Как найти противолежащие углы параллелограмма

Решение задач на углы параллелограмма опирается на свойства параллелограмма.

Сумма двух углов параллелограмма, прилежащих к одной стороне, равны 180º (так как они являются внутренними односторонними при параллельных прямых (противолежащих сторонах параллелограмма) и секущей (пересекающей их стороне).

Противоположные углы параллелограмма равны.

Поэтому, если в задаче дана сумма углов параллелограмма (не 180º ), то речь идет  о его противолежащих углах.

Если сказано, что один из углов параллелограмма больше или меньше другого на некоторое количество градусов (или в несколько раз, или углы относятся в некотором отношении), то речь идет об углах, прилежащих к одной стороне параллелограмма.

Если в задаче требуется найти все углы параллелограмма, в начале изучения темы ищут все четыре угла.

В дальнейшем обычно находят только два из них (прилежащие к одной стороне), поскольку другие два им равны.

Рассмотрим некоторые задачи на нахождение углов параллелограмма.

Задача 1.

Найти углы параллелограмма, если один из его углов на 40º больше другого.

uglyi parallelogramma

Дано: ABCD — параллелограмм,

∠B на 40º  больше ∠A.

Найти: ∠A, ∠B, ∠C,∠D.

Решение:

Пусть ∠A=хº, тогда ∠B=х+40º.

Так как противоположные стороны параллелограмма параллельны, то

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

Имеем уравнение:

х+х+40=180

2х=180-40

2х=140

х=70

Значит, ∠A=70º, тогда ∠B=70+40=110º.

∠C=∠A=70º, ∠D=∠B=110º (как противолежащие углы параллелограмма).

Ответ: 70º, 70º, 110º, 110º.

Задача 2.

Найти углы параллелограмма, если два из них относятся как 2:3.

uglyi parallelogramma

Дано: ABCD — параллелограмм,

∠A:∠B=2:3.

Найти: ∠A, ∠B, ∠C,∠D.

Решение:

Пусть k — коэффициент пропорциональности. Тогда ∠A=2kº, ∠B=3kº.

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

Составим уравнение и решим его:

2k+3k=180

5k=180

k=36

Значит, ∠A=2∙36=72º, ∠B=3∙36=108º.

∠C=∠A=72º, ∠D=∠B=108º (как противолежащие углы параллелограмма).

Ответ: 72º, 72º, 108º, 108º.

Задача 3.

Найти углы параллелограмма, если сумма двух из них равна 150º.

uglyi parallelogramma

Дано: ABCD — параллелограмм,

∠A+∠C=150º.

Найти: ∠A, ∠B, ∠C,∠D.

Решение:

∠A=∠C=150:2=75º (как противолежащие углы параллелограмма).

∠A+∠B=180º (как внутренние односторонние при AD ∥ BC и секущей AB).

Следовательно, ∠B=180º-∠A=180-75=105º.

∠D=∠B=105º (как противолежащие углы параллелограмма).

Ответ: 75º, 75º, 105º, 105º.

Как найти углы параллелограмма

Параллелограммом называют четырехугольник противолежащие стороны которого попарно параллельны. Также параллелограмм обладает такими свойствами, как противоположные стороны равны, противоположные углы равны, сумма всех углов равна 360 градусов.

Как найти углы параллелограмма

Вам понадобится

  • Знания по геометрии.

Инструкция

Предположим дан один из углов параллелограмма и равен A. Найдем значения остальных трех. По свойству параллелограмма противоположные углы равны. Значит угол, лежащий напротив данного равен данному и его значение равно А.

Найдем оставшиеся два угла. Так как сумма всех углов в параллелограмме равна 360 градусов, а противоположные углы между собой равны, то получается, что угол, принадлежащий одной стороне с данным, равен (360 – 2А)/2. Ну или после преобразования получим 180 – А. Таким образом в параллелограмме два угла равны А, а два других угла равны 180 – А.

Обратите внимание

Значение одного угла не может превышать 180 градусов. Полученные значения углов можно легко проверить. Для этого сложите их и, если сумма равна 360, все посчитано верно.

Полезный совет

Прямоугольник и ромб являются частным случаем параллелограмма, поэтому все свойства и методы вычисления углов применимы и к ним.

Войти на сайт

или

Забыли пароль?
Еще не зарегистрированы?

This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Углы параллелограмма

Угол

Параллелограмм представляет собой четырехугольник, противоположные стороны которого параллельны и равны друг другу. Два угла, прилежащие к одной стороне параллелограмма, в сумме составляют 180°. Если известен один угол параллелограмма, несложно найти смежный с ним угол путем вычитания из 180° величину известного угла.

α = 180°-β

Таким образом, мы нашли значения всех углов, т.к. известно, что противолежащие углы параллелограмма равны.

Отрезок, проведенный из двух противоположных вершин параллелограмма, является его диагональю. Если заданы стороны и диагональ, можно определить углы параллелограмма. Диагональ делит параллелограмм на два одинаковых треугольника. Основанием треугольника является диагональ, боковыми сторонами — смежные стороны параллелограмма. Для определения угла используем теорему косинусов, по которой квадрат стороны треугольника (в нашем треугольнике это диагональ) равен сумме квадратов двух его сторон, образующих искомый угол, плюс удвоенное произведение этих сторон на косинус угла. Отсюда, косинус искомого угла равен сумме квадратов смежных сторон (а, b) минус квадрат третей стороны треугольника (в нашем случае — диагонали), противолежащей искомому углу, и все это деленное на удвоенное произведение смежных сторон:

d2 = a2 + b2 + 2ab cos (α)

cos (α) = (a2 + b2 — d2) / 2ab

,
где а, b — стороны параллелограмма, d — диагональ.
Воспользовавшись таблицей косинусов находим величину искомого угла. После чего находим смежный с ним угол.

Рассчитать углы параллелограмма зная стороны и диагональ

Здравствуйте, дорогие читатели. В этом выпуске разберемся, что нужно знать из 7 класса для легкого вычисления углов в параллелограмме и трапеции.

Как вы знаете, параллелограмм, прямоугольник, ромб и квадрат – это все параллелограммы. Параллелограмм – это четырехугольник у которого противоположные стороны попарно параллельны.

Трапеция – это четырехугольник, у которого две стороны параллельны, а две другие не параллельны.

Значит для вычисления углов в параллелограмме и трапеции нам нужно вспомнить теоремы об углах, образованных при пересечении двух параллельных прямых секущей.

1) Если две параллельные прямые пересечены секущей, то сумма односторонних углов равна 180 градусам.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Теперь применим это знание для решения задач из ОГЭ.

Задача №1

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Для решения, воспользуемся свойством односторонних углов.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Для задания такого типа, можно мысленно продолжить стороны, у вас получится пересечение двух параллельных прямых секущей. Поэтому в данном случае воспользуемся тем, что сумма односторонних углов равна 180 градусов. Больший угол параллелограмма равен 180-61=119

Внимание!!! Будьте внимательны, в задании такого типа может быть написано, что нужно найти меньший угол. Меньший угол – это острый, больший угол – это тупой.

Точно также решается задача №2 с трапецией.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Меньший угол – это острый угол. Значит 180-131=49

Задача №3

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Для решения такого типа задачи, нужно найти целый больший угол параллелограмма, он равен 70+35=105.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Найдем меньший угол параллелограмма – он острый, равен 180-105=75

2) Если две параллельные прямые пересечены секущей, то накрест лежащие углы равны.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Для этой теоремы подходят следующие задачи:

Задача №4

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Решение:

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Угол 1 и угол 2 накрест лежащие, значит они раны. Так как АЕ биссектриса, то угол 2 равен углу 3. Значит угол А равен 33+33=66

Задача №5

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Решение:

Так как трапеция равнобедренная, то углы при основаниях равны. Значит нам достаточно найти чему равен угол А, тогда мы найдем угол ADC.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Так как накрест лежащие углы при пересечении двух параллельных прямых секущей, равны, то угол А равен 50+30=80, значит угол ADC равен 80

В следующем выпуске, поговорим о том, как найти углы в параллелограмме, где используются другие свойства и теоремы, такие как свойство равнобедренного треугольника, сумма углов треугольника, свойство диагоналей ромба.

Спасибо что дочитали. Вы меня очень поддержите, если поставите лайк и подпишитесь на мой блог.

Как легко вычислить углы в параллелограмме и трапеции. Задание №17 ОГЭ

Углы параллелограмма

Параллелограмм — это геометрическая фигура,
у которой четыре угла и противоположные
стороны попарно параллельны и равны.

Так, как противоположные стороны параллельны,
значит они лежат на параллельных прямых.

Градусные меры противолежащих углов равны.

Сумма двух углов параллелограмма прилежащих к одной
из сторон равна 180 градусам. Внутренние односторонние
углы при параллельных прямых. Это одно из свойств
параллельных прямых для параллелограмма.

Сумма четырех углов параллелограмма — 360 градусов,
как у любого другого четырехугольника.

Формула нахождение углов параллелограмма, если известен только один угол:

Где x, y — два угла при какой-либо стороне.

Частными случаями параллелограмма являются ромб, прямоугольник, квадрат.

Параллелограмм можно условно разделить на два треугольника.
А как мы знаем сумма углов одного треугольника — 180 градусов,
двух — 360 градусов, поэтому сумма углов параллелограмма — 360 градусов.

Параллелограмм: свойства и признаки

О чем эта статья:

Определение параллелограмма

Параллелограмм — это четырехугольник, у которого противоположные стороны попарно параллельны и равны. Как выглядит параллелограмм:

Частные случаи параллелограмма: ромб, прямоугольник, квадрат.

Диагонали — отрезки, которые соединяют противоположные вершины.

Свойства диагоналей параллелограмма:

  1. В параллелограмме точка пересечения диагоналей делит их пополам.
  2. Любая диагональ параллелограмма делит его на два равных треугольника.
  3. Сумма квадратов диагоналей параллелограмма равна удвоенной сумме квадратов его двух смежных сторон.

Биссектриса угла параллелограмма — это отрезок, который соединяет вершину с точкой на одной из двух противоположных сторон и делит угол при вершине пополам.

Свойства биссектрисы параллелограмма:

  1. Биссектриса параллелограмма отсекает от него равнобедренный треугольник.
  2. Биссектрисы углов, прилежащих к одной стороне параллелограмма пересекаются под прямым углом.
  3. Отрезки биссектрис противоположных углов равны и параллельны.

Как найти площадь параллелограмма:

  1. S = a × h, где a — сторона, h — высота.
  2. S = a × b × sinα, где a и b — две стороны, sinα — синус угла между ними. Для ромба формула примет вид S = a 2 × sinα.
  3. Для ромба: S = 0,5 × (d1 × d2), где d1 и d2 — две диагонали.
    Для параллелограмма: S = 0,5 × (d1 × d2) × sinβ, где β — угол между диагоналями.

Периметр параллелограмма — сумма длины и ширины, умноженная на два.

P = 2 × (a + b), где a — ширина, b — высота.

У нас есть отличные дополнительные курсы по математике для учеников с 1 по 11 классы!

Свойства параллелограмма

Геометрическая фигура — это любое множество точек. У каждой фигуры есть свои свойства, которые отличают их между собой и помогают решать задачи по геометрии в 8 классе.

Рассмотрим основные свойства диагоналей и углов параллелограмма, узнаем чему равна сумма углов параллелограмма и другие особенности этой фигуры. Вот они:

  1. Противоположные стороны параллелограмма равны.
    ABCD — параллелограмм, значит, AB = DC, BC = AD.
  2. Противоположные углы параллелограмма равны.
    ABCD — параллелограмм, значит, ∠A = ∠C, ∠B = ∠D.
  3. Диагонали параллелограмма точкой пересечения делятся пополам.
    ABCD — параллелограмм, AC и BD — диагонали, AC∩BD=O, значит, BO = OD, AO = OC.
  4. Диагональ делит параллелограмм на два равных треугольника.
    ABCD — параллелограмм, AC — диагональ, значит, △ABC = △CDA.
  5. Сумма углов в параллелограмме, прилежащих к одной стороне, равна 180 градусам.
    ABCD — параллелограмм, значит, ∠A + ∠D = 180°.
  6. В параллелограмме диагонали d1, d2 и стороны a, b связаны следующим соотношением: d1 2 + d2 2 = 2 × (a 2 + b 2 ).

А сейчас докажем теорему, которая основана на первых двух свойствах.

Теорема 1. В параллелограмме противоположные стороны и противоположные углы равны.

В любом выпуклом четырехугольнике диагонали пересекаются. Все, что мы знаем о точке их пересечения — это то, что она лежит внутри четырехугольника.

Если мы проведем обе диагонали в параллелограмме, точка пересечения разделит их пополам. Убедимся, так ли это:

  1. AB = CD как противоположные стороны параллелограмма.
  2. ∠1 = ∠2 как накрест лежащие углы при пересечении секущей AC параллельных прямых AB и CD; ∠3 = ∠4 как накрест лежащие углы при пересечении секущей BD параллельных прямых AB и CD.
  3. Следовательно, треугольник AOB равен треугольнику COD по второму признаку равенства треугольников, то есть по стороне и прилежащим к ней углам, из чего следует:
    • CO = AO
    • BO = DO

Теорема доказана. Наше предположение верно.

Признаки параллелограмма

Признаки параллелограмма помогают распознать эту фигуру среди других четырехугольников. Сформулируем три основных признака.

Первый признак параллелограмма. Если в четырехугольнике две противолежащие стороны равны и параллельны, то этот четырехугольник — параллелограмм.

Докажем 1 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB || CD
  • AB = CD

Чтобы назвать этот четырехугольник параллелограммом, нужно внимательно рассмотреть его стороны.

Сейчас мы видим одну пару параллельных сторон. Нужно доказать, что вторая пара сторон тоже параллельна.

Шаг 2. Проведем диагональ. Получились два треугольника ABC и CDA, которые равны по первому признаку равенства, то есть по по двум сторонам и углу между ними:

  1. AC — общая сторона;
  2. По условию AB = CD;
  3. ∠1 = ∠2 как внутренние накрест лежащие углы при пересечении параллельных прямых AB и CD секущей АС.

Шаг 3. Из равенства треугольников также следует:

Эти углы тоже являются внутренними накрест лежащими для прямых CB и AD. А это как раз и есть признак параллельности прямых. Значит, CB || AD и ABCD — параллелограмм.

Вот так быстро мы доказали первый признак.

Второй признак параллелограмма. Если в четырехугольнике противоположные стороны попарно равны, то этот четырехугольник — параллелограмм.

Докажем 2 признак параллелограмма:

Шаг 1. Пусть в четырехугольнике ABCD:

  • AB = CD
  • BC = AD

Шаг 2. Проведем диагональ AC и рассмотрим треугольники ABC и CDA:

  • AC — общая сторона;
  • AB = CD по условию;
  • BC = AD по условию.

Из этого следует, что треугольники ABC и CDA равны по третьему признаку, а именно по трем сторонам.

Шаг 3. Из равенства треугольников следует:

А так как эти углы — накрест лежащие при сторонах BC и AD и диагонали AC, значит, стороны BC и AD параллельны.

Эти углы — накрест лежащие при сторонах AB и CD и секущей AC. Поэтому стороны AB и CD тоже параллельны. Значит, четырехугольник ABCD — параллелограмм, ЧТД.

Доказали второй признак.

Третий признак параллелограмма. Если в четырехугольнике диагонали точкой пересечения делятся пополам, то этот четырехугольник — параллелограмм.

Докажем 3 признак параллелограмма:

Шаг 1. Если диагонали четырехугольника ABCD делятся пополам точкой O, то треугольник AOB равен треугольнику COD по двум сторонам и углу между ними:

  • CO = OA;
  • DO = BO;
  • углы между ними равны, как вертикальные, то есть угол AOB равен углу COD.

Шаг 2. Из равенства треугольников следует, что CD = AB.

Эти стороны параллельны CD || AB, по равенству накрест лежащих углов: ∠1 = ∠2 (следует из равенства треугольников AOB и COD).

Значит, ABCD является параллелограммом по первому признаку, который мы доказали ранее. Что и требовалось доказать.

Теперь мы знаем свойства параллелограмма и то, что выделяет его среди других четырехугольников — признаки. Так как они совпадают, эти формулировки можно использовать для определения параллелограмма. Но самое распространенное определение все-таки связано с параллельностью противоположных сторон.

Свойства сторон и углов параллелограмма

(Свойства сторон и углов параллелограмма)

В параллелограмме противолежащие стороны равны и противолежащие углы равны.

Проведем в параллелограмме ABCD диагональ BD.

Рассмотрим треугольники ABD и CDB.

1) сторона BD — общая

2) ∠ ABD= ∠ CDB (как внутренние накрест лежащие при AB∥CD и секущей BD)

3) ∠ ADB= ∠ CBD (как внутренние накрест лежащие при AD∥BC и секущей BD)

Из равенства треугольников следует равенство соответствующих сторон:

и равенство соответствующих углов:

В пунктах 2) и 3) обосновано, что ∠ ABD= ∠ CDB и ∠ ADB= ∠ CB.

∠ ABC= ∠ ABD+ ∠ CBD= ∠ CDB+ ∠ ADB= ∠ ADC,

Что и требовалось доказать.

II. Свойство углов параллелограмма, прилежащих к одной стороне.

Сумма углов параллелограмма, прилежащих к одной стороне, равна 180º.

Это свойство непосредственно вытекает из того, что углы, прилежащие к одной стороне параллелограмма, являются внутренними односторонними углами при параллельных прямых.

Для параллелограмма ABCD:

∠ A+ ∠ B=180º (как внутренние односторонние при AD∥BC и секущей AB;

∠ C+ ∠ D=180º (как внутренние односторонние при AD∥BC и секущей CD;

∠ A+ ∠ D=180º (как внутренние односторонние при AB∥CD и секущей AD;

∠ B+ ∠ C=180º (как внутренние односторонние при AB∥CD и секущей BC.

[spoiler title=”источники:”]

http://skysmart.ru/articles/mathematic/svoystva-i-priznaki-parallelogramma

[/spoiler]

Добавить комментарий