Квадрат, свойства и формулы, площадь и периметр.
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат (понятие, определение), диагональ квадрата
Свойства квадрата
Формулы квадрата. Площадь квадрата. Периметр квадрата
Квадрат (понятие, определение), диагональ квадрата:
Квадрат – это правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Квадрат – это четырехугольник, имеющий равные стороны и углы.
Рис. 1. Квадрат
Все углы квадрата прямые. Каждый из них прямой и равен 90°.
Таким образом, все квадраты отличаются друг от друга только длиной стороны.
Рис. 2. Квадрат и диагонали квадрата
Диагональ квадрата – это отрезок, соединяющий две вершины противоположных углов квадрата. AC и BD – это диагонали квадрата.
Квадрат является одновременно частным случаем других фигур: параллелограмма, ромба и прямоугольника. Поэтому квадрату присущи все свойства параллелограмма, ромба и прямоугольника.
Квадрат – это равносторонний прямоугольник.
Квадрат – это ромб с прямыми углами.
Свойства квадрата:
1. Длины всех сторон равны.
Рис. 3. Квадрат
AB = BC = CD = AD
2. Противоположные стороны квадрата параллельны.
Рис. 4. Квадрат
AB||CD, BC||AD
3. Все углы квадрата прямые. Каждый из них равен 90°.
Рис. 5. Квадрат
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
4. Сумма углов квадрата равна 360 градусам.
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°.
5. Диагонали квадрата равны между собой.
Рис. 6. Квадрат
AC = BD
6. Диагонали квадрата взаимно перпендикулярны.
Рис. 7. Квадрат
AC ┴ BD
7. Диагонали квадрата точкой пересечения делятся пополам.
Рис. 8. Квадрат
BO = OD = AO = OC
8. Угол между диагональю и стороной квадрата равен 45 градусам.
Рис. 9. Квадрат
∠BCA = ∠ACD = ∠DAC = ∠CAB = 45°
9. Диагонали квадрата являются биссектрисами углов и делят углы пополам.
Рис. 10. Квадрат
∠ABD = ∠DBC = ∠BCA = ∠ACD = ∠CDB = ∠BDA = ∠DAC = ∠CAB = 45°
10. Каждая из диагоналей делит квадрат на два равных равнобедренных прямоугольных треугольника.
Обе диагонали делят квадрат на 4 равных равнобедренных прямоугольных треугольника.
Рис. 11. Квадрат
△ABD = △CBD = △ABC = △ACD,
△AOB = △BOC = △COD = △AOD
11. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности.
Рис. 12. Квадрат
Формулы квадрата. Площадь квадрата. Периметр квадрата:
Пусть a – длина стороны квадрата, d – диагональ квадрата, R – радиус описанной окружности квадрата, r – радиус вписанной окружности квадрата, P – периметр квадрата, S – площадь квадрата.
Формула диагонали квадрата:
, , , , .
Формула радиуса вписанной окружности квадрата:
Радиус вписанной окружности квадрата равен половине его стороны.
.
Формула радиуса описанной окружности квадрата:
.
Формула периметра квадрата:
, , .
Формула площади квадрата:
, , , , .
Квадрат
Прямоугольник
Прямоугольный треугольник
Равнобедренный треугольник
Равносторонний треугольник
Шестиугольник
Примечание: © Фото https://www.pexels.com, https://pixabay.com
Коэффициент востребованности
3 726
Квадрат. Формулы и свойства квадрата
Определение.
Квадрат – это четырехугольник у которого все четыре стороны и углы одинаковы.
Квадраты отличаются между собой только длиной стороны, но все четыре угла у них прямые, то есть по 90°.
Основные свойства квадрата
Квадратом также могут быть параллелограмм, ромб или прямоугольник если они имеют одинаковые длины диагоналей, сторон и одинаковые углы.
1. Все четыре стороны квадрата имеют одинаковую длину, то есть они равны:
AB = BC = CD = AD
2. Противоположные стороны квадрата параллельны:
AB||CD, BC||AD
3. Все четыре угла квадрата прямые:
∠ABC = ∠BCD = ∠CDA = ∠DAB = 90°
4. Сумма углов квадрата равна 360 градусов:
∠ABC + ∠BCD + ∠CDA + ∠DAB = 360°
5. Диагонали квадрата имеют одинаковой длины:
AC = BD
6. Каждая диагональ квадрата делит квадрат на две одинаковые симметричные фигуры
7. Диагонали квадрата пересекаются под прямым углом, и разделяют друг друга пополам:
AC┴BD | AO = BO = CO = DO = | d | |
2 |
8. Точка пересечения диагоналей называется центром квадрата и также является центром вписанной и описанной окружности
9. Каждая диагональ делит угол квадрата пополам, то есть они являются биссектрисами углов квадрата:
ΔABC = ΔADC = ΔBAD = ΔBCD
∠ACB = ∠ACD = ∠BDC = ∠BDA = ∠CAB = ∠CAD = ∠DBC = ∠DBA = 45°
10. Обе диагонали разделяют квадрат на четыре равные треугольника, причем эти треугольники одновременно и равнобедренные и прямоугольные:
ΔAOB = ΔBOC = ΔCOD = ΔDOA
Диагональ квадрата
Определение.
Диагональю квадрата называется любой отрезок, соединяющий две вершины противоположных углов квадрата.
Диагональ любого квадрата всегда больше его стороны в√2 раз.
Формулы определения длины диагонали квадрата
1. Формула диагонали квадрата через сторону квадрата:
d = a·√2
2. Формула диагонали квадрата через площадь квадрата:
d = √2S
3. Формула диагонали квадрата через периметр квадрата:
4. Формула диагонали квадрата через радиус описанной окружности:
d = 2R
5. Формула диагонали квадрата через диаметр описанной окружности:
d = Dо
6. Формула диагонали квадрата через радиус вписанной окружности:
d = 2r√2
7. Формула диагонали квадрата через диаметр вписанной окружности:
d = Dв√2
8. Формула диагонали квадрата через длину отрезка l:
Периметр квадрата
Определение.
Периметром квадрата называется сумма длин всех сторон квадрата.
Формулы определения длины периметра квадрата
1. Формула периметра квадрата через сторону квадрата:
P = 4a
2. Формула периметра квадрата через площадь квадрата:
P = 4√S
3. Формула периметра квадрата через диагональ квадрата:
P = 2d√2
4. Формула периметра квадрата через радиус описанной окружности:
P = 4R√2
5. Формула периметра квадрата через диаметр описанной окружности:
P = 2Dо√2
6. Формула периметра квадрата через радиус вписанной окружности:
P = 8r
7. Формула периметра квадрата через диаметр вписанной окружности:
P = 4Dв
8. Формула периметра квадрата через длину отрезка l:
Площадь квадрата
Определение.
Площадью квадрата называется пространство, ограниченное сторонами квадрата, то есть в пределах периметра квадрата.
Площадь квадрата больше площади любого четырехугольника с таким же периметром.
Формулы определения площади квадрата
1. Формула площади квадрата через сторону квадрата:
S = a2
2. Формула площади квадрата через периметр квадрата:
3. Формула площади квадрата через диагональ квадрата:
4. Формула площади квадрата через радиус описанной окружности:
S = 2R2
5. Формула площади квадрата через диаметр описанной окружности:
6. Формула площади квадрата через радиус вписанной окружности:
S = 4r2
7. Формула площади квадрата через диаметр вписанной окружности:
S = Dв2
8. Формула площади квадрата через длину отрезка l:
Окружность описанная вокруг квадрата
Определение.
Кругом описанным вокруг квадрата называется круг проходящий через четыре вершины квадрата и имеющий центр на пересечении диагоналей квадрата.
Радиус окружности описанной вокруг квадрата всегда больше радиуса вписанной окружности в√2 раз.
Радиус окружности описанной вокруг квадрата равен половине диагонали.
Площадь круга описанного вокруг квадрата большая площадь того же квадрата в π/2 раз.
Формулы определения радиуса окружности описанной вокруг квадрата
1. Формула радиуса окружности описанной вокруг квадрата через сторону квадрата:
2. Формула радиуса окружности описанной вокруг квадрата через периметр квадрата:
3. Формула радиуса окружности описанной вокруг квадрата через площадь квадрата:
4. Формула радиуса круга описанного вокруг квадрата через диагональ квадрата:
5. Формула радиуса круга описанного вокруг квадрата через диаметр описанной окружности:
6. Формула радиуса круга описанного вокруг квадрата через радиус вписанной окружности:
R = r √2
7. Формула радиуса круга описанного вокруг квадрата через диаметр вписанной окружности:
8. формула радиуса круга описанного вокруг квадрата через длину отрезка l:
Окружность вписанная в квадрата
Определение.
Кругом вписанным в квадрат называется круг, который примыкает к серединам сторон квадрата и имеет центр на пересечении диагоналей квадрата.
Радиус вписанной окружности равен половине стороны квадрата.
Площадь круга вписанного в квадрат меньше площади квадрата в 4/π раза.
Формулы определения радиуса круга вписанного в квадрат
1. Формула радиуса круга вписанного в квадрат через сторону квадрата:
2. Формула радиуса круга вписанного в квадрат через диагональ квадрата:
3. Формула радиуса круга вписанного в квадрат через периметр квадрата:
4. Формула радиуса круга вписанного в квадрат через площадь квадрата:
5. Формула радиуса круга вписанного в квадрат через радиус описанной окружности:
6. Формула радиуса круга вписанного в квадрат через диаметр, описанной окружности:
7 Формула радиуса круга вписанного в квадрат через диаметр вписанной окружности:
8. Формула радиуса круга вписанного в квадрат через длину отрезка l:
Квадрат. Онлайн калькулятор
С помощю этого онлайн калькулятора можно найти сторону, периметр, диагональ квадрата, радиус вписанной в квадрат окружности, радиус описанной вокруг квадрата окружности и т.д.. Для нахождения незвестных элементов, введите известные данные в ячейки и нажмите на кнопку “Вычислить”. Теоретическую часть и численные примеры смотрите ниже.
Определение 1. Квадрат − это четырехугольник, у которого все углы равны и все стороны равны (Рис.1):
Можно дать и другие определение квадрата.
Определение 2. Квадрат − это прямоугольник, у которого все стороны равны.
Определение 3. Квадрат − это ромб, у которого все углы прямые (или равны).
Свойства квадрата
- Длины всех сторон квадрата равны.
- Все углы квадрата прямые.
- Диагонали квадрата равны.
- Диагонали пересекаются под прямым углом.
- Диагонали квадрата являются биссектрисами углов.
- Диагонали квадрата точкой пересечения делятся пополам.
Изложеннные свойства изображены на рисунках ниже:
Диагональ квадрата
Определение 4. Диагональю квадрата называется отрезок, соединяющий несмежные вершины квадрата.
На рисунке 2 изображен диагональ d, который является отрезком, соединяющим несмежные вершины A и C. У квадрата две диагонали.
Для вычисления длины диагонали воспользуемся теоремой Пифагора:
или
Из равенства (1) найдем d:
Пример 1. Сторона квадрата равна a=53. Найти диагональ квадрата.
Решение. Для нахождения диагонали квадрата воспользуемся формулой (2). Подставляя a=53 в (2), получим:
Ответ:
Окружность, вписанная в квадрат
Определение 5. Окружность называется вписанной в квадрат, если все стороны касаются этого квадрата (Рис.3):
Формула вычисления радиуса вписанной окружности через сторону квадрата
Из рисунка 3 видно, что диаметр вписанной окружности равен стороне квадрата. Следовательно, формула вычисления радиуса вписанной окружности через сторону квадрата имеет вид:
Пример 2. Сторона квадрата равна a=21. Найти радиус вписанной окружности.
Решение. Для нахождения радиуса списанной окружности воспользуемся формулой (3). Подставляя a=21 в (3), получим:
Ответ:
Формула вычисления сторон квадрата через радиус вписанной окружности
Из формулы (3) найдем a. Получим формулу вычисления стороны квадрата через радиус вписанной окружности:
Пример 3. Радиус вписанной в квадрат окружности равен r=12. Найти сторону квадрата.
Решение. Для нахождения стороны квадраиа воспользуемся формулой (4). Подставляя r=12 в (4), получим:
Ответ:
Окружность, описанная около квадрата
Определение 6. Окружность называется описанной около квадрата, если все вершины квадрата находятся на этой окружности (Рис.4):
Формула радиуса окружности описанной вокруг квадрата
Выведем формулу вычисления радиуса окружности, описанной около квадрата через сторону квадрата.
Обозначим через a сторону квадрата, а через R − радиус описанной около квадрата окружности. Проведем диагональ BD (Рис.4). Треугольник ABD является прямоугольным треугольником. Тогда из теоремы Пифагора имеем:
или
Из формулы (5) найдем R:
или, умножая числитель и знаменатель на , получим:
Пример 4. Сторона квадрата равна a=4.5. Найти радиус окружности, описанной вокруг квадрата.
Решение. Для нахождения радиуса окружности описанной вокруг квадрата воспользуемся формулой (7). Подставляя a=4.5 в (7), получим:
Ответ:
Формула стороны квадрата через радиус описанной около квадрата окружности
Выведем формулу вычисления стороны квадрата, через радиус описанной около квадрата окружности.
Из формулы (1) выразим a через R:
Пример 5. Радиус описанной вокруг квадрата окружности равен Найти сторону квадрата.
Решение. Для нахождения стороны квадрата воспользуемся формулой (8). Подставляя в (8), получим:
Ответ:
Периметр квадрата
Периметр квадрата − это сумма всех его сторон. Обозначается периметр латинской буквой P.
Поскольку стороны квадрата равны, то периметр квадрата вычисляется формулой:
где − сторона квадрата.
Пример 6. Сторона квадрата равен . Найти периметр квадрата.
Решение. Для нахождения периметра квадрата воспользуемся формулой (9). Подставляя в (9), получим:
Ответ:
Признаки квадрата
Признак 1. Если в четырехугольнике все стороны равны и один из углов четырехугольника прямой, то этот четырехугольник является квадратом.
Доказательство. По условию, в четырехугольнике противоположные стороны равны, то этот четырехугольник праллелограмм (признак 2 статьи Параллелограмм). В параллелограмме противоположные углы равны. Следовательно напротив прямого угла находится прямой угол. Тогда сумма остальных двух углов равна: 360°-90°-90°=180°, но поскольку они также являются противоположными углами, то они также равны и каждый из них равен 90°. Получили, что все углы четырехугольника прямые и, по определению 1, этот четырехугольник является квадратом.
Признак 2. Если в четырехугольнике диагонали равны, перпендикулярны и точкой пересечения делятся пополам, то такой четырехугольник является квадратом (Рис.5).
Доказательство. Пусть в четырехугольнике ABCD диагонали пересекаются в точке O и пусть
Так как AD и BC перпендикулярны, то
Из (10) и (11) следует, что треугольники OAB, OBD, ODC, OCA равны (по двум сторонам и углу между ними (см. статью на странице Треугольники. Признаки равенства треугольников)). Тогда
Эти реугольники также равнобедренные. Тогда
Из (13) следует, что
Равенства (12) и (14) показывают, что четырехугольник ABCD является квадратом (определение 1).
Смотрите также:
- Площадь квадрата онлайн
[{Large{text{Прямоугольник}}}]
Определение
Прямоугольник – это параллелограмм, у которого один угол прямой.
Таким образом, прямоугольник обладает всеми свойствами параллелограмма:
(sim) противоположные стороны попарно равны;
(sim) диагонали точкой пересечения делятся пополам.
Теоремы: свойства прямоугольника
1) Все углы прямоугольника прямые.
2) Диагонали прямоугольника равны.
Доказательство
1) Пусть (angle A=90^circ). Т.к. в параллелограмме сумма соседних углов равна (180^circ), то (angle B=180^circ-angle A=90^circ).
Т.к. в параллелограмме противоположные углы равны, то (angle
C=angle A=90^circ, angle D=angle B=90^circ), чтд.
2) Рассмотрим прямоугольник (ABCD).
Прямоугольные треугольники (ACD) и (DBA) равны по двум катетам ((CD = BA), (AD) – общий катет). Отсюда следует, что гипотенузы этих треугольников равны, т.е. (AC = BD).
Следствие
Таким образом, половинки диагоналей в прямоугольнике равны, т.е. (OA=OB=OC=OD).
Теоремы: признаки прямоугольника
1) Если в параллелограмме диагонали равны, то этот параллелограмм – прямоугольник.
2) Если в выпуклом четырехугольнике все углы прямые, то он – прямоугольник.
Доказательство
1) Пусть в параллелограмме (ABCD) диагонали равны.
Треугольники (ABD) и (DCA) равны по трем сторонам ((AB = CD), (BD =
AC), (AD) – общая сторона). Отсюда следует, что (angle A = angle
D). Так как в параллелограмме противоположные углы равны, то (angle
A = angle C) и (angle B = angle D). Таким образом, (angle A =
angle B = angle C = angle D). Параллелограмм – выпуклый четырехугольник, поэтому (angle A + angle B + angle C + angle D
= 360^circ). Следовательно, (angle A = angle B = angle C =
angle D = 90^circ).
2) Рассмотрим четырехугольник (ABCD):
Т.к. (angle A+angle B=180^circ) – односторонние углы при прямых (AD) и (BC) и секущей (AB), следовательно, (ADparallel BC).
Аналогично доказывается, что (ABparallel CD). Значит, (ABCD) – параллелограмм. Т.к. у него к тому же все углы прямые, то по определению это прямоугольник.
[{Large{text{Квадрат}}}]
Определение
Два эквивалентных определения квадрата:
Квадрат – это прямоугольник, у которого все стороны равны.
Квадрат – это ромб, у которого один угол прямой.
Свойства квадрата
Так как квадрат является прямоугольником и ромбом, то он обладает всеми свойствами прямоугольника и ромба:
(sim) Все углы квадрата равны (90^circ);
(sim) Все стороны квадрата равны;
(sim) Диагонали квадрата равны, взаимно перпендикулярны, точкой пересечения делятся пополам и делят углы квадрата пополам.
Прямоугольник — четырёхугольник, у которого все углы прямые.
Свойства прямоугольника:
• Противоположные стороны параллельны и равны между собой
• Все углы прямые, равны 90°
• Квадрат диагонали прямоугольника равен сумме квадратов его смежных сторон
• Диагонали прямоугольника равны и точкой пересечения делятся попалам
Формулы вычисления площади прямоугольника:
• S = ab, где a и b – стороны прямоугольника.
• S = ah, где а – его сторона, h – высота, проведённая к этой стороне.
• S = ab sin α, где а и b – стороны, α – градусная мера угола прямоцгольника.
Квадра́т — правильный четырёхугольник, то есть четырёхугольник, у которого все углы равны и все стороны равны.
Свойства прямоугольника:
• Противоположные стороны параллельны
• Все стороны равны
• Диагонали квадрата являются биссектрисами его углов
• Точка пересечения диагоналей является центром вписанной и описанной окружностей
• Диагонали прямоугольника равны, расположены под прямым углом и точкой пересечения делятся попалам
Формулы вычисления площади квадрата:
• S = a2, где а – сторона квадрата.
• Все формулы для вычисления площади прямоугольника, т.к. квадрат является прямоугольником.