения функции на отрезке записываются как и
Ниже представлены примеры определения максимума и минимума в соответствии со знаком производной первого порядка.
Пример №5
Для функции определите максимумы и минимумы и схематично изобразите график.
Решение: Для решения задания сначала надо найти критические точки. Для данной функции этими точками являются точки (стационарные), в которых производная равна нулю.
1. Производная функции:
2. Критические точки функции:
3. Точки и разбивают область определения функции на три промежутка.
Проверим знак на интервалах, выбрав пробные точки:
для интервала
для интервала
для интервала
При имеем максимум
При имеем минимум
4. Используя полученные для функции данные и найдя координаты нескольких дополнительных точек, построим график функции.
Пример №6
Найдите наибольшее и наименьшее значение функции на отрезке
Решение: Сначала найдем критические точки.
Так как то критические точки можно найти из уравнения и Критическая точка не принадлежит данному отрезку и поэтому мы ее не рассматриваем. Вычислим значение заданной функции в точке и на концах отрезка.
Из этих значений наименьшее – 4, наибольшее 12. Таким образом:
Пример №7
Найдите экстремумы функции
Решение: 1. Производная функции:
2. Критические точки:
и
3. Интервалы, на которые критические точки делят область определения функции:
и
Проверим знак на интервалах, выбрав пробные точки.
Для промежутка возьмем
Для промежутка возьмем
Для промежутка возьмем
Используя полученную для функции информацию и найдя значение функции еще в нескольких точках, можно построить график функции. При этом следует учитывать, что в точках с абсциссами и касательная к графику горизонтальна. Построение графика можно проверить при помощи графкалькулятора.
Пример №8
Найдите экстремумы функции
Решение: 1. Производная
2. Критические точки: для этого надо решить уравнение или найти точки, в которых производная не существует. В точке функция не имеет конечной производной. Однако точка принадлежит области определения. Значит, точка является критической точкой функции.
3. Промежутки, на которые критическая точка делит область определения функции: и
Определим знак выбрав пробные точки для каждого промежутка:
Для возьмем
Для возьмем
Пример №9
По графику функции производной схематично изобразите график самой функции.
Решение:
Производная в точке равна нулю, а при отрицательна, значит, на интервале функция убывающая. При производная положительна, а это говорит о том, что функция/на промежутке возрастает. Точкой перехода от возрастания к убыванию функции является точка Соответствующий график представлен на рисунке.
- Заказать решение задач по высшей математике
Построение графиков функции с помощью производной
Функция – многочлен определена и непрерывна на всей числовой оси.
Чтобы построить график функции- многочлен надо выполнить следующие шаги.
- Определите точки пересечения с осями координат.
- Найдите критические точки.
- Найдите промежутки возрастания и убывания функции.
- Найдите максимумы и минимумы.
- Постройте график.
Пример:
Постройте график функции
1) Точки пересечения с осями координат :
2) Критические точки ( точки, в которых производная равна нулю):
значит, точки и расположены на графике.
3) Промежутки возрастания и убывания. Экстремумы.
Критические точки деляг область определения функции на четыре промежутка. Проверим знаки производной
4) Используя полученную информацию, построим график функции.
Чтобы построить график рациональной функции надо выполнить следующие шаги.
- Найдите область определения.
- Найдите асимптоты (если они есть).
- Определите точки пересечения с осями координат.
- Найдите критические точки.
- Найдите промежутки возрастания и убывания и экстремумы.
- Постройте график.
Пример:
Постройте график функции
1) Область определения функции:
2) Асимптоты:
Прямая вертикальная асимптота функции.
Так как степень многочлена в числителе больше степени многочлена в знаменателе, рациональная функция не имеет горизонтальной асимптоты. Однако, записав следующее:
условии имеем т. е. график функции бесконечно приближается к прямой В этом случае прямая является наклонной асимптотой функции Вообще, если степень многочлена на 1 единицу больше степени многочлена то рациональная функция имеет наклонную асимптоту.
3) Точки пересечения с осями координат:
4) Критические точки:
5) Промежутки возрастания и убывания: в точке функция не определена, точки и являются критическими точками функции. Определим знаки производной в каждом полученном интервале.
6) Построим график. Отметим на координатной плоскости точки относящиеся к графику. Проведем вертикальную асимптоту и наклонную асимптоту Используя полученные результаты, изобразим график функции.
Обратите внимание! В области, близкой к точке график функции ведет себя как парабола
Задачи на экстремумы. Оптимизации
В реальной жизненной ситуации возникает необходимость выбора оптимального варианта и нахождения экстремумов определенной функции. Ежедневно, при решении проблем в различных областях, мы сталкиваемся с терминами наибольшая прибыль, наименьшие затраты, наибольшее напряжение, наибольший объем, наибольшая площадь и т.д. Большое экономическое значение в промышленности, при определении дизайна упаковки, имеет вопрос, как подобрать размеры упаковки с наименьшими затратами. Такого рода задания связаны с нахождением максимального или минимального значения величины. Задачи на нахождение максимального и минимального значения величины называются задачами на оптимизацию. Для решения данных задач применяется производная.
Замечание 1: На интервале должны учитываться предельные значения функции на концах.
Замечание 2: В рассматриваемом интервале может быть одна стационарная точка: или точка максимума, или точка минимума. В этом случае, в точке максимума функция принимает наибольшее значение, а в точке минимума – наименьшее значение.
Пример 1. Максимальный объем. Фирма планирует выпуск коробки без крышки, с квадратным основанием и площадью поверхности Найдите размеры коробки, при которых она будет иметь наибольший объем?
Решение:
Так как основанием коробки является квадрат, то ее объем можно вычислить по формуле Используя другие данные задачи, выразим объем только через одну переменную Вычислим площадь поверхности коробки. Она равна и состоит из 4 площадей боковых граней + площадь основания.
Тогда выразим подставим в формулу Зависимость объема коробки от переменной можно выразить следующим образом:
Теперь найдем область определения функции согласно условию задачи.
Понятно, что длина не может быть отрицательной, т. е. Площадь квадрата в основании коробки должна быть меньше 192, т. е.
или Значит,
Найдем максимальное значение функции на интервале
Для этого используем производную первого порядка:
При и имеем, что
Однако. Значит, в рассматриваемом интервале критической точкой является
При имеем при имеем функция
в точке принимает максимальное значение.
Если длина основания коробки будет 8 см, то высота будет равна
Значит, максимальный объем будет иметь коробка с размерами
Построив при помощи графкалькулятора график функции также можно увидеть, что при объем имеет максимальное значение. Постройте график функции при помощи производной и убедитесь в правильности решения.
Пример 2. Минимальное потребление. Два столба высотой 4 м и 12 м находятся на расстоянии 12 м друг от друга. Самые высокие точки столбов соединены с металлической проволокой, каждая из которых, в свою очередь крепится на земле в одной точке. Выберите такую точку на земле, чтобы для крепления использовалось наименьшее количество проволоки.
Решение: 1) Изобразим рисунок, соответствующий условию задачи, и обозначим соответствующие данные на рисунке.
2) Аналитически выразим зависимость между переменными.
По теореме Пифагора:
зависимость функции от переменной будет
Производная функции
Найдем критические точки функции
Сравнивая значения функции в точках (это проверьте самостоятельно), получим, что наименьшее количество проволоки используется при (метр)
При решении задач на экстремумы обратите внимание на следующее!
1. Внимательно читайте условие. Сделайте соответствующий рисунок.
2. Задайте список соответствующих переменных и констант, которые менялись и оставались неизменными и какие единицы использовались. Если на рисунке есть размеры, обозначьте их.
3. Выберите соответствующий параметр и выразите искомую величину функцией Найдите экстремумы данной функции.
4. Полученные значения объясните экспериментально.
Пример: Минимальное потребление материала. Для мясных консервов планируется использовать банку в форме цилиндра объемом 250
a) Каких размеров должна быть банка, чтобы для ее изготовления использовалось как можно меньше материала?
b) Для круглого основания используется материал, цена 1 которого равна 0,05 гяпик, а для боковой поверхности используется материал цена 1 которого равна 0,12 гяпик. Какие размеры должна иметь банка, чтобы затраты на ее изготовление были минимальными?
Решение: а) По условию задачи объем равен 250 Эти данные дают нам возможность найти зависимость между и
Для функции, выражающей площадь поверхности, область определения представляет собой незамкнутый интервал, и мы должны найти, при каком значении где функция имеет наименьшее значение. Найдем производную функции
Критическая точка функции: При имеем при
Значит,
Подставим значение в формулу для высоты получим
Итак, минимальные затраты на материал будет иметь банка цилиндрической формы с размерами и
Размеры, при которых затраты на материал будут минимальными
- Приложения производной
- Производные высших порядков
- Дифференциал функции
- Дифференцируемые функции
- Касательная к графику функции и производная
- Предел и непрерывность функции
- Свойства функций, непрерывных в точке и на промежутке
- Предел функции на бесконечности
Интервалы возрастания и убывания функции
С помощью данного сервиса можно найти интервалы возрастания и убывания функции в онлайн режиме с оформлением решения в Word.
- Решение онлайн
- Видеоинструкция
Исследование функции с помощью производной
Определение: Точка х0 называется точкой локального максимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)>f(x).
Определение: Точка х0 называется точкой локального минимума, если для любого х из окрестности точки х0 выполняется неравенство: f(x0)<f(x).
Точки минимума и максимума функции называются точками экстремума данной функции, а значения функции в этих точках – экстремумами функции.
Точками экстремума могут служить только критические точки I рода, т.е. точки, принадлежащие области определения функции, в которых производная f′(x) обращается в нуль или терпит разрыв.
Правило нахождения экстремумов функции y=f(x)
с помощью первой производной
- Найти производную функции f′(x).
- Найти критические точки по первой производной, т.е. точки, в которых производная обращается в нуль или терпит разрыв.
- Исследовать знак первой производной в промежутках, на которые найденные критические точки делят область определения функции f(x). Если на промежутке f′(x)<0, то на этом промежутке функция убывает; если на промежутке f′(x)>0, то на этом промежутке функция возрастает.
- Если в окрестности критической точки f′(x) меняет знак с «+» на «-», то эта точка является точкой максимума, если с «-» на «+», то точкой минимума.
- Вычислить значения функции в точках минимума и максимума.
С помощью приведенного алгоритма можно найти не только экстремумы функции, но и промежутки возрастания и убывания функции.
Пример №1: Найти промежутки монотонности и экстремумы функции: f(x)=x3–3x2.
Решение: Найдем первую производную функции f′(x)=3x2–6x.
Найдем критические точки по первой производной, решив уравнение 3x2–6x=0; 3x(x-2)=0 ;x = 0, x = 2
Исследуем поведение первой производной в критических точках и на промежутках между ними.
x | (-∞, 0) | 0 | (0, 2) | 2 | (2, +∞) |
f′(x) | + | 0 | – | 0 | + |
f(x) | возрастает | max | убывает | min | возрастает |
f(0) = 03 – 3*02 = 0
f(2) = 23 – 3*22 = -4
Ответ: Функция возрастает при x∈(-∞ ; 0)∪(2; +∞); функция убывает при x∈(0;2);
точка минимума функции (2;-4); точка максимума функции (0;0).
Правило нахождения экстремумов функции y=f(x)
с помощью второй производной
- Найти производную f′(x).
- Найти стационарные точки данной функции, т.е. точки, в которых f′(x)=0.
- Найти вторую производную f″(x).
- Исследовать знак второй производной в каждой из стационарных точек. Если при этом вторая производная окажется отрицательной, то функция в такой точке имеет максимум, а если положительной, то – минимум. Если же вторая производная равна нулю, то экстремум функции надо искать с помощью первой производной.
- Вычислить значения функции в точках экстремума.
Отсюда следует, что дважды дифференцируемая функция f(x) выпукла на отрезке [a, b], если вторая производная f”(x) ≥ 0 при всех х [a, b].
Все вычисления можно проделать в онлайн режиме.
Пример №2. Исследовать на экстремум с помощью второй производной функцию: f(x) = x2 – 2x – 3.
Решение: Находим производную: f′(x) = 2x – 2.
Решая уравнение f′(x) = 0, получим стационарную точку х=1. Найдем теперь вторую производную: f″(x) = 2.
Так как вторая производная в стационарной точке положительна, f″(1) = 2 > 0, то при x = 1 функция имеет минимум: fmin = f(1) = -4.
Ответ: Точка минимума имеет координаты (1; -4).
7. Взаимосвязь функции и ее производной
1. Вспоминай формулы по каждой теме
2. Решай новые задачи каждый день
3. Вдумчиво разбирай решения
Связь производной с возрастанием/убыванием функции
(blacktriangleright) Если производная положительна на промежутке ((a;b)), то функция на нем строго возрастает. (f'(x)>0
Longrightarrow f(x) uparrow)
Если производная отрицательна на промежутке ((a;b)), то функция на нем строго убывает. (f'(x)<0 Longrightarrow f(x) downarrow)
Заметим, что обратные утверждения неверны. То есть если функция строго возрастает на каком-то промежутке, то из этого не следует, что на всем этом промежутке ее производная будет положительной. Например:
функция (f(x)=x^3) на отрезке ([-1;1]) строго возрастает, но ее производная не положительна всюду: в точке (x=0) ее производная (f'(0)=0) (т.к. (f'(x)=3x^2)).
(blacktriangleright) Если функция не убывает (возрастает и/или константа) на промежутке ((a;b)), то на этом промежутке ее производная неотрицательна ((geq 0)). Верно и обратное утверждение.
(blacktriangleright) Если функция не возрастает (убывает и/или константа) на промежутке ((a;b)), то на этом промежутке ее производная неположительна ((leq 0)). Верно и обратное утверждение.
(blacktriangleright) В точках излома (на рисунке это точки (A) и (B)) производной не существует.
Заметим, что на промежутке ((4;+infty)) производная (f'(x)=0), т.к. на этом промежутке функция является константой ((f(x)=10)).
Пример: найдите количество точек, в которых производная равна нулю, если на рисунке дан график функции:
Производная равна нулю в точках (A,B,D), а в точке (C) она не существует, т.к. это точка излома.
Задание
1
#722
Уровень задания: Равен ЕГЭ
На рисунке изображен график функции (y = f(x)), определенной на интервале ((-0,5; 4,3)). Определите количество целых точек (у которых координата – целое число), в которых производная функции положительна.
Для функции (f(x)), у которой производная в точке (x_0) существует, (f'(x_0) > 0) равносильно тому, что (f(x)) возрастает в (x_0).
На интервале ((-0,5; 4,3)) целыми являются точки (0), (1), (2), (3), (4). Среди этих точек (f(x)) возрастает только в (1), (2) и (4). Таким образом, производная функции (y = f(x)) положительна в (3) целых точках.
Ответ: 3
Задание
2
#723
Уровень задания: Равен ЕГЭ
На рисунке изображен график функции (y = f(x)), определенной на интервале ((-0,5; 4,3)). Определите количество целых точек (у которых координата – целое число), в которых производная функции отрицательна.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, (f'(x_0) < 0) равносильно тому, что (f(x)) убывает в (x_0).
На интервале ((-0,5; 4,3)) целыми являются точки (0), (1), (2), (3), (4). Среди этих точек (f(x)) убывает только в (0), (2) и (3). Таким образом, производная функции (y = f(x)) отрицательна в (3) целых точках.
Ответ: 3
Задание
3
#724
Уровень задания: Равен ЕГЭ
На рисунке изображен график функции (y = f(x)), определенной на интервале ((-0,5; 4,1)). Определите количество целых точек, в которых производная функции отрицательна.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, (f'(x_0) < 0) равносильно тому, что (f(x)) убывает в (x_0).
На интервале ((-0,5; 4,1)) целыми являются точки (0), (1), (2), (3), (4). Среди этих точек (f(x)) убывает только в (2) и (4). Таким образом, производная функции (y = f(x)) отрицательна в (2) целых точках.
Ответ: 2
Задание
4
#725
Уровень задания: Равен ЕГЭ
На рисунке изображен график (y = f'(x)) – производной функции (y = f(x)), определенной на интервале ((-0,6; 4,8)). Найдите промежутки возрастания функции (y = f(x)). В ответе укажите произведение целых точек, входящих в эти промежутки.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, утверждение о том, что (f(x)) возрастает в (x_0) равносильно тому, что (f'(x_0) > 0).
На интервале ((-0,6; 4,8)) целыми являются точки (0), (1), (2), (3), (4). Среди этих точек (f'(x)) положительна только в (1) и (3). Таким образом, произведение целых точек, в которых функция возрастает, равно (3cdot 1 = 3).
Ответ: 3
Задание
5
#726
Уровень задания: Равен ЕГЭ
На рисунке изображен график (y = f'(x)) – производной функции (y = f(x)), определенной на интервале ((-1,5; 4,5)). Найдите промежутки возрастания функци (y = f(x)). В ответе укажите сумму целых точек, входящих в эти промежутки.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, утверждение о том, что (f(x)) возрастает в (x_0) равносильно тому, что (f'(x_0) > 0).
На интервале ((-1,5; 4,5)) целыми являются точки (-1), (0), (1), (2), (3), (4). Среди этих точек (f'(x)) положительна только в (-1), (0) и (1). Таким образом, сумма целых точек, в которых функция возрастает, равна (-1 + 0 + 1 = 0).
Ответ: 0
Задание
6
#727
Уровень задания: Равен ЕГЭ
На рисунке изображен график (y = f'(x)) – производной функции (y = f(x)), определенной на интервале ((-1,5; 4,5)). Найдите промежутки убывания функции (y = f(x)). В ответе укажите количество целых точек, входящих в эти промежутки.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, утверждение о том, что (f(x)) убывает в (x_0) равносильно тому, что (f'(x_0) < 0).
На интервале ((-1,5; 4,5)) целыми являются точки (-1), (0), (1), (2), (3), (4). Среди этих точек (f'(x)) отрицательна только в (-1), (0), (1) и (2). Таким образом, количество целых точек, в которых функция убывает, равно (4).
Ответ: 4
Задание
7
#728
Уровень задания: Равен ЕГЭ
На рисунке изображен график (y = f'(x)) – производной функции (y = f(x)), определенной на интервале ((-1,5; 4,6)). Найдите промежутки убывания функции (y = f(x)). В ответе укажите длину наибольшего из них.
Для функции (f(x)), у которой производная в точке (x_0) имеет смысл, утверждение о том, что (f(x)) убывает в (x_0) равносильно тому, что (f'(x_0) < 0).
По рисунку видно, что (f'(x)) отрицательна на промежутках (-1 < x < 2) и (3 < x < 4), тогда (y = f(x)) убывает на промежутках (-1 < x < 2) и (3 < x < 4), из которых наибольшую длину, равную (3), имеет промежуток ((-1; 2)).
Ответ: 3
Выпускная работа в форме ЕГЭ для 11-классников обязательно содержит задания на вычисление пределов, промежутков убывания и возрастания производной функции, поиск точек экстремума и построение графиков. Хорошее знание этой темы позволяет правильно ответить на несколько вопросов экзамена и не испытывать затруднений в дальнейшем профессиональном обучении.
Основы дифференциального исчисления – одна из главных тем математики современной школы. Она изучает применение производной для исследования зависимостей переменных – именно через производную можно проанализировать возрастание и убывание функции без обращения к чертежу.
Комплексная подготовка выпускников к сдаче ЕГЭ на образовательном портале «Школково» поможет глубоко понять принципы дифференцирования – подробно разобраться в теории, изучить примеры решения типовых задач и попробовать свои силы в самостоятельной работе. Мы поможем вам ликвидировать пробелы в знаниях – уточнить представление о лексических понятиях темы и зависимостях величин. Ученики смогут повторить, как находить промежутки монотонности, что значит подъем или убывание производной функции на определенном отрезке, когда граничные точки включаются и не включаются в найденные интервалы.
Прежде чем начинать непосредственное решение тематических задач, мы рекомендуем сначала перейти к разделу «Теоретическая справка» и повторить определения понятий, правила и табличные формулы. Здесь же можно прочитать, как находить и записывать каждый промежуток возрастания и убывания функции на графике производной.
Все предлагаемые сведения излагаются в максимально доступной форме для понимания практически «с нуля». На сайте доступны материалы для восприятия и усвоения в нескольких различных формах – чтения, видеопросмотра и непосредственного тренинга под руководством опытных учителей. Профессиональные педагоги подробно расскажут, как найти промежутки возрастания и убывания производной функции аналитическими и графическими способами. В ходе вебинаров можно будет задать любой интересующий вопрос как по теории, так и по решению конкретных задач.
Вспомнив основные моменты темы, просмотрите примеры на возрастание производной функции, аналогичные заданиям экзаменационных вариантов. Для закрепления усвоенного загляните в «Каталог» – здесь вы найдете практические упражнения для самостоятельной работы. Задания в разделе подобраны разного уровня сложности с учетом наработки навыков. К каждому из них, например, на нахождение производной функции, прилагаются алгоритмы решений и правильные ответы.
Выбирая раздел «Конструктор», учащиеся смогут попрактиковаться в исследовании возрастания и убывания производной функции на реальных вариантах ЕГЭ, постоянно обновляемых с учетом последних изменений и нововведений.
УСТАЛ? Просто отдохни