Как найти прообраз прямой

Содержание:

Геометрические преобразования:

В этой лекции вы узнаете, что такое преобразование фигуры. Ознакомитесь с такими видами преобразований, как параллельный перенос, центральная симметрия, осевая симметрия, поворот, гомотетия, подобие.

Вы научитесь применять свойства преобразований при решении задач и доказательстве теорем.

Движение (перемещение) фигуры. Параллельный перенос

Пример:

На рисунке 17.1 изображены отрезок Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Мы указали правило, с помощью которого каждой точке Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения поставлена в соответствие единственная точка Геометрические преобразования в геометрии с примерами решения отрезка Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решенияполучен в результате преобразования отрезка Геометрические преобразования в геометрии с примерами решения

Пример:

На рисунке 17.2 изображены полуокружность Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения параллельная диаметру Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения полуокружности поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения прямой а так, чтобы прямая Геометрические преобразования в геометрии с примерами решения была перпендикулярна прямой Геометрические преобразования в геометрии с примерами решения Понятно, что все такие точки Геометрические преобразования в геометрии с примерами решения образуют отрезок Геометрические преобразования в геометрии с примерами решения В этом случае говорят, что отрезок Геометрические преобразования в геометрии с примерами решения получен в результате преобразования полуокружности Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример:

Пусть даны некоторая фигура Геометрические преобразования в геометрии с примерами решения и вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения такую, что Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 17.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Обобщим приведенные примеры.

Пусть задана некоторая фигура Геометрические преобразования в геометрии с примерами решения Каждой точке фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие (сопоставим) по определенному правилу некоторую точку. Все полученные сопоставленные точки образуют фигуру Геометрические преобразования в геометрии с примерами решения Говорят, что фигура Геометрические преобразования в геометрии с примерами решенияполучена в результате преобразования фигуры Геометрические преобразования в геометрии с примерами решения При этом фигуру Геометрические преобразования в геометрии с примерами решения называют образом фигуры Геометрические преобразования в геометрии с примерами решения а фигуру Геометрические преобразования в геометрии с примерами решенияпрообразом фигуры Геометрические преобразования в геометрии с примерами решения

Так, в примере 1 отрезок Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения Отрезок Геометрические преобразования в геометрии с примерами решения — это прообраз отрезка Геометрические преобразования в геометрии с примерами решения

Обратим внимание на то, что в примере 3 фигура Геометрические преобразования в геометрии с примерами решения равна своему образу Геометрические преобразования в геометрии с примерами решения Преобразования, описанные в примерах 1 и 2, таким свойством не обладают.

Какими же свойствами должно обладать преобразование, чтобы образ и прообраз были равными фигурами? Оказывается, что достаточно лишь одного свойства: преобразование должно сохранять расстояние между точками, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Что такое преобразование фигур

Определение. Преобразование фигуры Геометрические преобразования в геометрии с примерами решения сохраняющее расстояние между точками, называют движением (перемещением) фигуры Геометрические преобразования в геометрии с примерами решения

Если каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставлена в соответствие эта же точка Геометрические преобразования в геометрии с примерами решения то такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют тождественным. При тождественном преобразовании образом фигуры Геометрические преобразования в геометрии с примерами решения является сама фигура Геометрические преобразования в геометрии с примерами решения. Очевидно, что тождественное преобразование является движением.

Мы давно используем понятие «равенство фигур», хотя не давали ему строгого определения.

На то, что движение связано с равенством фигур, указывают следующие свойства движения.

Если преобразование является движением, то:

  • образом прямой является прямая,
  • образом отрезка является отрезок, равный данному;
  • образом угла является угол, равный данному,
  • образом треугольника является треугольник, равный данному.

Доказательство этих свойств выходит за рамки рассматриваемого курса геометрии.

Свойства движения подсказывают следующее определение.

Определение. Две фигуры называют равными, если существует движение, при котором одна из данных фигур является образом другой.

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения равны.

Если существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения то обязательно существует движение, при котором фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения Такие движения называют взаимно обратными.

Замечание. Ранее равными фигурами мы называли такие фигуры, которые совпадали при наложении. Термин «наложение» интуитивно понятен, и в нашем представлении он связывается с наложением реальных тел. Но геометрические фигуры нельзя наложить в буквальном смысле этого слова. Теперь наложение фигуры Геометрические преобразования в геометрии с примерами решения на фигуру Геометрические преобразования в геометрии с примерами решения можно рассматривать как движение фигуры Геометрические преобразования в геометрии с примерами решения при котором ее образом будет фигура Геометрические преобразования в геометрии с примерами решения

Термин «движение» также ассоциируется с определенным физическим действием: изменением положения тела без деформации.

Именно с этим связано появление этого термина в математике. Однако в геометрии предметом исследования является не процесс, происходящий во времени, а лишь свойства фигуры и ее образа.

То, что изображенные на рисунке 17.3 фигуры Геометрические преобразования в геометрии с примерами решения равны, понятно из наглядных соображений. Строгое обоснование этого факта дает следующая теорема.

Теорема 17.1 (свойство параллельного переноса). Параллельный перенос является движением.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения (рис. 17.4), точки Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Докажем, что Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Векторы Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения имеют координаты Геометрические преобразования в геометрии с примерами решенияСледовательно, координатами точек Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются соответственно пары чисел Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Найдем расстояние между точками Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, мы показали, что Геометрические преобразования в геометрии с примерами решения то есть параллельный перенос сохраняет расстояние между точками. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе, то Геометрические преобразования в геометрии с примерами решения

Это свойство используется при создании рисунков на тканях, обоях, покрытиях для пола и т. п. (рис. 17.5). Геометрические преобразования в геометрии с примерами решения

Если фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения то фигура Геометрические преобразования в геометрии с примерами решения является образом фигуры Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения (рис. 17.6).

Геометрические преобразования в геометрии с примерами решения

Параллельные переносы на векторы Геометрические преобразования в геометрии с примерами решенияявляются взаимно обратными движениями.

Пример №1

Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения ставится в соответствие точка Геометрические преобразования в геометрии с примерами решения — заданные числа. Докажите, что такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения является параллельным переносом на вектор Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решения Заметим, что координаты вектора Геометрические преобразования в геометрии с примерами решенияравны Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Следовательно, описанное преобразование фигуры Геометрические преобразования в геометрии с примерами решения — параллельный перенос на вектор Геометрические преобразования в геометрии с примерами решения

Пример №2

Точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Найдите координаты вектора Геометрические преобразования в геометрии с примерами решения и координаты образа точки Геометрические преобразования в геометрии с примерами решения

Решение:

Из условия следует, что Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Пусть Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения то есть Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Пример №3

Даны угол Геометрические преобразования в геометрии с примерами решения и прямая Геометрические преобразования в геометрии с примерами решения не параллельная ни одной из сторон этого угла (рис. 17.7). Постройте прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения так, чтобы стороны угла отсекали на ней отрезок заданной длины Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Рассмотрим вектор Геометрические преобразования в геометрии с примерами решениятакой, что Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения (рис. 17.8). Построим луч Геометрические преобразования в геометрии с примерами решения являющийся образом луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения Обозначим точку пересечения лучей Геометрические преобразования в геометрии с примерами решения буквой Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом параллельном переносе. Тогда Геометрические преобразования в геометрии с примерами решения

Приведенные рассуждения подсказывают следующий алгоритм построения:

  1. найти образ луча Геометрические преобразования в геометрии с примерами решения при параллельном переносе на вектор Геометрические преобразования в геометрии с примерами решения
  2. отметить точку пересечения луча Геометрические преобразования в геометрии с примерами решения с построенным образом;
  3. через найденную точку провести прямую Геометрические преобразования в геометрии с примерами решения параллельную прямой Геометрические преобразования в геометрии с примерами решения Прямая Геометрические преобразования в геометрии с примерами решения будет искомой.

Осевая симметрия

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно прямой Геометрические преобразования в геометрии с примерами решения если прямая Геометрические преобразования в геометрии с примерами решения является серединным перпендикуляром отрезка Геометрические преобразования в геометрии с примерами решения (рис. 18.1). Если точка Геометрические преобразования в геометрии с примерами решения принадлежит прямой Геометрические преобразования в геометрии с примерами решения то ее считают симметричной самой себе относительно прямой Геометрические преобразования в геометрии с примерами решения

Например, точки Геометрические преобразования в геометрии с примерами решения у которых ординаты равны, а абсциссы — противоположные числа, симметричны относительно оси ординат (рис. 18.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно прямой Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения

В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 18.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют осевой симметрией относительно прямой Геометрические преобразования в геометрии с примерами решения Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии. Говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Теорема 18.1 (свойство осевой симметрии). Осевая симметрия является движением.

Доказательство: Выберем систему координат так, чтобы ось симметрии совпала с осью ординат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Тогда точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при осевой симметрии относительно оси ординат. Имеем:

Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть осевая симметрия сохраняет расстояние между точками. Следовательно, осевая симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно прямой Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно прямой Геометрические преобразования в геометрии с примерами решения также принадлежит этой фигуре.

Прямую Геометрические преобразования в геометрии с примерами решения называют осью симметрии фигуры. Также говорят, что фигура имеет ось симметрии.

Геометрические преобразования в геометрии с примерами решения

Приведем примеры фигур, имеющих ось симметрии. На рисунке 18.4 изображен равнобедренный треугольник. Прямая, содержащая его высоту, проведенную к основанию, является осью симметрии треугольника.

Любой угол имеет ось симметрии — это пря-Рис. 18.5 мая, содержащая его биссектрису (рис. 18.5). Геометрические преобразования в геометрии с примерами решения

Равносторонний треугольник имеет три оси симметрии (рис. 18.6). Две оси симметрии имеет отрезок: это его серединный перпендикуляр и прямая, содержащая этот отрезок (рис. 18.7).

Геометрические преобразования в геометрии с примерами решения

Квадрат имеет четыре оси симметрии (рис. 18.8).

Существуют фигуры, имеющие бесконечно много осей симметрии, например окружность. Любая прямая, проходящая через центр окружности, является ее осью симметрии (рис. 18.9).

Бесконечно много осей симметрии имеет и прямая: сама прямая и любая прямая, ей перпендикулярная, являются ее осями симметрии.

Пример №4

Начертили неравнобедренный треугольник Геометрические преобразования в геометрии с примерами решения Провели прямую Геометрические преобразования в геометрии с примерами решениясодержащую биссектрису угла Геометрические преобразования в геометрии с примерами решения Потом рисунок стерли, оставив только точки Геометрические преобразования в геометрии с примерами решения и прямую Геометрические преобразования в геометрии с примерами решения Восстановите треугольник Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку прямая Геометрические преобразования в геометрии с примерами решения является осью симметрии угла Геометрические преобразования в геометрии с примерами решения то точка Геометрические преобразования в геометрии с примерами решения— образ точки Геометрические преобразования в геометрии с примерами решения при симметрии относительно прямой Геометрические преобразования в геометрии с примерами решения — принадлежит лучу Геометрические преобразования в геометрии с примерами решения Тогда пересечением прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения является вершина Геометрические преобразования в геометрии с примерами решения искомого треугольника Геометрические преобразования в геометрии с примерами решения (рис. 18.10).

Эти соображения подсказывают, как построить искомый треугольник: строим точку Геометрические преобразования в геометрии с примерами решения симметричную точке Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения Находим вершину Геометрические преобразования в геометрии с примерами решения как точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №5

Точка Геометрические преобразования в геометрии с примерами решения принадлежит острому углу Геометрические преобразования в геометрии с примерами решения (рис. 18.11). На сторонах Геометрические преобразования в геометрии с примерами решения угла найдите такие точки Геометрические преобразования в геометрии с примерами решения чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точки Геометрические преобразования в геометрии с примерами решения при симметриях относительно прямых Геометрические преобразования в геометрии с примерами решения соответственно (рис. 18.12), а прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения в точках Геометрические преобразования в геометрии с примерами решения соответственно. Докажем, что точки Геометрические преобразования в геометрии с примерами решения — искомые.

Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезки Геометрические преобразования в геометрии с примерами решения симметричны относительно прямой Геометрические преобразования в геометрии с примерами решенияСледовательно, Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Покажем, что построенный треугольник имеет наименьший периметр из возможных.

Рассмотрим треугольник Геометрические преобразования в геометрии с примерами решения где Геометрические преобразования в геометрии с примерами решения — произвольные точки соответственно лучей Геометрические преобразования в геометрии с примерами решения причем точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения или точка Геометрические преобразования в геометрии с примерами решения не совпадает с точкой Геометрические преобразования в геометрии с примерами решения

Понятно, что Геометрические преобразования в геометрии с примерами решения

Тогда периметр треугольника Геометрические преобразования в геометрии с примерами решения равен сумме Геометрические преобразования в геометрии с примерами решения Однако Геометрические преобразования в геометрии с примерами решения

Центральная симметрия. Поворот

Определение. Точки Геометрические преобразования в геометрии с примерами решения называют симметричными относительно точки Геометрические преобразования в геометрии с примерами решения если точка Геометрические преобразования в геометрии с примерами решения является серединой отрезка Геометрические преобразования в геометрии с примерами решения (рис. 19.1). Точку Геометрические преобразования в геометрии с примерами решения считают симметричной самой себе.

Геометрические преобразования в геометрии с примерами решения Например, точки Геометрические преобразования в геометрии с примерами решения у которых как абсциссы, так и ординаты — противоположные числа, симметричны относительно начала координат (рис. 19.2).

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие симметричную ей относительно точки Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют центральной симметрией относительно точки Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии. Также говорят, что фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки Геометрические преобразования в геометрии с примерами решения

Теорема 19.1 (свойство центральной симметрии). Центральная симметрия является движением.

Доказательство: Выберем систему координат так, чтобы центр симметрии совпал с началом координат. Пусть Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения Точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — соответственно их образы при центральной симметрии относительно начала координат. Имеем: Геометрические преобразования в геометрии с примерами решения

Мы получили, что Геометрические преобразования в геометрии с примерами решения то есть центральная симметрия сохраняет расстояние между точками. Следовательно, центральная симметрия является движением. Геометрические преобразования в геометрии с примерами решения

Следствие. Если фигуры Геометрические преобразования в геометрии с примерами решения симметричны относительно точки, то Геометрические преобразования в геометрии с примерами решения

Определение. Фигуру называют симметричной относительно точки Геометрические преобразования в геометрии с примерами решения если для каждой точки данной фигуры точка, симметричная ей относительно точки Геометрические преобразования в геометрии с примерами решениятакже принадлежит этой фигуре.

Точку Геометрические преобразования в геометрии с примерами решения называют центром симметрии фигуры. Также говорят, что фигура имеет центр симметрии.

Приведем примеры фигур, имеющих центр симметрии.

Центром симметрии отрезка является его середина (рис. 19.4).

Точка пересечения диагоналей параллелограмма является его центром симметрии (рис. 19.5).

Существуют фигуры, имеющие бесконечно много центров симметрии. Например, каждая точка прямой является ее центром симметрии.

Также бесконечно много центров симметрии имеет фигура, состоящая из двух параллельных прямых. Любая точка прямой, равноудаленной от двух данных, является центром симметрии рассматриваемой фигуры (рис. 19.6).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №6

Докажите, что образом данной прямой Геометрические преобразования в геометрии с примерами решения при симметрии относительно точки Геометрические преобразования в геометрии с примерами решения не принадлежащей прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Поскольку центральная симметрия — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки.

Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Пусть точки Геометрические преобразования в геометрии с примерами решения — их образы при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения углы Геометрические преобразования в геометрии с примерами решения равны как вертикальные, то треугольники Геометрические преобразования в геометрии с примерами решения равны по первому признаку равенства треугольников. Отсюда Геометрические преобразования в геометрии с примерами решения (рис. 19.7). Следовательно, по признаку параллельных прямых Геометрические преобразования в геометрии с примерами решения

Пример №7

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения (рис. 19.8). На сторонах Геометрические преобразования в геометрии с примерами решения угла постройте такие точки Геометрические преобразования в геометрии с примерами решения чтобы точка Геометрические преобразования в геометрии с примерами решения была серединой отрезка Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при центральной симметрии относительно точки Геометрические преобразования в геометрии с примерами решения (рис. 19.9). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Найдем прообраз точки Геометрические преобразования в геометрии с примерами решения Очевидно, что он лежит на прямой Геометрические преобразования в геометрии с примерами решения Поэтому достаточно найти точку пересечения прямых Геометрические преобразования в геометрии с примерами решения

Обозначим эту точку буквой Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения — искомые точки.Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Изучая окружающий мир, мы часто видим примеры проявления симметрии в природе (рис. 19.10). Объекты, имеющие ось или центр симметрии, легко воспринимаются и радуют взгляд. Недаром в Древней Греции слово «симметрия» служило синонимом слов «гармония», «красота». Геометрические преобразования в геометрии с примерами решения

Идея симметрии широко используется в изобразительном искусстве, архитектуре и технике (рис. 19.11).

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

На рисунке 19.12 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения

Говорят, что точка Геометрические преобразования в геометрии с примерами решения является образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Так же говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота, угол Геометрические преобразования в геометрии с примерами решенияуглом поворота.

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения точку Геометрические преобразования в геометрии с примерами решения и угол Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 19.13). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют поворотом вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Точку Геометрические преобразования в геометрии с примерами решения называют центром поворота. Геометрические преобразования в геометрии с примерами решения

Аналогично определяют преобразование поворота фигуры Геометрические преобразования в геометрии с примерами решения по часовой стрелке на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.14).

Заметим, что центральная симметрия является поворотом вокруг центра симметрии на угол Геометрические преобразования в геометрии с примерами решения

Теорема 19.2 (свойство поворота). Поворот является движением.

Докажите эту теорему самостоятельно.

Следствие. Если фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при повороте, то Геометрические преобразования в геометрии с примерами решения

Пример №8

Даны прямая Геометрические преобразования в геометрии с примерами решения и точка Геометрические преобразования в геометрии с примерами решения вне ее. Постройте образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку поворот — это движение, то образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 19.15). Построим точки Геометрические преобразования в геометрии с примерами решения — их образы при повороте вокруг точки Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

Пример №9

Точка Геометрические преобразования в геометрии с примерами решения принадлежит углу Геометрические преобразования в геометрии с примерами решения но не принадлежит его сторонам. Постройте равносторонний треугольник, одна вершина которого является точкой Геометрические преобразования в геометрии с примерами решения а две другие принадлежат сторонам Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения (рис. 19.16). Обозначим буквой Геометрические преобразования в геометрии с примерами решения точку пересечения прямых Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пусть точка Геометрические преобразования в геометрии с примерами решения — прообраз точки Геометрические преобразования в геометрии с примерами решения при рассматриваемом повороте. Точка Геометрические преобразования в геометрии с примерами решения принадлежит стороне Геометрические преобразования в геометрии с примерами решения угла Геометрические преобразования в геометрии с примерами решения

Эти соображения подсказывают, как построить искомый треугольник.

Строим прямую Геометрические преобразования в геометрии с примерами решения как образ прямой Геометрические преобразования в геометрии с примерами решения при повороте вокруг центра Геометрические преобразования в геометрии с примерами решения против часовой стрелки на угол Геометрические преобразования в геометрии с примерами решения Пусть Геометрические преобразования в геометрии с примерами решения— точка пересечения прямых Геометрические преобразования в геометрии с примерами решения

Строим угол Геометрические преобразования в геометрии с примерами решения равный Геометрические преобразования в геометрии с примерами решения Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекаются в точке Геометрические преобразования в геометрии с примерами решения Эта точка и является прообразом точки Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения Следовательно, треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Геометрические преобразования в геометрии с примерами решения

Подобие фигур

На рисунке 20.1 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Геометрические преобразования в геометрии с примерами решения

На рисунке 20.2 изображены точки Геометрические преобразования в геометрии с примерами решения такие, что Геометрические преобразования в геометрии с примерами решения Говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Вообще, если точки Геометрические преобразования в геометрии с примерами решения таковы, что Геометрические преобразования в геометрии с примерами решения то говорят, что точка Геометрические преобразования в геометрии с примерами решения — это образ точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Точку Геометрические преобразования в геометрии с примерами решения называют центром гомотетии, число Геометрические преобразования в геометрии с примерами решениякоэффициентом гомотетии, Геометрические преобразования в геометрии с примерами решения

Рассмотрим фигуру Геометрические преобразования в геометрии с примерами решения и точку Геометрические преобразования в геометрии с примерами решения Каждой точке Геометрические преобразования в геометрии с примерами решения фигуры Геометрические преобразования в геометрии с примерами решения поставим в соответствие точку Геометрические преобразования в геометрии с примерами решения являющуюся образом точки Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (если точка Геометрические преобразования в геометрии с примерами решения принадлежит фигуре Геометрические преобразования в геометрии с примерами решения то ей сопоставляется она сама). В результате такого преобразования фигуры Геометрические преобразования в геометрии с примерами решения получим фигуру Геометрические преобразования в геометрии с примерами решения (рис. 20.3). Такое преобразование фигуры Геометрические преобразования в геометрии с примерами решения называют гомотетией с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Например, на рисунке 20.4 треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом, равным -3.

можно сказать, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с тем же центром, но коэффициентом гомотетии, равным Геометрические преобразования в геометрии с примерами решения

Отметим, что при Геометрические преобразования в геометрии с примерами решения гомотетия с центром Геометрические преобразования в геометрии с примерами решения является центральной симметрией с центром Геометрические преобразования в геометрии с примерами решения (рис. 20.5). Если Геометрические преобразования в геометрии с примерами решения то гомотетия является тождественным преобразованием.

Очевидно, что при Геометрические преобразования в геометрии с примерами решения гомотетия не является движением.

Геометрические преобразования в геометрии с примерами решения

Теорема 20.1. При гомотетии фигуры Геометрические преобразования в геометрии с примерами решения с коэффициентом Геометрические преобразования в геометрии с примерами решения все расстояния между ее точками изменяются в Геометрические преобразования в геометрии с примерами решения раз, то есть если Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения — их соответствующие образы при гомотетии с коэффициентом Геометрические преобразования в геометрии с примерами решения то Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть точка Геометрические преобразования в геометрии с примерами решения — центр гомотетии. Тогда Геометрические преобразования в геометрии с примерами решения Имеем: Геометрические преобразования в геометрии с примерами решенияГеометрические преобразования в геометрии с примерами решения

Следствие. Если треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с коэффициентом гомотетии Геометрические преобразования в геометрии с примерами решения

Для доказательства этого утверждения достаточно воспользоваться теоремой 20.1 и третьим признаком подобия треугольников.

Гомотетия обладает целым рядом других свойств.

При гомотетии:

Эти свойства вы можете доказать на занятиях математического кружка.

Перечисленные свойства гомотетии указывают на то, что это преобразование может изменить размеры фигуры, но не меняет ее форму, то есть при гомотетии образ и прообраз являются подобными фигурами. Заметим, что в курсе геометрии 8 класса, говоря о подобии фигур, мы давали определение только подобных треугольников. Сейчас определим понятие подобия для произвольных фигур.

На рисунке 20.6 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения симметрична фигуре Геометрические преобразования в геометрии с примерами решения относительно прямой Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате композиции двух преобразований: гомотетии и осевой симметрии.

Поскольку Геометрические преобразования в геометрии с примерами решения то фигуры Геометрические преобразования в геометрии с примерами решения имеют одинаковые формы, но разные размеры, то есть они подобны. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения получена из фигуры Геометрические преобразования в геометрии с примерами решения в результате преобразования подобия.

На рисунке 20.7 фигура Геометрические преобразования в геометрии с примерами решения гомотетична фигуре Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решенияпри некотором движении. Здесь также можно утверждать, что фигуры Геометрические преобразования в геометрии с примерами решения подобны.

Геометрические преобразования в геометрии с примерами решения

Из сказанного следует, что целесообразно принять такое определение.

Определение. Две фигуры называют подобными, если одну из них можно получить из другой в результате композиции двух преобразований: гомотетии и движения.

Это определение иллюстрирует схема, изображенная на рисунке 20.8. Геометрические преобразования в геометрии с примерами решения

Запись Геометрические преобразования в геометрии с примерами решения означает, что фигуры Геометрические преобразования в геометрии с примерами решения подобны. Также говорят, что фигура Геометрические преобразования в геометрии с примерами решения — образ фигуры Геометрические преобразования в геометрии с примерами решения при преобразовании подобия.

Из приведенного определения следует, что при преобразовании подобия фигуры Геометрические преобразования в геометрии с примерами решения расстояния между ее точками изменяются в одно и то же количество раз.

Так как тождественное преобразование является движением, то из схемы, изображенной на рисунке 20.8, следует, что гомотетия — частный случай преобразования подобия.

Пусть Геометрические преобразования в геометрии с примерами решения — произвольные точки фигуры Геометрические преобразования в геометрии с примерами решения а точки Геометрические преобразования в геометрии с примерами решения — их образы при преобразовании подобия. Точки Геометрические преобразования в геометрии с примерами решения принадлежат фигуре Геометрические преобразования в геометрии с примерами решения которая подобна фигуре Геометрические преобразования в геометрии с примерами решения Число Геометрические преобразования в геометрии с примерами решения называют коэффициентом подобия. Говорят, что фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения а фигура Геометрические преобразования в геометрии с примерами решения подобна фигуре Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Заметим, что преобразование подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения является движением. Отсюда следует, что движение — частный случай преобразования подобия.

С преобразованием подобия мы часто встречаемся в повседневной жизни (рис. 20.9). Например, в результате изменения масштаба карты получаем карту, подобную данной. Фотография — это преобразование негатива в подобное изображение на фотобумаге. Перенося в свою тетрадь рисунок, сделанный учителем на доске, вы также выполняете преобразование подобия. Геометрические преобразования в геометрии с примерами решения Теорема 20.2. Отношение площадей подобных многоугольников равно квадрату коэффициента подобия.

Доказательство этой теоремы выходит за рамки рассматриваемого курса геометрии. Мы докажем ее для частного случая, рассмотрев подобные треугольники.

Геометрические преобразования в геометрии с примерами решения

Доказательство: Пусть треугольник Геометрические преобразования в геометрии с примерами решения — образ треугольника Геометрические преобразования в геометрии с примерами решения при преобразовании подобия с коэффициентом Геометрические преобразования в геометрии с примерами решения (рис. 20.10). Сторона Геометрические преобразования в геометрии с примерами решения — образ стороны Геометрические преобразования в геометрии с примерами решения Тогда Геометрические преобразования в геометрии с примерами решения Проведем высоту Геометрические преобразования в геометрии с примерами решения Пусть точка Геометрические преобразования в геометрии с примерами решения — образ точки Геометрические преобразования в геометрии с примерами решения

Поскольку при преобразовании подобия сохраняются углы, то отрезок Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №10

Докажите, что образом прямой Геометрические преобразования в геометрии с примерами решения при гомотетии с центром Геометрические преобразования в геометрии с примерами решения не принадлежащим прямой Геометрические преобразования в геометрии с примерами решения является прямая, параллельная данной.

Решение:

Из свойств гомотетии следует, что образом прямой Геометрические преобразования в геометрии с примерами решения будет прямая. Для построения прямой достаточно найти две любые ее точки. Выберем на прямой Геометрические преобразования в геометрии с примерами решения произвольные точки Геометрические преобразования в геометрии с примерами решения (рис. 20.11). Пусть точки Геометрические преобразования в геометрии с примерами решения— их образы при гомотетии с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения (рисунок 20.11 соответствует случаю, когда Геометрические преобразования в геометрии с примерами решения Тогда прямая Геометрические преобразования в геометрии с примерами решения — образ прямой Геометрические преобразования в геометрии с примерами решения

При доказательстве теоремы 20.1 мы показали, что Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Пример №11

В остроугольный треугольник Геометрические преобразования в геометрии с примерами решения впишите квадрат так, чтобы две его вершины лежали соответственно на сторонах Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения а две другие — на стороне Геометрические преобразования в геометрии с примерами решения

Решение:

Из произвольной точки Геометрические преобразования в геометрии с примерами решения стороны Геометрические преобразования в геометрии с примерами решения опустим перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения (рис. 20.12). Построим квадрат Геометрические преобразования в геометрии с примерами решения так, чтобы точка Геометрические преобразования в геометрии с примерами решения лежала на луче Геометрические преобразования в геометрии с примерами решения Пусть луч Геометрические преобразования в геометрии с примерами решения пересекает сторону Геометрические преобразования в геометрии с примерами решения в точке Геометрические преобразования в геометрии с примерами решения

Рассмотрим гомотетию с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом Геометрические преобразования в геометрии с примерами решения Тогда точка Геометрические преобразования в геометрии с примерами решения образ точки Геометрические преобразования в геометрии с примерами решения при этой гомотетии. Образом отрезка Геометрические преобразования в геометрии с примерами решения является отрезок Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения причем Геометрические преобразования в геометрии с примерами решения Аналогично отрезок Геометрические преобразования в геометрии с примерами решения такой, что точка Геометрические преобразования в геометрии с примерами решения принадлежит лучу Геометрические преобразования в геометрии с примерами решения является образом отрезка Геометрические преобразования в геометрии с примерами решения Следовательно, отрезки Геометрические преобразования в геометрии с примерами решения — соседние стороны искомого квадрата. Для завершения построения осталось опустить перпендикуляр Геометрические преобразования в геометрии с примерами решения на сторону Геометрические преобразования в геометрии с примерами решения

Пример №12

Отрезок Геометрические преобразования в геометрии с примерами решения — высота прямоугольного треугольника Геометрические преобразования в геометрии с примерами решения Найдите радиус Геометрические преобразования в геометрии с примерами решения вписанной окружности треугольника Геометрические преобразования в геометрии с примерами решения если радиусы окружностей, вписанных в треугольники Геометрические преобразования в геометрии с примерами решения соответственно равны Геометрические преобразования в геометрии с примерами решения

Решение:

Поскольку угол Геометрические преобразования в геометрии с примерами решения — общий для прямоугольных треугольников Геометрические преобразования в геометрии с примерами решения то эти треугольники подобны (рис. 20.13). Пусть коэффициент подобия равен Геометрические преобразования в геометрии с примерами решения Очевидно, что Геометрические преобразования в геометрии с примерами решения Аналогично Геометрические преобразования в геометрии с примерами решения с коэффициентом подобия Геометрические преобразования в геометрии с примерами решения

Обозначим площади треугольников Геометрические преобразования в геометрии с примерами решения соответственно Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения Имеем:

Геометрические преобразования в геометрии с примерами решения

Отсюда Геометрические преобразования в геометрии с примерами решения Получаем, что Геометрические преобразования в геометрии с примерами решения

Ответ: Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Применение преобразований фигур при решении задач

Преобразование фигур — эффективный метод решения целого ряда геометрических задач. Проиллюстрируем это на примерах.

Пример №13

На сторонах Геометрические преобразования в геометрии с примерами решения остроугольного треугольника Геометрические преобразования в геометрии с примерами решенияпостройте такие точки Геометрические преобразования в геометрии с примерами решения соответственно, чтобы периметр треугольника Геометрические преобразования в геометрии с примерами решения был наименьшим.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка стороны Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения точки Геометрические преобразования в геометрии с примерами решения — ее образы при симметрии относительно прямых Геометрические преобразования в геометрии с примерами решениясоответственно (рис. 20.34). Прямая Геометрические преобразования в геометрии с примерами решения пересекает стороны Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения Из решения задачи 2 п. 18 следует, что из периметров всех треугольников, для которых точка Геометрические преобразования в геометрии с примерами решения фиксирована, а точки Геометрические преобразования в геометрии с примерами решения принадлежат сторонам Геометрические преобразования в геометрии с примерами решения периметр треугольника Геометрические преобразования в геометрии с примерами решения является наименьшим. Этот периметр равен длине отрезка Геометрические преобразования в геометрии с примерами решения

Заметим, что отрезок Геометрические преобразования в геометрии с примерами решения — средняя линия треугольника Геометрические преобразования в геометрии с примерами решения

Тогда Геометрические преобразования в геометрии с примерами решения

Поскольку Геометрические преобразования в геометрии с примерами решения то точки Геометрические преобразования в геометрии с примерами решения лежат на одной окружности с диаметром Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения Следовательно, длина отрезка Геометрические преобразования в геометрии с примерами решения будет наименьшей при наименьшей длине отрезка Геометрические преобразования в геометрии с примерами решения то есть тогда, когда Геометрические преобразования в геометрии с примерами решения — высота треугольника Геометрические преобразования в геометрии с примерами решения

На рисунке 20.35 отрезок Геометрические преобразования в геометрии с примерами решения— высота треугольника Геометрические преобразования в геометрии с примерами решения Алгоритм построения точек Геометрические преобразования в геометрии с примерами решения понятен из рисунка.

Из построения следует, что периметр любого другого треугольника, вершины которого лежат на сторонах треугольника Геометрические преобразования в геометрии с примерами решения больше периметра треугольника Геометрические преобразования в геометрии с примерами решения Поэтому искомый треугольник является единственным — это построенный треугольник Геометрические преобразования в геометрии с примерами решения

Можно показать (сделайте это самостоятельно), что точки Геометрические преобразования в геометрии с примерами решения и Геометрические преобразования в геометрии с примерами решения являются основаниями высот, проведенных соответственно из вершин Геометрические преобразования в геометрии с примерами решения треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Следовательно, вершины искомого треугольника — это основания высот данного треугольника Геометрические преобразования в геометрии с примерами решения Такой треугольник называют ортоцентрическим.

Пример №14

Точка Геометрические преобразования в геометрии с примерами решения — центр правильного Геометрические преобразования в геометрии с примерами решенияугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.36). Докажите, что Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения например, против часовой стрелки. При таком преобразовании образом данного Геометрические преобразования в геометрии с примерами решения-угольника будет этот же Геометрические преобразования в геометрии с примерами решенияугольник. Следовательно, искомая сумма не изменится. А это возможно лишь тогда, когда Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Пример №15

Внутри треугольника Геометрические преобразования в геометрии с примерами решения все углы которого меньше Геометрические преобразования в геометрии с примерами решения найдите такую точку Геометрические преобразования в геометрии с примерами решения чтобы сумма Геометрические преобразования в геометрии с примерами решения была наименьшей.

Решение:

Пусть Геометрические преобразования в геометрии с примерами решения — произвольная точка данного треугольника Геометрические преобразования в геометрии с примерами решения (рис. 20.37). Рассмотрим поворот с центром Геометрические преобразования в геометрии с примерами решения на угол Геометрические преобразования в геометрии с примерами решения по часовой стрелке. Пусть точки Геометрические преобразования в геометрии с примерами решения — образы точек Геометрические преобразования в геометрии с примерами решения соответственно (рис. 20.37). Поскольку поворот является движением, то Геометрические преобразования в геометрии с примерами решения Очевидно, что треугольник Геометрические преобразования в геометрии с примерами решения равносторонний. Тогда Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Понятно, что сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если точки Геометрические преобразования в геометрии с примерами решения лежат на одной прямой. Поскольку Геометрические преобразования в геометрии с примерами решения то это условие будет выполнено тогда, когда Геометрические преобразования в геометрии с примерами решения

Так как угол Геометрические преобразования в геометрии с примерами решения — образ угла Геометрические преобразования в геометрии с примерами решения при указанном повороте, то должно выполняться равенство Геометрические преобразования в геометрии с примерами решения

Итак, точки Геометрические преобразования в геометрии с примерами решения будут принадлежать одной прямой тогда и только тогда, когда Геометрические преобразования в геометрии с примерами решения Отсюда Геометрические преобразования в геометрии с примерами решения

Таким образом, сумма Геометрические преобразования в геометрии с примерами решения будет наименьшей, если Геометрические преобразования в геометрии с примерами решения

Найти точку Геометрические преобразования в геометрии с примерами решения можно, например, построив ГМТ, из которых отрезки Геометрические преобразования в геометрии с примерами решения видны под углами Геометрические преобразования в геометрии с примерами решения (рис. 20.38).

Понятно, что если один из углов треугольника Геометрические преобразования в геометрии с примерами решения не меньше Геометрические преобразования в геометрии с примерами решения то точка пересечения построенных дуг не будет расположена внутри треугольника. Можно показать, что в треугольнике с углом, не меньшим Геометрические преобразования в геометрии с примерами решенияточка Геометрические преобразования в геометрии с примерами решения сумма расстояний от которой до вершин треугольника является наименьшей, совпадает с вершиной тупого угла. Геометрические преобразования в геометрии с примерами решения

Пример №16

Отрезки Геометрические преобразования в геометрии с примерами решения — высоты остроугольного треугольника Геометрические преобразования в геометрии с примерами решения Докажите, что радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения

Решение:

Пусть прямые Геометрические преобразования в геометрии с примерами решения пересекают описанную окружность треугольника Геометрические преобразования в геометрии с примерами решения соответственно в точках Геометрические преобразования в геометрии с примерами решения (рис. 20.39). Докажем, что Геометрические преобразования в геометрии с примерами решения где точка Геометрические преобразования в геометрии с примерами решения — ортоцентр треугольника Геометрические преобразования в геометрии с примерами решения

Геометрические преобразования в геометрии с примерами решения

Имеем: Геометрические преобразования в геометрии с примерами решения

Углы 2 и 3 равны как вписанные, опирающиеся на дугу Геометрические преобразования в геометрии с примерами решения Следовательно, Геометрические преобразования в геометрии с примерами решения

Тогда в треугольнике Геометрические преобразования в геометрии с примерами решения отрезок Геометрические преобразования в геометрии с примерами решения является биссектрисой и высотой, а следовательно, и медианой. Отсюда Геометрические преобразования в геометрии с примерами решения

Аналогично можно доказать, что Геометрические преобразования в геометрии с примерами решения

Теперь понятно, что треугольник Геометрические преобразования в геометрии с примерами решения гомотетичен треугольнику Геометрические преобразования в геометрии с примерами решения с центром Геометрические преобразования в геометрии с примерами решения и коэффициентом 2. Тогда радиус описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения в два раза больше радиуса описанной окружности треугольника Геометрические преобразования в геометрии с примерами решения Осталось заметить, что треугольники Геометрические преобразования в геометрии с примерами решения вписаны в одну и ту же окружность. 

  • Планиметрия – формулы, определение и вычисление
  • Стереометрия – формулы, определение и вычисление
  • Возникновение геометрии
  • Призма в геометрии
  • Перпендикулярность прямых и плоскостей в пространстве
  • Ортогональное проецирование
  • Декартовы координаты на плоскости
  • Декартовы координаты в пространстве

1. Типовые задачи с решениями

Задача 1.1.
Найти координаты образа

и прообраза

точки

при повороте вокруг начала координат
на угол

.

Решение.
Найдем аналитическое выражение поворота,
данного в задаче:

Чтобы найти
координаты образа

точки

,
надо подставить в эти формулы вместо

и

данные координаты точки

,
т.е.

.
Тогда

;

,
т.е.


.

Чтобы найти
координаты прообраза

точки

,
т.е. координаты точки, для которой

теперь является образом, надо положить

и найти

и

:

Умножив второе
уравнение системы на

и сложив с первым, найдем

:

Подставляя найденное
значение

в одно из уравнений системы, найдем

:

Таким образом,

.

Ответ:

,

.

Задача 1.2.
Найти уравнение образа

и прообраза

прямой

при осевой симметрии с осью

.

Решение.
Аналитическое выражение осевой симметрии

имеет вид:

Чтобы найти
уравнение образа

прямой

,
нужно выразить из этой системы

и

и подставить их в уравнение прямой

:


.
Опуская штрихи, получаем:


.

Чтобы найти
уравнение прообраза

прямой

,
запишем уравнение прямой

(образа прямой

)
в виде

и подставим в него

и

из аналитического выражения

:


.

Получили для прямых

и

одно и то же уравнение. Это не случайно,
т.к. при осевой симметрии (так же как и
при центральной) образ и прообраз любой
фигуры всегда совпадают.

Ответ:

,


.

Задача 1.3.
Даны прямые

и

.
Найти такие точки

и

,
что

и

,
где

.

Решение.

,
т.е.

.
Тогда учитывая, что

,
получаем:

(рис. 18).

С
ледовательно,
чтобы найти координаты точки

,
надо сначала найти уравнение образа

прямой

при параллельном переносе на вектор

,
а затем решить систему уравнений прямых

и

.

Найдем аналитическое
выражение параллельного переноса на
вектор

:

Найдем уравнение
образа

:


,
т.е.

.

Решаем систему

Сложив почленно
уравнения системы, получим:


.

Итак,

.

Так как

,
то

,
т.е.


прообраз точки

.
Найдем координаты прообраза

точки

:

откуда

,
т.е.

.

Ответ:

,

.

2. Задачи для решения на практическом занятии

2.1.
Вывести аналитическое выражение
центральной симметрии с центром

.

2.2. Найти
координаты образа

и прообраза

точки

в центральной симметрии с центром

.

2.3.
Найти уравнение образа

и прообраза

прямой

при повороте на угол

вокруг начала координат.

2.4.
В ортонормированном репере дано
аналитическое выражение преобразований

и

:

Доказать, что

и

− движения. Определить их род. Найти их
инвариантные точки.

2.5.
Даны прямые

и

.
Найти координаты таких точек

и

,
что

,

и

.

2.6.
Найти уравнение оси симметрии точек

и

.

3. Задачи для самостоятельного решения

3.1.
Найти координаты образа

и прообраза

точки

при параллельном переносе на вектор

.

3.2.
Найти уравнение образа

и прообраза

прямой

при
центральной симметрии с центром

.

3.3.
Даны прямые

и

.
Найти координаты таких точек

и

,
что

,

и

.

3.4.
Найти инвариантные точки преобразования,
заданного формулами:

а)

б)

3.5.
Найти аналитическое выражение композиции
осевых симметрий

и определить вид этого движения.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Общее уравнение прямой: описание, примеры, решение задач

Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.

Общее уравнение прямой: основные сведения

Пусть на плоскости задана прямоугольная система координат O x y .

Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .

указанная теорема состоит из двух пунктов, докажем каждый из них.

  1. Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.

Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x — x 0 ) + B ( y — y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .

Полученное уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) не являлись бы перпендикулярными, и равенство A ( x — x 0 ) + B ( y — y 0 ) = 0 не было бы верным.

Следовательно, уравнение A ( x — x 0 ) + B ( y — y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.

  1. Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .

Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .

Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x — x 0 , y — y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:

n → , M 0 M → = A ( x — x 0 ) + B ( y — y 0 ) = 0

Перепишем уравнение A x + B y — A x 0 — B y 0 = 0 , определим C : C = — A x 0 — B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .

Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.

Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .

Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.

Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .

Рассмотрим конкретный пример общего уравнения прямой.

Пусть задано уравнение 2 x + 3 y — 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.

Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y — 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.

Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.

Неполное уравнение общей прямой

Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.

Разберем все вариации неполного общего уравнения прямой.

  1. Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение — C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу — C B .
  2. Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
  3. Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
  4. Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
  5. Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .

Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.

Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , — 11 . Необходимо записать общее уравнение заданной прямой.

Решение

Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:

Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = — 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x — 2 = 0

Ответ: 7 x — 2 = 0

На чертеже изображена прямая, необходимо записать ее уравнение.

Решение

Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .

Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = — 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y — 3 = 0 .

Ответ: y — 3 = 0 .

Общее уравнение прямой, проходящей через заданную точку плоскости

Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x — x 0 ) + B ( y — y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .

Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.

Даны точка М 0 ( — 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , — 2 ) . Необходимо записать уравнение заданной прямой.

Решение

Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = — 2 , x 0 = — 3 , y 0 = 4 . Тогда:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 1 · ( x — ( — 3 ) ) — 2 · y ( y — 4 ) = 0 ⇔ ⇔ x — 2 y + 22 = 0

Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:

A x + B y + C = 0 ⇔ 1 · x — 2 · y + C = 0 ⇔ x — 2 · y + C = 0

Теперь найдем значение С, используя заданную условием задачи точку М 0 ( — 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x — 2 · y + C = 0 , т.е. — 3 — 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x — 2 · y + 11 = 0 .

Ответ: x — 2 · y + 11 = 0 .

Задана прямая 2 3 x — y — 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна — 3 . Необходимо определить ординату заданной точки.

Решение

Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = — 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:

2 3 x 0 — y 0 — 1 2 = 0

Определяем y 0 : 2 3 · ( — 3 ) — y 0 — 1 2 = 0 ⇔ — 5 2 — y 0 = 0 ⇔ y 0 = — 5 2

Ответ: — 5 2

Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно

Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.

Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x — x 1 a x = y — y 1 a y .

Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = — B y .

Это равенство возможно записать как пропорцию: x + C A — B = y A .

В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = — B y — C . Выносим – В за скобки, тогда: A x = — B y + C B .

Перепишем равенство в виде пропорции: x — B = y + C B A .

Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.

Задано общее уравнение прямой 3 y — 4 = 0 . Необходимо преобразовать его в каноническое уравнение.

Решение

Запишем исходное уравнение как 3 y — 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим — 3 за скобки; получаем: 0 x = — 3 y — 4 3 .

Запишем полученное равенство как пропорцию: x — 3 = y — 4 3 0 . Так, мы получили уравнение канонического вида.

Ответ: x — 3 = y — 4 3 0 .

Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.

Прямая задана уравнением 2 x — 5 y — 1 = 0 . Запишите параметрические уравнения этой прямой.

Решение

Осуществим переход от общего уравнения к каноническому:

2 x — 5 y — 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2

Теперь примем обе части полученного канонического уравнения равными λ , тогда:

x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Ответ: x = 5 · λ y = — 1 5 + 2 · λ , λ ∈ R

Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = — A x — C . Разделим обе части полученного равенство на B , отличное от нуля: y = — A B x — C B .

Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.

Решение

Произведем нужные действия по алгоритму:

2 x + 7 y = 0 ⇔ 7 y — 2 x ⇔ y = — 2 7 x

Ответ: y = — 2 7 x .

Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :

A x + B y + C = 0 ⇔ A x + B y = — C ⇔ ⇔ A — C x + B — C y = 1 ⇔ x — C A + y — C B = 1

Необходимо преобразовать общее уравнение прямой x — 7 y + 1 2 = 0 в уравнение прямой в отрезках.

Решение

Перенесем 1 2 в правую часть: x — 7 y + 1 2 = 0 ⇔ x — 7 y = — 1 2 .

Разделим на -1/2 обе части равенства: x — 7 y = — 1 2 ⇔ 1 — 1 2 x — 7 — 1 2 y = 1 .

Преобразуем далее в необходимый вид: 1 — 1 2 x — 7 — 1 2 y = 1 ⇔ x — 1 2 + y 1 14 = 1 .

Ответ: x — 1 2 + y 1 14 = 1 .

В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.

Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:

x a + y b ⇔ 1 a x + 1 b y — 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y — k x — b = 0 ⇔ A x + B y + C = 0

Каноническое уравнение преобразуется к общему по следующей схеме:

x — x 1 a x = y — y 1 a y ⇔ a y · ( x — x 1 ) = a x ( y — y 1 ) ⇔ ⇔ a y x — a x y — a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0

Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:

x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x — x 1 a x = y — y 1 a y ⇔ A x + B y + C = 0

Заданы параметрические уравнения прямой x = — 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.

Решение

Осуществим переход от параметрических уравнений к каноническому:

x = — 1 + 2 · λ y = 4 ⇔ x = — 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y — 4 0 ⇔ x + 1 2 = y — 4 0

Перейдем от канонического к общему:

x + 1 2 = y — 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y — 4 ) ⇔ y — 4 = 0

Ответ: y — 4 = 0

Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.

Решение:

Просто перепишем уравнение в необходимом виде:

x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y — 1 = 0

Ответ: 1 3 x + 2 y — 1 = 0 .

Составление общего уравнения прямой

Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x — x 0 ) + B ( y — y 0 ) = 0 . Там же мы разобрали соответствующий пример.

Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.

Задана прямая, параллельная прямой 2 x — 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.

Решение

Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , — 3 ) : 2 x — 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 2 ( x — 4 ) — 3 ( y — 1 ) = 0 ⇔ 2 x — 3 y — 5 = 0

Ответ: 2 x — 3 y — 5 = 0 .

Заданная прямая проходит через начало координат перпендикулярно прямой x — 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.

Решение

Нормальный вектором заданной прямой будет направляющий вектор прямой x — 2 3 = y + 4 5 .

Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:

A ( x — x 0 ) + B ( y — y 0 ) = 0 ⇔ 3 ( x — 0 ) + 5 ( y — 0 ) = 0 ⇔ 3 x + 5 y = 0

Прямая линия. Уравнение прямой.

Свойства прямой в евклидовой геометрии.

Через любую точку можно провести бесконечно много прямых.

Через любые две несовпадающие точки можно провести единственную прямую.

Две несовпадающие прямые на плоскости или пересекаются в единственной точке, или являются

параллельными (следует из предыдущего).

В трёхмерном пространстве существуют три варианта взаимного расположения двух прямых:

  • прямые пересекаются;
  • прямые параллельны;
  • прямые скрещиваются.

Прямая линия — алгебраическая кривая первого порядка: в декартовой системе координат прямая линия

задается на плоскости уравнением первой степени (линейное уравнение).

Общее уравнение прямой.

Определение. Любая прямая на плоскости может быть задана уравнением первого порядка

причем постоянные А, В не равны нулю одновременно. Это уравнение первого порядка называют общим

уравнением прямой. В зависимости от значений постоянных А, В и С возможны следующие частные случаи:

C = 0, А ≠0, В ≠ 0 – прямая проходит через начало координат

А = 0, В ≠0, С ≠0 — прямая параллельна оси Ох

В = 0, А ≠0, С ≠ 0 – прямая параллельна оси Оу

В = С = 0, А ≠0 – прямая совпадает с осью Оу

А = С = 0, В ≠0 – прямая совпадает с осью Ох

Уравнение прямой может быть представлено в различном виде в зависимости от каких – либо заданных

Уравнение прямой по точке и вектору нормали.

Определение. В декартовой прямоугольной системе координат вектор с компонентами (А, В)

перпендикулярен прямой , заданной уравнением

Пример. Найти уравнение прямой, проходящей через точку А(1, 2) перпендикулярно вектору (3, -1).

Решение. Составим при А = 3 и В = -1 уравнение прямой: 3х – у + С = 0. Для нахождения коэффициента С

подставим в полученное выражение координаты заданной точки А. Получаем: 3 – 2 + C = 0, следовательно

С = -1. Итого: искомое уравнение: 3х – у – 1 = 0.

Уравнение прямой, проходящей через две точки.

Пусть в пространстве заданы две точки M 1 ( x 1 , y 1 , z 1 ) и M2 ( x 2, y 2 , z 2 ), тогда уравнение прямой,

проходящей через эти точки:

Если какой-либо из знаменателей равен нулю, следует приравнять нулю соответствующий числитель. На

плоскости записанное выше уравнение прямой упрощается:

Дробь = k называется угловым коэффициентом прямой.

Пример. Найти уравнение прямой, проходящей через точки А(1, 2) и В(3, 4).

Решение. Применяя записанную выше формулу, получаем:

Уравнение прямой по точке и угловому коэффициенту.

Если общее уравнение прямой Ах + Ву + С = 0 привести к виду:

и обозначить , то полученное уравнение называется

уравнением прямой с угловым коэффициентом k.

Уравнение прямой по точке и направляющему вектору.

По аналогии с пунктом, рассматривающим уравнение прямой через вектор нормали можно ввести задание

прямой через точку и направляющий вектор прямой.

Определение. Каждый ненулевой вектор 1, α2), компоненты которого удовлетворяют условию

Аα1 + Вα2 = 0 называется направляющим вектором прямой.

Пример. Найти уравнение прямой с направляющим вектором (1, -1) и проходящей через точку А(1, 2).

Решение. Уравнение искомой прямой будем искать в виде: Ax + By + C = 0. В соответствии с определением,

коэффициенты должны удовлетворять условиям:

1 * A + (-1) * B = 0, т.е. А = В.

Тогда уравнение прямой имеет вид: Ax + Ay + C = 0, или x + y + C / A = 0.

при х = 1, у = 2 получаем С/ A = -3, т.е. искомое уравнение:

Уравнение прямой в отрезках.

Если в общем уравнении прямой Ах + Ву + С = 0 С≠0, то, разделив на –С, получим:

или , где

Геометрический смысл коэффициентов в том, что коэффициент а является координатой точки пересечения

прямой с осью Ох, а b – координатой точки пересечения прямой с осью Оу.

Пример. Задано общее уравнение прямой х – у + 1 = 0. Найти уравнение этой прямой в отрезках.

С = 1, , а = -1, b = 1.

Нормальное уравнение прямой.

Если обе части уравнения Ах + Ву + С = 0 разделить на число , которое называется

нормирующем множителем, то получим

xcosφ + ysinφ — p = 0 – нормальное уравнение прямой.

источники:

http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/

http://www.calc.ru/Uravneniye-Pryamoy.html

Помогите научиться решать задачи по геометрии.(образ прообраз)

Unknown



Профи

(574),
закрыт



11 лет назад

Указать вид движения и найти элементы его определяющие

Найти образ и прообраз точки А(1,-2) и прямой x-y+1=0
Не могли бы вы мне объяснить ход решения,самое решение.

Виктор Крылов

Просветленный

(49283)


11 лет назад

почитайте о аффинных преобразованиях:

M(1;-2) —> M'(3/5+8/5+1;4/5-6/5-2)=(2;-12/5) – прообраз

для прямой A(0;1), B(-1;0), посредством аффинного преобразования находите прообразы А’ и B’, по двум точкам зададите уравнения прямой А’B’- прообраз прямой АВ: x-y+1=0

для образов решайте систему

Добавить комментарий