Как найти пропорциональность задачи

Математика

6 класс

Урок № 7

Прямая и обратная пропорциональность. Решение задач

Перечень рассматриваемых вопросов:

  • Понятия прямой и обратной пропорциональной зависимости.
  • Краткая запись условия задачи.
  • Составление и решение пропорций по условию задачи.
  • Решение задач на прямую и обратную пропорциональную зависимость.

Тезаурус

Равенство двух отношений называют пропорцией.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Основная литература

  1. Никольский С. М. Математика. 6 класс. Учебник для общеобразовательных учреждений // С. М. Никольский, М. К. Потапов, Н. Н. Решетников и др. — М.: Просвещение, 2017. — 258 с.

Дополнительная литература

  1. Чулков П. В. Математика: тематические тесты. 5-6 кл. // П. В. Чулков, Е. Ф. Шершнёв, О. Ф. Зарапина — М.: Просвещение, 2009. — 142 с.
  2. Шарыгин И. Ф. Задачи на смекалку: 5-6 кл. // И. Ф. Шарыгин, А. В. Шевкин — М.: Просвещение, 2014. — 95 с.

Теоретический материал для самостоятельного изучения

Прямая пропорциональность.

Две величины называются прямо пропорциональными, если при увеличении одной из них в несколько раз другая увеличивается во столько же раз.

Обратная пропорциональность.

Две величины называются обратно пропорциональными, если при увеличении одной из них в несколько раз другая уменьшается во столько же раз.

Для решения задач на пропорциональную зависимость, удобно составить таблицу или сделать краткую запись условия.

Столбцы таблицы соответствуют наименованиям зависимых величин.

Строки таблицы соответствуют значениям величин при первом и втором измерении.

Одинаково направленные стрелки показывают прямо пропорциональную зависимость, противоположно направленные – обратно пропорциональную.

Задача.

Поезд, скорость которого 55 км/ч, был в пути 5 часов. За сколько часов пройдёт этот же участок пути товарный поезд, скорость которого 45 км/ч?

Решение.

При постоянном пути скорость и время движения обратно пропорциональны.

Допустим, товарный поезд пройдёт этот же путь со скоростью 45 км/ч за x ч.

Сделаем краткую запись условия.

Задача.

Двигаясь с постоянной скоростью, велогонщик проезжает 40 метров за 3 с. Какой путь проедет велогонщик за 45 с?

Решение.

При постоянной скорости путь прямо пропорционален времени движения.

Пусть х м проедет велогонщик за 45 с.

Сделаем краткую запись условия.

Задача.

Усилие при восхождении на высоту 600 м равно усилию, требуемому для перехода 25 км по равнине. Турист поднялся в горы на 792 м. Какому расстоянию на равнине соответствует этот подъём?

Решение:

Решение.

Задача.

Четыре программиста могут написать игру за 12 месяцев. За сколько месяцев эту работу могут выполнить три программиста?

Решение.

Количество программистов и скорость написания игры – это обратно пропорциональная зависимость.

Разбор заданий тренировочного модуля

№ 1. Подстановка элементов в пропуски в тексте.

Подставьте нужные элементы в пропуски.

Пешеход шёл 3 часа со скоростью 8 км/ч. За сколько часов он пройдёт то же расстояние со скоростью 6 км/ч?

Решение:

При фиксированном расстоянии время в пути и скорость – ______ пропорциональны.

Пусть _____ часов – пешеход идёт со скоростью 6 км/ч.

Составим пропорцию:

_________

х=_______

х=_______(ч).

Правильный ответ.

Решение:

При фиксированном расстоянии время в пути и скорость – обратно пропорциональны.

Пусть х часов – пешеход идёт со скоростью 6 км/ч.

№ 2. Подстановка элементов в пропуски в таблице.

Заполните таблицу.

Поезд движется со скоростью 45 км/ч. Какое расстояние он пройдёт, если будет в пути 3 ч; 4 ч; 5 ч; 6 ч.

Варианты ответов:

135 км;

180 км;

225 км;

270 км.

Решение.

При постоянной скорости пройденный путь и время прямо пропорциональны. Скорость движения поезда 45 км/ч означает, что за 1 час поезд преодолевает расстояние в 45 км. Обозначим за x км – расстояние, которое поезд пройдёт за 3, 4, 5 и 6 часов.

Таким же способом находим расстояние, которое пройдёт поезд за 4, 5 и 6 часов, и подставляем соответствующие варианты в таблицу.

Ответ:

Кратко пробежимся по теории.

Пропорциональными называются две взаимно зависимые величины, если отношение их значений остаётся неизменным.

Пропорция – это равенство двух отношений.

Отношение – это частное двух чисел. Отношение показывает, во сколько раз одно число больше другого или какую часть одно число составляет от другого.

Основное свойство пропорции: в верной пропорции произведение крайних членов равно произведению средних.

Задачи на пропорции из учебников

Основная сложность в задачах такого типа – составить пропорцию и определить, прямо или обратно пропорциональны величины.

В шестом классе условие задач на пропорции записывают таблицей, а пропорциональность обозначают стрелкам в одном либо противоположных направлениях.

Решите с помощью пропорции задачи:

1) Для изготовления 8 одинаковых приборов необходимо 18 кг металла. Сколько таких приборов можно изготовить из 27 кг металла?

Пусть из 27 кг металла возможно изготовить x приборов.
К-во приборов   Масса металла
   ↓  8                       18 кг ↓
      х                        27 кг
$frac8x=frac{18}{27}$
18x = 8 * 27
$x=frac{8ast27}{18}$
$x=frac{4ast3}1$
x = 12
Значит, 12 приборов можно изготовить из 27 кг металла
Ответ: 12 приборов.

2) За 5 ч турист прошел 24 км. Какое расстояние он пройдет за 8 ч с той же скоростью?

Пусть x км пройдет турист за 8 ч.
Время    Путь
↓ 5 ч       24 км ↓
   8 ч       х км
$frac58=frac{24}x$
5x = 8 * 24
$x=frac{8ast24}5$
$x=frac{192}5$
$x=38frac25=38,4$
Значит, 38,4 км пройдет турист за 8 ч с той же скоростью
Ответ: 38,4 км.

3) Из 140 кг свежих вишен получают 21 кг сушеных. Сколько килограммов сушеных вишен получится из 160 кг свежих? Сколько килограммов свежих вишен необходимо взять, чтобы получить 31,5 кг сушеных?

Пусть из 160 кг свежих вишен возможно получить x кг сухих вишен.
Масса свеж.   Масса сух
↓ 140 кг              21 кг ↓
   160 кг               х кг
$frac{21}x=frac{140}{160}$
140x = 160 * 21
$x=frac{160ast21}{140}$
$x=frac{8ast3}1$
x = 24 
Значит, 24 кг  сушеных вишен получится из 160 кг свежих

Пусть из x кг свежих вишен необходимо взять, чтобы получить 31,5 кг сухих вишен.

$frac{21}{31,5}=frac{140}x$
21x = 31,5 * 140
$x=frac{31,5ast140}{21}$
$x=frac{1,5ast140}1$
x = 210
Значит, 210 кг свежих вишен необходимо взять, чтобы получить 31,5 кг сухих вишен
Ответ: 24 кг; 210 кг.

4) Объем бруска, изготовленного из древесины вишни, равен 800 см3, а его масса − 528 г. Какова масса бруска, изготовленного из этого же материала, если его объем равен 1500 см3?

Пусть x г масса бруска, если его объем равен 1500 см3.

$frac{800}{1500}=frac{528}x$
800x = 1500 * 528
$x=frac{1500ast528}{800}$
$x=frac{15ast66}1$
x = 990
Значит, 990 г масса бруска, если его объем равен 1500 см3.
Ответ: 990 г .

5) Из 45 т железной руды выплавляют 25 т железа. Сколько требуется тонн руды, чтобы выплавить 10 т железа?

Пусть x т руды требуется, чтобы выплавить 10 т железа.

$frac{45}x=frac{25}{10}$
25x = 45 * 10
$x=frac{45ast10}{25}$
$x=frac{9ast2}1$
x = 18
Значит, 18 т руды требуется, чтобы выплавить 10 т железа.
Ответ: 18 т руды.

6) Площадь поля 480 га. Пшеницей засеяли 24% площади поля. Сколько гектаров земли засеяли пшеницей?

Пусть x га земли засеяли пшеницей.

$frac{480}x=frac{100}{24}$
100x = 480 * 24
$x=frac{480ast24}{100}$
$x=frac{96ast6}5$
$x=frac{576}5=115frac15=115,2$
Значит, 115,2 га земли засеяли пшеницей.
Ответ: 115,2 га земли.

7) За первый час автомобиль проехал 70 км, что составило 14% всего пути. Сколько километров составляет весь путь?

Пусть x км составляет весь путь.

$frac{70}x=frac{14}{100}$
14x = 70 * 100
$x=frac{70ast100}{14}$
$x=frac{5ast100}1$
x = 500
Значит,  500 км составляет весь путь.
Ответ: 500 км.

8) Сплав содержит 12% цинка. Сколько килограммов цинка содержится в 80 кг сплава?

8) Пусть x кг цинка содержится в 80 кг сплава.

$frac{80}x=frac{100}{12}$
100x = 80 * 12
$x=frac{80ast12}{100}$
$x=frac{4ast12}5$
$x=frac{48}5=frac{96}{10}=9,6$ 
Значит, 9,6 кг цинка содержится в 80 кг сплава
Ответ: 9,6 кг цинка.

9) На пошив 14 одинаковых костюмов израсходовали 49 м ткани. Сколько таких костюмов можно сшить из 84 м ткани?

Пусть x костюмов можно сшить из 84 м ткани.

$frac{14}x=frac{49}{84}$
4x = 14 * 84
$x=frac{14ast84}{49}$
$x=frac{2ast12}1$
x = 24 
Значит, 24 костюма можно сшить из 84 м ткани.
Ответ: 24 костюма.

10) За 7 ч в бассейн налилось 224 л воды. За какое время в него нальется 288 л воды?

Пусть за x часов в бассейн нальется 288 л воды.

$frac7x=frac{224}{288}$
224x = 7 * 288
$x=frac{7ast288}{224}$
$x=frac{1ast72}8$
x = 9
Значит, 9 часов в бассейн будет наливаться 288 л воды.
Ответ: 9 часов.

11) Из 150 кг картофеля получают 27 кг крахмала. Сколько килограммов крахмала получат из 420 кг картофеля? Сколько килограммов картофеля необходимо, чтобы получить 30,6 кг крахмала?

Пусть x кг крахмала получат из 420 кг картофеля.

$frac{27}x=frac{150}{420}$
150x = 27 * 420
$x=frac{27ast420}{150}$
$x=frac{27ast14}5$
$x=frac{378}5$
$x=frac{756}{10}=75,6$ 
Значит, 75,6 кг крахмала получат из 420 кг картофеля.
Ответ: 75,6 кг крахмала.

Пусть x кг картофеля необходимо, чтобы получить 30,6 кг крахмала.

$frac{27}{30,6}=frac{150}x$
27x = 30,6 * 150
$x=frac{30,6ast150}{27}$
$x=frac{3,4ast50}1$
x = 170 
Значит, 170 кг картофеля необходимо, чтобы получить 30,6 кг крахмала.
Ответ: 170 кг картофеля.

12) В саду растет 320 деревьев, из которых 40% составляют яблони. Сколько яблонь растет в саду?

Пусть x яблонь растет в саду.
К-во деревьев   Проценты
  320 д                   100 %
    х    д                   40 %
$frac{320}x=frac{100}{40}$
100x = 320 * 40
$x=frac{320ast40}{100}$
$x=frac{32ast4}1$
x = 128
Значит, 128 яблонь растет в саду
Ответ: 128 яблонь. 

13) Масса соли составляет 24% массы раствора. Сколько килограммов раствора необходимо взять, чтобы он содержал 96 кг соли?

Пусть x килограммов раствора необходимо взять, чтобы он содержал 96 кг соли.

$frac{100}{24}=frac x{96}$
24x = 100 * 96
$x=frac{100ast96}{24}$
$x=frac{100ast4}1$
x = 400
Значит, 400 килограммов раствора необходимо взять, чтобы он содержал 96 кг соли.
Ответ: 400 кг.

14) На изготовление 3,5 кг ржаного хлеба требуется 2,5 кг муки. Сколько хлеба можно испечь из 17,5 т ржаной муки?

Пусть х кг хлеба можно испечь из 17,5 т муки.
17,5 т = 17500 кг
Масса хлеба   Масса муки
↓ 3,5 кг                 2,5 кг    ↓
   х кг                  17500 кг
3,5 кг − 2,5 кг
x кг − 17500 кг
$frac{3,5}{2,5}=frac х{17500}$
$х=frac{3,5ast17500}{2,5}$   умножим по 1 числу в числ. и знам. на 10
$х=frac{35ast17500}{25}$
x = 24500
Значит, 24500 кг = 24,5 т хлеба можно испечь из 17,5 т ржаной муки.
Ответ: 24,5 т

В задачах выше зависимость между величинами была прямо пропорциональная, но бывают задачи и с обратно пропорциональной зависимостью.

1) Самолет со скоростью 200 км/ч преодолевает расстояние от Москвы до Тюмени за 2 часа, за сколько он преодолеет это же расстояние со скоростью 150 км/ч?

Пусть за х часов самолет преодолеет то же расстояние со скоростью 150 км/ч
Скорость     Время
↑ 200 км/ч      2 ч ↓
  150 км/ч      х ч
Зависимость обратно пропорциональная, исходя из этого составляем пропорцию:
$frac{200}{150}=frac х2$
150 х = 200 * 2
$х=frac{200ast2}{150}$
$х=2frac23$
Значит,  за $2frac23$ часа он преодолеет это же расстояние со скоростью 150 км/ч.
Ответ: за $2frac23$ часа.

2) Три трактора вспахали поле за 7 часов. Сколько нужно тракторов, чтобы вспахать такое же поле за 5 часов?

Пусть нужно х тракторов, чтобы вспахать поле за 5 часов.
К-во тракторов   Время
 ↓3                          7 ч ↑
   х                          5 ч
$frac3х=frac57$
5 х = 3 * 7
х = 4,2
Так как количество тракторов не может быть дробным числом, округлим до большей величины.
х ≈ 5
Значит, 5 тракторов нужно, чтобы вспахать такое же поле за 5 часов.
Ответ: 5 тракторов.

3)  Для покрытия пола требуется 45 м линолеума шириной 2,2 м. Сколько потребуется линолеума шириной 1,5 м для покрытия пола той же площади?

Пусть х м линолеума шириной 1,5 м потребуется для покрытия пола той же площади.
Длина лин.   Ширина лин.
↓ 45 м                2,2 м ↑
  x м                  1,5 м
$frac{45}х=frac{1,5}{2,2}$
$frac{45}х=frac{15}{22}$
15 х = 22 * 45
$х=frac{22ast45}{15}$
x = 66
Значит, 66 м линолеума шириной 1,5 м потребуется для покрытия пола той же площади..
Ответ: 66 метров.

Нестандартные задачи на пропорции

Задача 1. Поп нанял работника Балду на год, обещал ему 120 рублей и красный кафтан. Однако, проработав 7 месяцев, Балда стал просить у попа расчет и получил за работу 50 рублей и красный кафтан. Сколько стоит кафтан у Балды?

Эту задачу можно решить, не прибегая к уравнению и пропорции, однако можно и пропорцией.

Решение

Пусть x – цена кафтана. Тогда за 12 месяцев Балда мог получить 120 руб. и кафтан, т.е. 120 + x. Но за 7 месяцев он получил 50 + x. Запишем в привычном для шестиклассника виде:

 | 12       120 + х |
↓ 7          50 + х  ↓

Записываем пропорцию

$frac{12}7=frac{120+х}{50+х}$

Применяя основное свойство пропорции, получаем уравнение:

7 * (120 + х) = 12 * (50 + х)
840 + 7 х = 600 + 12 х
12 х – 7 х = 840 – 600
5 х = 240
х = 48

Ответ: 48 рублей стоил кафтан у Балды.

Гораздо сложнее ученикам даются задачи на пропорциональную зависимость трёх и более величин. Причем настолько, что когда в 7 классе в учебнике геометрии (например, в учебнике Погорелова) встречается задача, где в условии говорится, что углы треугольника пропорциональны числам 2, 3, 4 (т.е. относятся как 2:3:4), некоторые ученики приходят в замешательство и утверждают, что не понимают условие. 

В последнее время задачи на пропорциональное деление стали встречаться в некоторых сборниках по занимательной, нестандартной и олимпиадной математике. Рассмотрим задачу такого плана.

Задача 2 на деление в данном отношении. Три предпринимателя – Давыдов, Петров и Максимов вложили в совместную организацию предприятия по производству мебели деньги. Первый вложил 60 тыс. руб., второй – 90 тыс. руб., а третий – 150 тыс. руб. Они получили прибыль в размере 117 тыс. руб. Сколько денег из прибыли получит каждый из предпринимателей при условии распределения ее пропорционально их вкладам?

Решение.

Найдём, каким числам пропорциональны вклады предпринимателей. Все числа запишем в тыс. руб.
60 : 90 : 150, т.е. 2 : 3 : 5.
Исходя из этого, можно записать, что 2x + 3x + 5x = 117, где 2x – часть прибыли, которую должен получить Давыдов, 3x – часть прибыли, которую должен получить Петров, 5x – часть прибыли, которую должен получить Максимов, исходя из пропорциональности вкладов. Отсюда x = 11,7 тыс. руб., т.е. Давыдов получит 23,4 тыс. руб., Петров – 35,1 тыс. руб., а Максимов – 58,5 тыс. руб.
Задачу можно решить и немного иначе:
1) 60 + 90 + 150 = 300 тыс. руб.
2) 117 : 300 x 60 = 23,4 тыс. руб.
3) 117 : 300 x 90 = 35,1 тыс. руб.
4) 117 : 300 x 150 = 58,5 тыс. руб.
Ответ: 23, 4 тыс. руб., 35,1 тыс., руб., 58,5 тыс. руб.

Классика нестандартных задач на пропорциональность трёх и более величин:

Задача 3. Три курицы за 3 дня снесли три яйца. Сколько яиц снесут 12 кур за 12 дней?

И сразу аналогичная, коих может быть бесконечное множество, а решаются они одинаково:

Задача 4. Пять землекопов за 5 часов выкапывают 5 метров канавы. Сколько потребуется землекопов, чтобы за 100 часов выкопать 100 м канавы?

Напрашивается ответ 12 в задаче про куриц и 100 в задаче с канавой, но это не верно. В задаче про куриц правильный ответ 48, а в задаче про землекопов правильный ответ – 5.

Если дней в 4 раза больше, а кур также в 4 раза больше, то яиц они снесут 3 х 4 х 4 = 48.

Что касается задачи про землекопов, то решение еще проще. Так как за 5 часов землекопы выкапывают 5 метров канавы, то за 1 час – 1 метр канавы. И значит, за 100 часов 100 м канавы выкопают те же 5 землекопов.

Задача 5. 2 робота за 3 часа собирают 1 компьютер. Сколько компьютеров соберут 10 роботов за 12 часов?

Иногда условия таких задач выписывают примерно также как обычную пропорцию и делают стрелочки. Например:

Роботы   Часы   Компьютеры
| 2             | 3             | 1
↓10          ↓12            ↓ х

Решение.

Если 2 робота за 3 часа собирают 1 компьютер, то сколько компьютеров соберут те же два робота за 12 часов?
12 : 3 = в 4 (раза) – больше будет времени у 2х роботов на сборку компьютеров
Если у двух роботов будет времени в 4 раза больше, то и соберут они в 4 раза больше компьютеров, т.е.
1 * 4 = 4 (компьютера)  – собирают 2 робота за 12 часов.

Если роботов будет 10, то сколько компьютеров они соберут за 12 часов?
10 : 2 = в 5 (раз) – больше роботов
Так как роботов будет в 5 раз больше, то и соберут они за 12 часов в 5 раз больше компьютеров.
4 * 5 = 20 (компьютера)  – соберут 10 роботов за 12 часов.

Ответ: 20 компьютеров.

Задача 6. 3 маляра за 5 дней могут покрасить 60 окон. Сколько окон покрасят 5 маляров за 4 дня?

Решение.

60 : 3 =  20 (окон) – может покрасить 1 маляр за 5 дней,
20 : 5  = 4 (окна) – маляр покрасит за 1 день
4 * 4 = 16 (окон) –  он покрасит за 4 дня.
А если таких маляров будет 5, то окон будет покрашено
5 : 16 = 80 (окон) – покрасят 5 маляров за 4 дня
Ответ: 80 окон.

Лишь только тогда, когда ученик приобретает опыт в решении таких задач поэтапно, можно показать ему решение подобной задачи пропорцией.

3 маляра за 5 дней выполнят работу, которую можно измерить как 3 х 5 человеко-дней. Можно пояснить, что человеко-дни – единица, с помощью которой учитывается рабочее время на производстве. И по условию эта работа выражается в 60-ти окнах. В задаче требуется узнать, чему равна работа, которая измеряется как 4 х 5 человеко-дней.
Значит, можно составить пропорцию:

К-во окон   К-во человеко-дней
60 окон        3*5 человеко-дней
х окон          4*5 человеко-дней

$frac{60}х=frac{3ast5}{4ast5}$

$х=frac{4ast5ast60}{3ast5}=80$ (окон) –  покрасят 5 маляров за 4 дня

Ответ: 80 окон.

Однако надо быть внимательным. В некоторых задачах имеет место быть и обратно пропорциональная зависимость. Если, например, количество рабочих увеличивается, то количество дней, за которые им надо выполнить заданную работу, уменьшается.

Задача 7. 3 маляра за 5 дней могут покрасить 60 окон. За сколько дней 5 маляров смогут покрасить 80 окон?

Решение.

За 1 день один маляр покрасит 4 окна, а 5 маляров за 1 день – 20 окон. А 80 окон 5 маляров смогут покрасить за 4 дня (80 : 20 = 4).

Через пропорцию:

Кол-во маляров Скорость покраски
3 м.                        60/5 окон/день
5 м.                        80/х  окон/день

$5astfrac{60}5=3astfrac{80}х$

х = 4

В заключение обзора сложных задач на пропорцию и методов их решения рассмотрим задачу, с четырьмя величинами. Такие задачи сегодня могут встречаться на олимпиадах. Но было время, когда они входили в курс школьной математики (учебник Киселева). 

Задача 8. На 5 одинаковых керосинок, горевших 24 дня по 6 часов ежедневно, израсходовано 120 л керосина. На сколько дней хватит 216 л керосина, если 9 таких же керосинок будут гореть по 8 часов в день?

Решение.

С тем, чтобы не запутаться в условии, выпишем все данные в виде таблички. В учебнике Киселева таблицы отсутствуют, а условие записано двумя строчками. Последуем его примеру:

5 керосинок 24 дня по 6 часов – 120 л
9 керосинок x дней по 8 часов – 216 л

Далее, если следовать логике решений задач, приведённых на этой странице, а также логике Киселева, решим задачу поэтапно. Сначала решим такую задачу: На сколько дней хватит 216 л керосина, если те же 5 керосинок будут гореть по 6 часов в день? То есть:

120 л – на 24 дня
216 л – на y дней

$у=frac{216ast24}{120}=43,2$ (дня)

То есть 216 л керосина хватит на 43,2 дня, если будет работать 5 керосинок.

Теперь найдём, на сколько дней хватит 216 л керосина, если керосинок будет не 5, а 9. То есть, если 5 керосинок могут работать 43,2 дня, то 9 керосинок меньше в 1,8 раза (9 : 5 = 1,8). То есть 9 керосинок, работая по 6 часов в день при запасе в 216 литров, проработают 24 дня.

Осталось найти, на сколько дней хватит 216 л керосина, если 9 таких же керосинок будут гореть по 8 часов в день. То есть:

24 дня – по 6 часов в день
х дней – по 8 часов в день

Таким образом,

$х=frac{24ast6}8=18$ (дней)

Все выполненные действия можно записать одной дробью и сократить ее:

$х=frac{24ast216ast5ast6}{120ast9ast8}=18$ (дней)

Ответ: 18 дней.

Надеемся, что способы решения задач на пропорцию, изложенные в этой статье, помогут пятиклассникам и шестиклассникам, стремящимся изучить школьный материал, в том числе и тот, который выходит за рамки программы обычной школы, но который может быть полезен при подготовке к олимпиадам.

Пропорция – равенство двух отношений: a/b = c/d (a, d – крайние члены пропорции; b, c – средние члены пропорции).

Основное свойство пропорции: ad = bc. 

Две взаимно зависимых величины называютсяпропорциональными, если отношение их величин сохраняется неизменным. Это постоянное отношение пропорциональных величин называется коэффициентом пропорциональности. Например, в пропорции 0,04/4 = 0,12/12 коэффициент пропорциональности равен k = 0,01.

Если две величины связаны между собой так, что увеличение (уменьшение) одной (во столько же раз) увеличивает (уменьшает) пропорционально и другую величину, то такие величины прямо пропорциональны. Примерами прямой пропорциональности являются зависимость пройденного пути от времени (при постоянной скорости), периметра квадрата от длинны его стороны. Если зависимость величин прямо пропорциональна, то их значения составляют пропорцию х12 = у12.

Если две величины связаны между собой так, что увеличение (уменьшение) одной (во столько же раз) уменьшает (увеличивает) пропорционально и другую величину, то такие величины обратно пропорциональны. Пример обратной пропорциональности: зависимость скорости от времени (при постоянном значении пройденного пути), производительности труда от времени затраченного на выполнение определенной работы (при одинаковом объеме работы). Если зависимость величин обратно пропорциональна, то их значения составляют пропорцию х12 = у21.

Решая задачи на пропорциональную зависимость, важно разбить решение на такие этапы:

1. Условие задачи записать в виде схемы.
2. Определить тип зависимости между величинами.
3. Прямо пропорциональная зависимость обозначается одинаково направленными стрелками. Обратно пропорциональная зависимость – стрелками противоположно направленными.
4. Обозначить неизвестное через х, записать пропорцию и найти неизвестный член.

Рассмотрим решение нескольких задач на пропорциональную зависимость.

Задача 1.

За некоторое время велосипедист проехал 5 км со скоростью 10 км/ч. Какое расстояние он проедет за то же время, увеличив свою скорость в полтора раза?

Решение.

При постоянном значении времени пройденный путь и скорость величины прямо пропорциональные. Поэтому с увеличением скорости в полтора раза, значение пути тоже увеличится в столько же раз.

Значит, он проедет 5 · 1,5 = 7,5 (км).

Ответ: 7,5 км.

Задача 2.

На некотором участке газопровода трубы длинной 4 м заменили на трубы длинной 5 м. Сколько нужно новых труб для замены 100 старых?

Решение.

Так как увеличение длинны труб приведет к уменьшению их количества на одном и том же участке газопровода, то зависимость обратно пропорциональная. Составим схему по условию.Задачи на пропорциональную зависимость и пропорциональное деление

Запишем пропорцию: 4/5 = х/100.

Откуда, х = (4 · 100)/5 = 80 (труб).

Ответ: 80 труб.

Как видим, если в условии задачи рассматриваются две величины, то решение достаточно простое, главное правильно определить вид зависимости. Но как быть, если рассматривается зависимость между тремя величинами?

Задача 3.

За 5 дней 3 маляра окрашивают 60 окон. За сколько дней 2 маляра покрасят 48 окон?Задачи на пропорциональную зависимость и пропорциональное деление

Решение.

Примем количество рабочих за постоянную величину (то есть работу выполняют постоянно 3 маляра) и рассмотрим зависимость между двумя величинами. Так как для покраски меньшего числа окон потребуется меньше дней при одном и том же количестве рабочих, то зависимость прямая.Задачи на пропорциональную зависимость и пропорциональное деление

Запишем пропорцию: 5/х = 60/48.

Откуда, х = (5 · 48)/60 = 4 (дня) – за столько дней покрасят 48 окон 3 маляра.

Для того, чтобы найти за сколько дней покрасят эти же 48 окон 2 маляра, составим таблицу, учитывая что постоянной величиной есть количество окон. Так как для меньшего числа рабочих потребуется больше дней для выполнения одного и того же задания, то зависимость обратная.Задачи на пропорциональную зависимость и пропорциональное деление

Пропорция будет такой: 4/х = 2/3.

Откуда, х = (4 · 3)/2 = 6 (дней) – за столько дней покрасят 48 окон 2 маляра.

Ответ: 6 дней.

Потребность разделить величину или число в данном отношении часто возникает в практической жизни человека, например, во время приготовления блюд, разделения прибыли между партнерами по бизнесу и т.п. Поэтому важно владеть навыками решения задач на пропорциональное деление. Рассмотрим несколько примеров.

Задача 4.

Три компаньона вложили в организацию предприятия соответственно 280, 320 и 360 долларов. Прибыль, которую они получили, составила 2400 долларов. Сколько денег из прибыли получить каждый компаньон, если прибыль распределяется пропорционально вкладу каждого?

Решение.

Обозначим части прибыли, которые они должны получить, соответственно:

а : в : с = 280 : 320 : 360.

Упростим отношение:

а : в : с = 280 : 320 : 360 = 28 : 32 : 36 = 7 : 8 : 9.

Так как величины пропорциональны, то пусть х – коэффициент пропорциональности (одна часть прибыли). Тогда, а = 7х, в = 8х, с = 9х. Сумма частей должна равняться прибыли, тогда уравнение будет иметь вид:

7х + 8х + 9х = 2400.

Откуда х = 100 (дол). Следовательно, первый компаньон должен получить из прибыли:

7 · 100 = 700 (дол), второй 8 · 100 = 800 (дол), а третий 9 · 100 = 900 (дол).

Ответ: 700, 800, 900.

Задача 5.

Периметр треугольника АВС равен 32,5 см. Найти стороны треугольника, если АВ относится к ВС как 3 : 4, а ВС относится к АС как 2 : 3.

Решение.

Трудность заключается в том, что дано отношение не трех сторон, а первой ко второй и второй к третьей. Рассмотрим эти отношения:

АВ : ВС = 3 : 4
ВС : АС = 2 : 3.

Уравняем количество частей стороны ВС в первом и втором равенствах. Для этого второе отношение умножим на 2. Получим,

АВ : ВС = 3 : 4
ВС : АС = 4 : 6.

Теперь можем записать отношение трех сторон АВ : ВС : АС = 3 : 4 : 6. Тогда АВ = 3х, ВС = 4х, АС = 6х, где х – коэффициент пропорциональности.

Решая уравнение 3х + 4х + 6х = 32,5, получаем, что х = 2,5 (см).

Следовательно, стороны треугольника: АВ = 3 · 2,5 = 7,5 (см); ВС = 4 · 2,5 = 10 (см); АС = 6 · 2,5 = 15 (см).

Ответ: 7,5; 10; 15.

Задачи на пропорциональную зависимость развивают логическое мышление, учат анализировать и находить связи между величинами, а задачи на пропорциональное деление имеют широкое практическое применение, поэтому умение решать и те и другие просто необходимо.

 Остались вопросы? Не знаете, как решать задачи на пропорциональную зависимость?
Чтобы получить помощь репетитора – зарегистрируйтесь.
Первый урок – бесплатно!

Зарегистрироваться

© blog.tutoronline.ru,
при полном или частичном копировании материала ссылка на первоисточник обязательна.

Описание презентации по отдельным слайдам:

  • Решение  задач  
с  помощью  пропорции

    1 слайд

    Решение задач
    с помощью пропорции

  • Определение 2Определение 1Определение прямой и обратной пропорциональностиДве...

    2 слайд

    Определение 2
    Определение 1
    Определение прямой и обратной пропорциональности
    Две величины называют прямопропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая тоже увеличивается (уменьшается) во столько же раз.
    Больш. 1 – Больш. 2
    Меньш. 1 – Меньш.2
    Меньш. 1 – Меньш. 2
    Больш. 1 – Больш. 2

    Две величины называют прямопропорциональными, если при увеличении (уменьшении) одной из них в несколько раз другая уменьшается (увеличивается) во столько же раз.
    Больш. 1 – Меньш. 2
    Меньш. 1 – Больш. 2

  • Определение прямой и обратной пропорциональности1) За 5 тетрадей в клетку зап...

    3 слайд

    Определение прямой и обратной пропорциональности
    1) За 5 тетрадей в клетку заплатили 40 руб. Сколько заплатят за 12 таких же тетрадей?
    3) На пошив 9 рубашек ушло 18 м ткани. Сколько рубашек получится из 14 метров?
    Определи вид пропорциональности
    2) 6 рабочих выполнят работу за 5 часов за какое время справятся с этой работой 3 рабочих?
    4) У портного есть отрез материи. Если он сошьет из него платья, на каждое из которых уходит 2 метра, то получится 15 платьев. Сколько костюмов может выйти из этого же отреза, если на каждый костюм уходит по 3 метра ткани?

  • Определение прямой и обратной пропорциональностиСоставить краткую запись и оп...

    4 слайд

    Определение прямой и обратной пропорциональности
    Составить краткую запись и определить вид пропорциональности. (Одноименные величины записываются друг под другом)
    Составить пропорцию.
    Если прямая пропорциональность, то величины записываются в пропорцию без изменений.
    Если обратная пропорциональность, то в одной из величин данные меняются местами (наоборот).
    Находится неизвестный член пропорции.
    Алгоритм решения задачи 1
    За 5 тетрадей в клетку заплатили 40 руб. Сколько заплатят за 12 таких же тетрадей?
    Кол-во Стоимость
    5 тетрадей – 40 руб.
    12 тетрадей – х руб.

    Ответ: 96 рублей.

  • Определение прямой и обратной пропорциональностиСоставить краткую запись и оп...

    5 слайд

    Определение прямой и обратной пропорциональности
    Составить краткую запись и определить вид пропорциональности. (Одноименные величины записываются друг под другом)
    Составить пропорцию.
    Если прямая пропорциональность, то величины записываются в пропорцию без изменений.
    Если обратная пропорциональность, то в одной из величин данные меняются местами (наоборот).
    Находится неизвестный член пропорции.
    Алгоритм решения задачи 2
    6 рабочих выполнят работу за 5 часов за какое время справятся с этой работой 3 рабочих?
    Кол-во Время
    6 рабочих – 5 часов.
    3 рабочих – х часов.

    Ответ: 10 часов.

  • № 3.
Рабочие бригады, состоящей из 8 человек, могут выложить бассейн плиткой...

    6 слайд

    № 3.
    Рабочие бригады, состоящей из 8 человек, могут выложить бассейн плиткой за 6 дней. Сколько человек в другой бригаде, если они могут выполнить эту работу на 2 дня быстрее?
    (Производительность бригад одинакова)

    обратная

  • Решение:
1) 6 – 2 = 4 (дня) время работы второй брига...

    7 слайд

    Решение:
    1) 6 – 2 = 4 (дня) время работы второй бригады

    2) 8 человек – 6 дней
    х человек – 4 дня

    Ответ: 12 человек

  • № 4.
Вновь выстроенный бассейн необходимо заполнить морской водой. 
За 4,8 ч...

    8 слайд

    № 4.
    Вновь выстроенный бассейн необходимо заполнить морской водой.
    За 4,8 ч заполняется 24% объема бассейна. За какое время будет заполнен весь бассейн?

    прямая

  • Решение:

4,8 ч     –        24%
 х ч       –       100%
Ответ: за 20...

    9 слайд

    Решение:

    4,8 ч – 24%
    х ч – 100%

    Ответ: за 20 часов

  • Выполните самостоятельно:

    10 слайд

    Выполните самостоятельно:

  • Проверяемпрямая9 рубашек =   18,9 м12 рубашек =  х м
9х = 18,9 * 12
Х = 18...

    11 слайд

    Проверяем
    прямая
    9 рубашек = 18,9 м

    12 рубашек = х м

    9х = 18,9 * 12
    Х = 18,9 * 12/9
    х  = 226,8/9
        х = 25,2
    Ответ: 25,2 м ткани пойдёт на пошив 12 рубашек.

    Ответ: 21 рубашка.
    обратная
    6 труб = 24 мин

    9 труб = х мин
    Перевернуть отношение
    6/9=х/24
    9х=6*24
    х = 6*24/9
    Х = 16 (мин)
    Ответ: понадобится 16 минут.

  • ЗАДАЧА

Сколько нужно сахара, чтобы сварить варенье из 10 кг клубники, если п...

    13 слайд

    ЗАДАЧА

    Сколько нужно сахара, чтобы сварить варенье из 10 кг клубники, если по рецепту на 4 кг ягод нужно 5 кг сахара?

    Запишите решение с помощью пропорции:

  • 4 кг ягод5 кг сахара10 кг ягодx кг сахараx=(10∙5):4x=12,5Ответ:12,5 кгПроверя...

    14 слайд

    4 кг ягод
    5 кг сахара
    10 кг ягод
    x кг сахара
    x=(10∙5):4
    x=12,5
    Ответ:12,5 кг
    Проверяем
    Запишем кратко условие задачи в виде таблицы.
    Пусть х кг – нужно сахара на 10 кг ягод.

    2)
    3) Прямая пропорциональная зависимость.
    4)

  • Задача. В школе 2 медсестры могут сделать вакцинацию за 3 дня. Сколько нужно...

    15 слайд

    Задача. В школе 2 медсестры могут сделать вакцинацию за 3 дня. Сколько нужно времени, чтобы 3 медсестры выполнили ту же работу?

    Решение
    2 медсестры 3 дня
    3 медсестры ? дней
    Решение: Пусть х дней потребуется 3 медсестрам
    Составим пропорцию:
    3:2=3:х
    3х=2∙3
    Х=2
    Ответ: за 2 дня
    Содержание

Задачи на пропорции .
Прямая пропорциональность.

Мышка съедает за один день три пшеничных зернышка, сколько зернышек она съест за два дня?

За два дня она съест в два раза больше чем за один день:

( 3 cdot 2 = 6 )

То есть за два дня она съест шесть зернышек.

Чем больше пройдет дней, тем больше зернышек съест мышка.

В этой задаче зависимость количества съеденых зернышек от количества дней является

пропорцией

Получается, что за три дня мышка съест:
( 3 cdot 3 = 9 ) зернышек

за четыре дня дня мышка съест:
( 3 cdot 4 = 12 ) зернышек

Получается, чтобы найти количество съеденых зернышек нужно умножить число зернышек, которое она съедает за один день на количество дней.

Также отметим, что здесь при увеличении одной величины(количество дней) увеличивается и другая(количество зернышек), это называется

Прямая пропорциональность

Рассмотрим другую задачу:


Обезьяна съедает за четыре дня двенадцать бананов, сколько бананов она съедает за семь дней?


Сначала найдем сколько бананов она съедает за один день, для этого разделим двенадцать бананов на четыре дня:
(12:4=3 )
Значит за один день она съедает три банана.

Для того, чтобы найти сколько она съест за 7 дней умножим три на семь:

( 3 cdot 7 = 21 ) банан.

Мы видим, что мы решили эту задачу в два действия.

Составив

прямую пропорциональность можно решить чуть короче:

( leftdownarrow
begin{matrix}
4 дня & – & 12 бананов \
7 дней & – & x бананов
end{matrix}
rightdownarrow )

(x=dfrac{7 cdot 12}{4}=21 ) банан

Здесь в прямой пропорции нужно лишь запомнить: наискосок умножаем и делим на оставшееся.

Одинаковое направление стрелочек указывает на то, что это

прямая пропорциональность (то есть с увеличением дней увеличивается количество бананов)

По сути по вычислениям это тоже самое, что и решение по действиям.

Ответ: 21 банан.

Репетитор по математике

8 916 478 10 32


1. За две тетради ученик заплатил сто рублей . Сколько нужно будет заплатить за десять тетрадей?



Показать ответ
Показать решение
Видеорешение

2. Автомобиль расходует 8 литров бензина на 100 километров пути.
Сколько литров бензина потратит этот автомобиль проехав 150 километров?



Показать ответ
Показать решение
Видеорешение

3. Проплыв 100 километров, моторная лодка истратила 9 литров топлива.
Сколько топлива она потратит, если проплывет 150 километров?



Показать ответ
Показать решение
Видеорешение

4. Для приготовления малинового варенья в 1500 грамм ягод насыпали 500 грамм сахара и перемешали,
сколько нужно было бы сахара на 600 грамм ягод?



Показать ответ
Показать решение
Видеорешение

5. Из 57 килограммов железной руды получили 5 килограмм чистого железа,
какое количество этой руды необходимо для получения 3 кг железа?



Показать ответ
Показать решение
Видеорешение

6. Если высушить 6 кг винограда, то получится полтора килограмма изюма.
Сколько нужно винограда для получения 5 кг изюма?



Показать ответ
Показать решение
Видеорешение

7. Четырнадцать рабочих за смену могут изготовить 238 деталей.
Сколько деталей смогут изготовить за смену 16 рабочих?



Показать ответ
Показать решение
Видеорешение

Добавить комментарий