Как найти прямой угол по теореме пифагора

Добрый день, уважаемые гости и подписчики моего канала!

Данная статья относится к разметке фундаментов и к построению обноски/выноса осей дома непосредственно перед выемкой грунта.

По сути, соблюдение прямых углов фундамента – это одно из самых важных требований к конструкции, так как от этого напрямую зависит качество работ по сооружению стен и кровли. Отклонение угла на несколько градусов влечет смещение стен относительно фундамента, как представлено на иллюстрации ниже:

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Из-за малейшей ошибки, начинаются проблемы с облицовкой цоколя и что немаловажно, ухудшаются эксплуатационные характеристики дома.

Увы, но таких ситуаций море и они берут свое начало из неправильной разметки.

Сегодня, я хотел бы рассказать о двух быстрых способах построения прямых углов на местности без лишних вычислений. Для первого способа нужны две рулетки, для второго – только веревка.

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Как вы знаете, построить прямой угол можно:

а) прибегая к вычислениям, т.е. математическим способом. Производя вычисления по теореме Пифагора мы можем отложить полученные значения и получить прямой угол (частный случай – египетский треугольник 3-4-5).

б) геометрическим способом

И, в данной статье я приведу способы геометрического построения без каких-либо вычислений.

Разметка фундамента всегда начинается с привязки одной из его сторон к фасаду или к меже по соседскому забору сбоку. Таким образом, натянув бечевку параллельно забору, у нас уже появляется одна сторона фундамента с которой нам и предстоит работать.

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Итак, способ № 1: две рулетки

Отметив угол дома (точка О) на первой стороне дома (прямая АВ), нам нужно отложить две точки, равноудаленные от точки О. После чего, зафиксировать концы двух рулеток на полученных точках и совместить полотна так, чтобы две шкалы пересекались на одном и том же значении.

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Прямая, проходящая через точку О и точку пересечения полотен рулеток Х будет перпендикулярна прямой АВ, тем самым мы получили прямой угол между АВ и ОХ, где О – внешний угол фундамента.

Способ №2: веревка

Данный способ похож на первый, только здесь нужна одна веревка. Нам требуется так же отложить от точки О две равноудаленные точки и установить в каждую из них по колышку.

На концах веревки вяжутся петельки (рис.1), которые продеваются в один колышек. Натянув веревку, получаем её центр и отмечаем его (рис.2).

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Теперь, накидываем петли на соответствующие колья и натягиваем веревку (рис.3)

Всё. Точка Х, как и в случае с рулетками, образует с точкой О перпендикуляр по отношению к прямой АВ.

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Как видите, построение очень простое и что немаловажно – быстрое и точное. Основывается оно на свойстве равнобедренных треугольников, где их высота всегда делит основание на два равных отрезка.

На этом всё! Надеюсь, статья была Вам полезна.

Спасибо за внимание и удачи в строительстве!

Два быстрых способа для разметки прямого угла 90° на местности (теорема Пифагора стоит в стороне)

Дед рассказал, как 45 лет назад делал “чудо-раствор”, что швы даже перфоратор берёт с трудом

“Зачем мудрить?” Проектировщик ландшафта показал, как и куда проще всего отвести воду с крыши (практичное решение)

Всегда догадывался, что на фасовке дурят, но насколько? Взвешиваю 50 кг. цемента и 25 кг. гипса: итоги

В данной статье описываются три распространенных варианта построения прямых углов при разметке участка для будущего дома, а также описываются методы проверки углов уже возведенных зданий и сооружений без доступа к замеру их диагоналей.

На самом же деле, вариантов существует множество и большинство из них выражаются через тригонометрические функции или с помощью сложных геометрических построений, но здесь это ни к чему, на стройплощадке ни один строитель не возьмется за сложные вещи, упуская время.

Поэтому, рассмотрим три самых простых, но тем не менее надежных метода построения прямых углов:

Теорема Пифагора

Это самый часто используемый и очень надежный способ.

Теорема Пифагора устанавливает соотношение между сторонами прямоугольного треугольника и звучит так: сумма квадратов длин катетов равна квадрату длины гипотенузы.

Для построения прямого угла можно воспользоваться готовым решением (рисунок ниже) или же зная стороны дома, можно без труда вычислить значение диагонали для своего дома и в дальнейшем работать с полученным значением.

Основное соотношение сторон треугольника Пифагора — 3, 4 и 5 единиц. Для удобства, существуют производные треугольники от основного, получаемые при умножении сторон треугольника Пифагора на какой-либо коэффициент. К примеру, стороны 3,4,5 умноженные на К=2 (коэффициент 2), дают треугольник со сторонами 6,8,10, при К=3, стороны 9,12,15 и т.д.

Геометрическое построение

Данный способ ни чуть не хуже Пифагорова треугольника, но редко используемый (в силу забывчивости школьных знаний), хотя очень даже эффективный!

Выглядит сложнее, чем на самом деле.

Зная угол здания (точка О), отмечаем две точки О1 и О2 по оси А, равноудаленные от точки О. Одинаковое расстояние откладывается с помощью рулетки.

Точки О1 и О2 являются центрами окружностей одинакового радиуса. Прямая, проведенная через точку пересечения двух окружностей (точка В) и точку О будет давать прямой угол с прямой А.

По факту, этот способ ни чуть не хуже треугольника Пифагора, имея под рукой два колышка и отрезок веревки, построение осей будущего дома производится всего за 20-40 минут в зависимости от размера и сложности здания.

Две рулетки

Вместо построения окружностей из точек О1 и О2, используются две рулетки (рулетки без погрешности между собой, допустимое отклонение 2-3 мм. на 10 м. по размерной шкале) и прикладываются нулевой отметкой к каждой из точек О1 и О2.

Далее, совмещаем их одинаковыми значениями по мерным шкалам (точка Х) и получаем точку Х, соединив которую с точкой О получим перпендикуляр. В данном случае, построен равнобедренный треугольник, где его высота делит основание ровно пополам и образует с ним прямой угол.

На практике это делается следующим образом: отмечается три контрольные точки по двум рулеткам на пересечении делений (к примеру 1 м., 3м. и 7м.). Далее, через них протягивается разметочный шнур из точки О. Если все точки пересечения шкал лежат на одной прямой (совпадают со шнуром), то построение выполнено верно.

Это настолько быстро делается, что на первый взгляд может показаться неправдоподобным, но поверьте — геометрия работает со 100% гарантией.

Проверка прямого угла построенного здания

Все вышеописанные способы так же применимы и к уже стоящим зданиям. Они используются как проверка за строителями, а так же в случаях, если требуется сооружать фундамент по периметру старого дома и/или ровно облицевать ветхий домик каким-либо материалом.

Все действия аналогичны и главное правило заключается в том, чтобы вынести замеры за пределы строения.

Используя бечевку, протягиваем ее параллельно стенам и закрепляем колышками, а после — снимаем замер.

При геометрическом построении, точка пересечения двух окружностей будет лежать не в основании стены, а по “невидимому” продолжению стены в её же плоскости (на рисунке обозначена точкой Х).

При необходимости, все способы свободно комбинируются или взаимозаменяются.

На этом всё, спасибо Вам за уделенное внимание!

Всего доброго!


Загрузить PDF


Загрузить PDF

Одна из проблем при построении угла или треугольника – сделать угол прямым. Конечно, угол не обязательно должен быть идеально прямым, но при проектировании нужно постараться сделать так, чтобы максимально приблизить угол к значению 90 градусов. Если не получится, есть вероятность, что ковровое покрытие будет положено неровно относительно какой-либо стены. Метод 3-4-5 полезен для небольших строительных проектов, чтобы все покрытия были ровными и совпадали друг с другом, как и планировалось.

  1. Изображение с названием Use the 3 4 5 Rule to Build Square Corners Step 1

    1

    Поймите, в чем суть правила 3-4-5. Если у треугольника есть три стороны со значениями 3, 4 и 5 см (или кратное им значение), это прямоугольный треугольник, угол между сторонами с меньшими значениями составляет 90 градусов. Если у вас получилось построить треугольник, исходя из значений угла, то можно точно сказать, что угол прямоугольный. Это правило основано на теореме Пифагора: A2 + B2 = C2 (в прямоугольном треугольнике). Где С – самая длинная сторона (гипотенуза), А и В –остальные стороны (катеты).[1]

    • Правило 3-4-5 очень удобно проверить благодаря целым числам. Итак, опираясь на математические расчеты: 32 + 42 = 9 + 16 = 25 = 52.
  2. Изображение с названием Use the 3 4 5 Rule to Build Square Corners Step 2

    2

    Отмерьте от угла 3 см (или 3 м) на одной стороне. Можно взять любую меру длины. Пометьте отмеренный участок точкой.

    • Можно умножить каждое число на одно и то же число – и это правило все равно сработает. Например, это правило будет работать для треугольника со сторонами 30-40-50 сантиметров или метров. Если у вас большая комната, можно использовать следующие числа: 9-12-15, 6-8-10 метров.
  3. Изображение с названием Use the 3 4 5 Rule to Build Square Corners Step 3

    3

    Отмерьте четыре метра (или длину со значением, которое кратно четырем) на другой стороне. То же самое, если у вас получится сделать треугольник, то угол между этими двумя сторонами будет равен 90 градусам. Снова пометьте отмеренный участок точкой.

  4. Изображение с названием Use the 3 4 5 Rule to Build Square Corners Step 4

    4

    Теперь измерьте расстояние между этими двумя метками. Если расстояние кратно пяти, то можно точно сказать, что угол составляет 90 градусов.[2]

    • Если расстояние меньше, чем 5 единиц (метров), значит, угол острый (меньше 90 градусов). Если есть такая возможность, нужно немного раздвинуть стороны, образующие этот угол.
    • Если расстояние между метками составляет больше 5 единиц (метров), значит, угол тупой (то есть больше 90 градусов). Если есть такая возможность, нужно свести стороны, образующие угол, поближе друг к другу, чтобы угол получился прямым. Строя прямой угол, можно использовать прямой угол рамки.
    • Получив прямой угол в 90 градусов, можно проверить остальные углы комнаты, чтобы убедиться в том, что они прямые.

    Реклама

Советы

  • Этот метод считается более точным, чем с использованием специального инструмента угольника, потому что этот инструмент может быть слишком мал для измерения на больших расстояниях и площадях.
  • Чем большую меру измерения вы возьмете, тем точнее будет результат.[3]

Реклама

Что вам понадобится

  • Рулетка
  • Карандаш

Об этой статье

Эту страницу просматривали 96 028 раз.

Была ли эта статья полезной?

В этом случае для построения прямого угла применяется всем известная формула Пифагора – в прямоугольном треугольнике сумма квадратов катетов равна квадрату гипотенузы. Еще такое построение называют “египетским треугольником”, так как по такому же принципу строились углы пирамид. Натяните строительный шнур по главному фасаду одной из сторон будущего строения. Эта линия свое положение НЕ меняет. На шнуре, в точке где будет угол постройки привяжите еще один шнур и отойдите с ним в сторону, образуя другую, перпендикулярную сторону строения.На первом шнуре от точки, образующей угол отмерьте 4 метра. От этой же точки, но по другому шнуру отмерьте 3 метра. На совершенно отдельном шнуре зафиксируйте длину (расстояние) 5 метров (можно привязать яркие тесемки). Далее работают 2 человека. Один человек крайнюю точку пятиметрового шнура держит на шнуре главного фасада в точке 4 метра. Другой человекпостарается 5-и метровый шнур дотянуть до точки 3 м на другом шнуре.Вторая сторона на момент построения будет подвижной.Подтяните или отодвиньте боковую сторону так, чтобы крайние точки 5-иметрового и 3-х метрового шнура соединились. А угол между шнуром/линией главного фасада и линией бокового фасада у вас будет прямым, то есть 90 градусов. А по теореме это выглядит так – 4² (16) + 3² (9) = 5² (25) 25 = 25

автор вопроса выбрал этот ответ лучшим

Rafai­l
[136K]

8 лет назад 

Возьмите три брусочка (рейки, линейки, металлические полоски, какие-нибудь жесткие дюралевые элементы для строительства). Сделайте в них по два отверстия диаметром 4-6 мм. Расстояния между центрами отверстий должны относиться друг к другу как 3:4:5, (например 60 см, 80 см и 100 см, или 15 см, 20 см, 25 см). Скрепите брусочки винтами (болтами) в треугольник. Получится прямоугольный треугольник с прямым углом между короткими сторонами (катетами). Чем длиннее стороны треугольников тем точнее будет прямой угол. Но, слишком длинные брусочки могут оказаться кривыми, или прогнуться в процессе изготовления или эксплуатации.

Другой вариант: берете три кусочка мягкой проволоки, с тем же соотношением длин, например 3 4 и 5 м, реально где-то на 10-20 см длиннее. На концах проволоки делаете кольца. Вбиваете в землю два колышка (кусочки труб), допустим, сначала на расстоянии ровно 3 м, накидываете кольца на колышки и сделав петлю где-нибудь в средней части проволоки “скруткой” выбираете излишек длины, чтобы проволока натянулась как можно прямее между колышками. Точно так же натягиваете другую проволоку на колышки с расстоянием между ними 4 м, и третью – с расстоянием 5 м. Теперь, в вершине требующегося прямого угла вбиваете один колышек. На него накидываете концы 3-х и 4-ж метровых проволок. Другие концы этих проволок продеваете в другие колышки, которые держат в руках Ваши помощники. кольца третьей проволоки (5 м) тоже продеваете в эти колышки. Затем помощники расходятся по требуемым направлениям и подбирают положения колышков, которые у них в руках (удерживая их строго вертикально) так, чтобы все три проволоки были натянуты. Когда такое положение достигнуто, угол будет близок к прямому.

Можно и другие соотношения, лишь бы между ними соблюдалась теорема Пифагора, например 5, 12 и 13, или 7,24 и 25.

88Sky­Walke­r88
[429K]

5 лет назад 

Прямой угол можно построить, применяя теорему Пифагора.

Кроме того, существует такое понятие как египетский треугольник. Еще древние египтяне, строя великие пирамиды, пользовались этим методом.

Метод такой:

натягиваем шнур, от точки, откуда будет начинаться угол, натягиваем другой шнур перпендикулярный этому.

Далее на одной стороне нужно отсчитать три метра, а на другой – четыре метра.

Затем берем еще один шнур (красного цвета) длиной ровно пять метров.

Теперь пытаемся соединить крайние точки с помощью шнура красного цвета. При этом одна сторона нашего угла будет подвижной.

Получаем прямой угол.

Ксарф­акс
[156K]

5 лет назад 

Для того, чтобы построить прямой угол на местности, можно воспользоваться Египетским треугольником, имеющим соотношение длин сторон как 3:4:5.

В этом случае потребуется 3 колышка, а также 3 куска веревки – по 3, 4 и 5 метров.

Алгоритм такой:

1) Сначала “натягиваем гипотенузу”. Для этого вбиваем в землю 2 колышка так, чтобы расстояние между ними было 5 метров (можно мерить либо по рулетке, либо по имеющейся верёвке). Закрепляем верёвку.

как построить прямой угол на местности

2) Теперь нужно разместить катеты (куски веревки по 3 и 4 метра) – так, чтобы они совпали вершинами между собой и с гипотенузой (понятно, нужна помощь нескольких человек). В этом случае получится искомый прямой угол. После этого вбиваем 3 колышек в то место, где катеты совпали и закрепляем верёвки.


Кроме этого, иногда помогает примитивный вариант – обвести по какому-нибудь прямоугольному предмету.

Или если есть доски, то нетрудно соотнести их между собой так, чтобы получился угол 90 градусов – если доски образуют прямой угол, то короткая часть первой доски (ширина) будет как бы продолжением длины другой доски.

Galin­a7v7
[120K]

7 лет назад 

Кроме египетского треугольника,размеров которого немало,можно построить неполную окружность (примерно-полукруг),и провести прямую через центр окружности,это и будет диаметр,а 2 точки диаметра-концами лучей прямого угла.Вершина прямого угла может быть в любой удобной точке полуокружности.Доказательства того,что угол будет прямой,думаю,не требуются.А методика,как провести окружность на местности ,описана в литературе:вбивается колышек в землю,натягивается веревка удобного размера,и пошёл двигаться какой-то объект (человек,лошадь) по свободному концу верёвки,прочерчивая эту полуокружность (можно вбивать колышки через 10-15-25 см,как бы очкрчивая эту полуокружность(методов много).А потом на ней,где нужно отметить вершину прямого угла(можно в любом колышке),а лучи,на прямой -диаметре.То есть соединяя вершину с концами диаметр ,получим прямой угол.Если есть сомнения по поводу полуокружности,можно проводить целую окружность,но это затратно по времени.Достаточно немного больше полуокружности.

Владм­ир8
[7]

4 года назад 

Только что родил способ построения прямого угла к условному забору или к прямой линии с помощью длинной неразмеченной (нерастяжимой) веревки.

  1. Складываем веревку, отмечаем середину (например, узелком)
  2. От вершины будущего прямого угла (точки на “заборе”) половиной веревки строим равнобедренный треугольник с основанием вдоль забора. Отмечаем его вершины (колышком, черточкой на земле-заборе)
  3. Продолжаем одну из сторон треугольника(противо­лежащую по отношению к исходной точке на заборе) ровно на полверевки.

Или можно растянуть веревку целиком от основания треугольника у забора до вершины и дальше – половина ляжет на сторону треугольника-далее узелок и колышек в земле- далее вторая половина веревки, как продолжение стороны. (Веревка в итоге получится прямой линией)

  1. конец вытянутой веревки и исходная точка образуют линию, перпендикулярную забору.

Основание- либо теорема об угле, вписанном в окружность (а вытянутая веревка- это и есть диаметр ее, а полверевки- радиус окружности- и точка пересечения-на заборе)

Либо свойства прямоугольника- его диагонали равны и точкой пересечения делятся пополам.

Чтобы разметить прямой угол на местности не обязательно иметь транспортир или другие приспособления. Достаточно иметь три шнура и помнить теорему Пифагора.

Есть очень удобные соседние числа – 3 и 4, квадраты которых в сумме дадут 25, то есть квадрат 5.

А это значит, что есть прямоугольный треугольник со сторонами 3, 4 и 5 метров. При этом сторона в 5 метров окажется гипотенузой.

Как же построить такой треугольник на местности?

Вбиваем колышек в основание прямого угла. Привязываем к нему шнуры длиной 3 и 4 метра. Проводим сторону длиной например 4 метра и вбиваем второй колышек, закрепляем шнур.

Привязываем к этому колышку шнур длиной 5 метров и острым колышком чертим небольшую дугу окружности на расстоянии 5 метров от вбитого колышка. Точно также проводим небольшую дугу радиусом 3 метра от первого колышка.

Точка пересечения дуг и будет последней вершиной нашего прямоугольного треугольника.

fatal­ex
[110K]

8 лет назад 

Ну, если говоря “на местности”, Вы предполагаете начертить прямой угол прямо на земле, к примеру размечая границы какого-то участка или фундамента будущего дома, то можно воспользоваться тремя колышками и шпагатом или верёвкой, длинна которой кратна 12 метрам.

Говорят, этот метод был известен ещё в древнем Египте, а в его основе так называемое правило “золотого сечения”.

“Золотое сечение” – это треугольник со сторонами, длинны которых соотносятся, как 3:4:5

Золотое сечение

Вот так, более подробно, использование этого метода на практике описывается в интернете:

Золотое сечение в строительстве

Отсутствие транспортира вполне компенсирует теодолит.

Ну и не забываем что диагонали прямоугольника равны между собой.

Проще простого. Сначала строим квадрат, натянув веревки по периметру. Чем больше будет квадрат, тем точнее будет построен прямой угол. Теперь промеряем диагонали нашего, пока еще якобы квадрата. Скорее всего у нас с первого раза получится ромб. Раздвигаем соответствующие углы квадрата, диагональ между которыми меньше. Делаем это пока обе диагонали не выровняться по длине. Как только это произойдет, мы получим правильный квадрат, а значит и четыре прямых угла.

Как правило строили когда делают прямые углы меряют диагонали полученного прямоугольника. Если нужно сделать что-то маленькое, то можно этот прямой угол обвести по прямоугольному предмету. Самый простой способ это произвести замер диагоналей. Можно и с помощью веревки, смотрите какой вариант вам больше подходит.

morel­juba
[62.5K]

5 лет назад 

Для этой цели я вам советую воспользоваться Египетским треугольником, а вернее соотношением его сторон, которое выглядит следующим образом 3 к 4 к 5. Берём колышки и натягиваем верёвкой сначала гипотенузу 5, а затем от неё натягиваем катеты. Так и получим прямой угол на местности.

Знаете ответ?

Это – древнейшая геометрическая задача.

Пошаговая инструкция

1й способ. – С помощью «золотого», или «египетского», треугольника. Стороны этого треугольника имеют соотношение сторон 3:4:5, а угол равен строго 90град. Этим качеством широко пользовались древние египтяне и другие пракультуры.

золотой тр-к

Илл.1. Построение Золотого, или египетского треугольника

  • Изготавливаем три мерки (или веревочных циркуля – веревка на двух гвоздях или колышках) с длинами 3; 4; 5 метров. Древние в качестве единиц измерения часто пользовались способом завязывания узелков с равными расстояниями между ними. Единица длины – «узелок».
  • Вбиваем в точке О колышек, цепляем на него мерку «R3 – 3 узелка».
  • Протягиваем веревку вдоль известной границы – в сторону предполагаемой точки А.
  • В момент натяжения на линии границы – точка А, вбиваем колышек.
  • Затем – снова от точки О, протягиваем мерку R4 – вдоль второй границы. Колышек пока не вбиваем.
  • После этого натягиваем мерку R5 – от А до В.
  • В месте пересечения мерок R2 и R3 вбиваем колышек. – Это искомая точка В – третья вершина золотого треугольника, со сторонами 3;4;5 и с прямым углом в точке О.

2й способ. С помощью циркуля.

Циркуль может быть веревочный или в виде шагомера. См: …простейший землемерный инструмент

Наш циркуль-шагомер имеет шаг в 1 метр.

Шагомер

Илл.2. Циркуль-шагомер

Построение – также по Илл.1.

  • От точки отсчета – точки О – угла соседа, проводим отрезок произвольной длины – но больше, чем радиус циркуля = 1м – в каждую сторону от центра (отрезок АВ).
  • Ставим ногу циркуля в точку О.
  • Проводим окружность с радиусом (шагом циркуля) = 1м. Достаточно провести короткие дуги – сантиметров по 10-20, в местах пересечения с отмеченным отрезком (через точки А и В.). Этим действием мы нашли равноудаленные точки от центра – А и В. Величина удаления от центра здесь не имеет значения. Можно эти точки просто отметить рулеткой.
  • Далее нужно провести дуги с центрами в точках А и В, но несколько (произвольно) большего радиуса, чем R=1м. Можно перенастроить наш циркуль на больший радиус, если он имеет регулируемый шаг. Но для такой небольшой текущей задачи не хотелось бы его «дергать». Или когда регулировки нет. Можно сделать за полминуты веревочный циркуль.
  • Ставим первый гвоздь (или ножку циркуля с радиусом больше, чем 1м) поочередно в точки А и В. И проводим вторым гвоздем – в натянутом состоянии веревки, две дуги – так чтобы они пересеклись друг с дружкой. Можно в двух точках: C и D, но достаточно одной – C. И снова хватит коротких засечек на пересечении в точке С.
  • Проводим прямую (отрезок) через точки С и D.
  • Все! Полученный отрезок, или прямая, – есть точное направление на север :). Простите, – на прямой угол.
  • На рисунке показаны два случая несоответствия границы по участку соседа. На Илл.3а приведен случай, когда забор соседа уходит от нужного направления в ущерб себе. На 3б – он залез на Ваш участок. В ситуации 3а возможно построение двух «направляющих» точек: и C, и D. На 3б же – только С.
  • Поставьте на углу О колышек, а в точке C – временный колышек, и протяните от С шнур до задней границы участка. – Так, чтобы шнур едва касался колышка О. Замерив от точки О – в направлении D, длину стороны по генплану, получите достоверный задний правый угол участка.

90град по уч соседа

Илл.3. Построение прямого угла – от угла соседа, с помощью циркуля-шагомера и веревочного циркуля

Если у Вас есть циркуль-шагомер, то можно и вовсе обойтись без веревочного. Веревочный в предыдущем примере мы применили для проведения дуг большего радиуса, чем у шагомера. Большего потому, что эти дуги должны где-нибудь пересечься. Для того чтобы дуги можно было провести шагомером с тем же радиусом – 1м с гарантией их пересечения, надо чтобы точки А и В находились внутри окружности c R =1м.

  • Отмерьте тогда эти равноудаленные точки рулеткой – в разные стороны от центра, но обязательно по линии АВ (линии забора соседа). Чем точки А и В будут ближе к центру – тем дальше от него направляющие точки: C и D, и тем точнее измерения. На рисунке это расстояние принято равным около четверти радиуса шагомера = 260мм.

90град по уч соседа_2

Илл.4. Построение прямого угла с помощью циркуля-шагомера и рулетки

  • Не менее актуальна эта схема действий и при построении любого прямоугольника, в частности – контура прямоугольного фундамента. Вы получите его идеальным. Его диагонали, конечно, нужно проверить, но разве не уменьшаются усилия? – По сравнению, когда диагонали, углы и стороны контура фундамента двигают туда-сюда, пока углы не сойдутся..

Собственно, мы решили геометрическую задачу на земле. Для того чтобы Ваши действия были более уверенными на участке, потренируйтесь на бумаге – с помощью обычного циркуля. Что ничем в принципе не отличается.

Добавить комментарий