Как найти противоположный катет зная угол

Как найти стороны прямоугольного треугольника

  1. Главная
  2. /
  3. Математика
  4. /
  5. Геометрия
  6. /
  7. Как найти стороны прямоугольного треугольника

Чтобы посчитать стороны прямоугольного треугольника воспользуйтесь нашим очень удобным онлайн калькулятором:

Онлайн калькулятор

Прямоугольный треугольник

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Катет a =
Катет b =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

Теорема Пифагора: квадрат гипотенузы равен сумме квадратов катетов:

c² = a² + b²

следовательно: c = a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = 3² + 4² = 9 + 16 = 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Катет (a или b) =
Прилежащий угол (β или α) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула

c = a/cos(β) = b/cos(α)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Катет (a или b) =
Противолежащий угол (α или β) =
Гипотенуза c =

0

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула

c = a/sin(α) = b/sin(β)

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Гипотенуза c =
Катет (известный) =
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула

a = c² – b²

b = c² – a²

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = 5² – 4² = 25 – 16 = 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Гипотенуза c =
Угол (прилежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула

a = c ⋅ cos(β)

b = c ⋅ cos(α)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Гипотенуза c =
Угол (противолежащий катету) = °
Катет =

0

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула

a = c ⋅ sin(α)

b = c ⋅ sin(β)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Катет (известный) =
Угол (прилежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула

a = b ⋅ tg(α)

b = a ⋅ tg(β)

Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Катет (известный) =
Угол (противолежащий известному катету) = °
Катет (искомый) =

0

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула

a = b / tg(β)

b = a / tg(α)

Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

a = 3 / tg(35) ≈ 3 / 0.7 ≈ 4.28 см

См. также

Лучший ответ

Serg

Высший разум

(170536)


11 лет назад

Из определения тангенса
Противол. катет = прилеж. * tg данного угла.

Остальные ответы

Сергей Попов

Мастер

(1334)


11 лет назад

Острый угол? Скажи величины

1. Берешь таблицы Брадиса
2. Находишь тангенс данного тебе угла.
Это отношение и будет отношением данного катета к противоположному

Air

Просветленный

(26339)


11 лет назад

В прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Зная гипотенузу и катет мы можем найти второй катет.

дед* АБСЕНТ

Просветленный

(42001)


11 лет назад

теорема косинусов- вбей сначала в поиск, потом в мозг!!!

Michael Kirshyn

Просветленный

(30843)


11 лет назад

Нарисовать и измерить.

Tulupov Elexander

Профи

(787)


11 лет назад

Элементарно.
Рассчитывается через тангенс угла (Тангенс – отношение катетов противолежащего к прилежащему)

Противолежащий катет = тангенс угла умноженный на прилежащий катет.

В следующий раз приводи рисунок и числовые данные.

Расчёт катета по катету и противолежащему углу

Значащих цифр:

Введите противолежащий угол

Прямоугольный треугольник это треугольник у которого один из углов равен 90 градусов.

Прямой угол это угол 90 градусов.

Гипотенуза это противолежащая прямому углу сторона, самая длинная сторона прямоугольного треугольника.

Катеты это стороны прямоугольного треугольника прилежащие к прямому углу.

Сумма внутренних углов треугольника равна 180 градусам.

Тангенсом острого угла прямоугольного треугольника называется отношение противолежащего катета к прилежащему.

Катет по катету и противолежащему углу

Известен катет BC и противолежащий угол a

Катет будем рассчитывать с помощью тангенса.

tg(a)=BC/AC

AC = BC / tg(a)

Прямоугольный треугольник

Основные понятия

Прямоугольным треугольником называется геометрическая фигура, состоящая из трех точек и отрезков, которые их соединяют. При этом один из углов обязательно равен 90°.

Чтобы точно знать, как определить противолежащий и прилежащий катеты, стоит запомнить утверждение: противолежащая сторона в прямоугольном треугольнике — это часть фигуры, которая размещена напротив этого угла, другая же будет прилежащей к гипотенузе. Отличить их очень просто: к примеру, в треугольнике ABC катетом, противолежащим ∠А, будет сторона ВС. По отношению к ∠С им станет АВ. Важное свойство: если противолежащий угол равен 30°, то катет будет равняться половине гипотенузы.

Чтобы легко понять размещение, стоит запомнить утверждение: в названии стороны, что находится напротив определенного угла, нет буквы, которая его обозначает. Он всегда будет острым, поскольку напротив 90° находится гипотенуза.

Противолежащий катет в прямоугольном треугольике

Слово «катет» имеет греческое происхождение. Оно переводится как «перпендикуляр», «опущенный», «отвесной». Это название распространено в архитектуре, здесь оно имеет значение отвеса, который опускают через середину задка ионической капители.

Катет в тригонометрии

Длину сторон можно найти, обратившись к тригонометрии. Синусом острого угла в прямоугольном треугольнике является отношение противоположного катета к гипотенузе. Выражается это утверждение так: sin А = a/с.

Косинус — отношение противоположного угла к гипотенузе. Это выражение описывается формулой cos А = b/с. Тангенс — отношение противолежащего катета к прилежащему, что можно записать следующим образом: tg А = а/b.

Решение задач

Для решения задач часто используются понятия синус, косинус и тангенс. Здесь нужно руководствоваться формулой с = a/sin а = b/sin b, где c — гипотенуза, а и b — катеты, противоположные определенным углам. Если в задаче требуется найти сторону, то формула имеет другой вид:

  • a = с* sin b;
  • b = с* sin а.

Используя тригонометрическое значение угла (тангенс), для нахождения противолежащей стороны применяют формулы a = b/tg b и b = a/tg a. Часто в заданиях используют углы 30, 45, 60 и 90°, поэтому для практического использования стоит запомнить их тригонометрическое значение. Решение задач происходит по алгоритму, который включает следующие действия:

Математика

  1. Следует проанализировать фигуру, вычислить в ней сторону либо угол.
  2. Далее нужно подумать, как элементы треугольника связаны с тригонометрическими функциями либо между собой.

В конце приступают к решению, то есть записывают соотношение известных понятий.

Пример задачи: есть треугольник АВС, где ∠С = 90°, sin А = 7/25, АВ = 5 см. Найти сторону АС. При решении нужно использовать формулу sin А = ВС/АВ = 7/25.

Введем длину единичного отрезка, которая равная х см, тогда BC = 7x, АВ = 25x. Используя теорему Пифагора, где c² = a² + b², получаем AC² = (25x)² – (7x)² = 24x.

По условию АВ = 5 см, то есть АВ = 25х = 5, тогда х = 1/5. Если х = 1/5, то АС = 24/5 = 4,8 см.

Таким образом, изучая материал о прямоугольных треугольниках, ученики знакомятся с катетами и их свойствами. Они учатся решать задания, используя различные понятия либо комбинируя приобретенные ранее знания с новой темой.

Как найти стороны прямоугольного треугольника

Онлайн калькулятор

Чтобы вычислить длины сторон прямоугольного треугольника вам нужно знать следующие параметры (либо-либо):

  • для гипотенузы (с):
    • длины катетов a и b
    • длину катета (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину катета (a или b) и противолежащий к нему острый угол (α или β, соответственно)
  • для катета:
    • длину гипотенузы (с) и длину одного из катетов
    • длину гипотенузы (с) и прилежащий к искомому катету (a или b) острый угол (β или α, соответственно)
    • длину гипотенузы (с) и противолежащий к искомому катету (a или b) острый угол (α или β, соответственно)
    • длину одного из катетов (a или b) и прилежащий к нему острый угол (β или α, соответственно)
    • длину одного из катетов (a или b) и противолежащий к нему острый угол (α или β, соответственно)

Введите их в соответствующие поля и получите результат.

Найти гипотенузу (c)

Найти гипотенузу по двум катетам

Чему равна гипотенуза (сторона с) если известны оба катета (стороны a и b)?

Формула

следовательно: c = √ a² + b²

Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 3 см, а катет b = 4 см:

c = √ 3² + 4² = √ 9 + 16 = √ 25 = 5 см

Найти гипотенузу по катету и прилежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и прилежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а прилежащий к нему ∠β = 60°:

c = 2 / cos(60) = 2 / 0.5 = 4 см

Найти гипотенузу по катету и противолежащему к нему острому углу

Чему равна гипотенуза (сторона с) если известны один из катетов (a или b) и противолежащий к нему угол?

Формула
Пример

Для примера посчитаем чему равна гипотенуза прямоугольного треугольника если катет a = 2 см, а противолежащий к нему ∠α = 30°:

c = 2 / sin(30) = 2 / 0.5 = 4 см

Найти гипотенузу по двум углам

Найти гипотенузу прямоугольного треугольника только по двум острым углам невозможно.

Найти катет

Найти катет по гипотенузе и катету

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и второй катет?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 5 см, а катет b = 4 см:

a = √ 5² – 4² = √ 25 – 16 = √ 9 = 3 см

Найти катет по гипотенузе и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и прилежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если гипотенуза c = 5 см, а ∠α = 60°:

b = 5 ⋅ cos(60) = 5 ⋅ 0.5 = 2.5 см

Найти катет по гипотенузе и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известны гипотенуза и противолежащий к искомому катету острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если гипотенуза c = 4 см, а ∠α = 30°:

a = 4 ⋅ sin(30) = 4 ⋅ 0.5 = 2 см

Найти катет по второму катету и прилежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и прилежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет b прямоугольного треугольника если катет a = 2 см, а ∠β = 45°:

b = 2 ⋅ tg(45) = 2 ⋅ 1 = 2 см

Найти катет по второму катету и противолежащему к нему острому углу

Чему равен один из катетов прямоугольного треугольника если известен другой катет и противолежащий к нему острый угол?

Формула
Пример

Для примера посчитаем чему равен катет a прямоугольного треугольника если катет b = 3 см, а ∠β = 35°:

Расчёт катетов по гипотенузе и углу

Прямоугольный треугольник это треугольник у которого один из углов равен 90 градусов.

Прямой угол это угол 90 градусов.

Гипотенуза это противолежащая прямому углу сторона, самая длинная сторона прямоугольного треугольника.

Катеты это стороны прямоугольного треугольника прилежащие к прямому углу.

Сумма внутренних углов треугольника равна 180 градусам.

Синусом называется отношение противолежащего катета к гипотенузе.

Косинусом называется отношение прилежащего катета к гипотенузе.

Все формулы для треугольника

1. Как найти неизвестную сторону треугольника

Вычислить длину стороны треугольника: по стороне и двум углам или по двум сторонам и углу.

a , b , c – стороны произвольного треугольника

α , β , γ – противоположные углы

Формула длины через две стороны и угол (по теореме косинусов), ( a ):

* Внимательно , при подстановке в формулу, для тупого угла ( α >90), cos α принимает отрицательное значение

Формула длины через сторону и два угла (по теореме синусов), ( a):

2. Как узнать сторону прямоугольного треугольника

Есть следующие формулы для определения катета или гипотенузы

a , b – катеты

c – гипотенуза

α , β – острые углы

Формулы для катета, ( a ):

Формулы для катета, ( b ):

Формулы для гипотенузы, ( c ):

Формулы сторон по теореме Пифагора, ( a , b ):

3. Формулы сторон равнобедренного треугольника

Вычислить длину неизвестной стороны через любые стороны и углы

b – сторона (основание)

a – равные стороны

α – углы при основании

β – угол образованный равными сторонами

Формулы длины стороны (основания), (b ):

Формулы длины равных сторон , (a):

4. Найти длину высоты треугольника

Высота– перпендикуляр выходящий из любой вершины треугольника, к противоположной стороне (или ее продолжению, для треугольника с тупым углом).

Высоты треугольника пересекаются в одной точке, которая называется – ортоцентр.

H – высота треугольника

a – сторона, основание

b, c – стороны

β , γ – углы при основании

p – полупериметр, p=(a+b+c)/2

R – радиус описанной окружности

S – площадь треугольника

Формула длины высоты через стороны, ( H ):

Формула длины высоты через сторону и угол, ( H ):

Формула длины высоты через сторону и площадь, ( H ):

Формула длины высоты через стороны и радиус, ( H ):

[spoiler title=”источники:”]

http://calc-best.ru/matematicheskie/raschyot-treugolnika/raschyot-katetov-pryamougolnogo-treugolnika-po-gipotenuze-i-uglu

http://www-formula.ru/2011-10-09-11-08-41

[/spoiler]

Добавить комментарий