Уравнение плоскости, проходящей через данную прямую параллельно другой прямой онлайн
С помощю этого онлайн калькулятора можно построить уравнение плоскости, проходящей через прямую L1 параллельно другой прямой L2 (прямые L1 и L2 не параллельны). Дается подробное решение с пояснениями. Для построения уравнения плоскости задайте вид уравнения прямых (канонический или параметрический) введите коэффициенты уравнений прямых в ячейки и нажимайте на кнопку “Решить”.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Уравнение плоскости, проходящей через данную прямую параллельно другой прямой − теория, примеры и решения
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы прямые L1 и L2, которые не параллельны:
Задача заключается в построении уравнения плоскости α, проходящей через прямую L1 параллельно прямой L2(Рис.1).
Решение. Уравнение прямой L1 проходит через точку M1(x1, y1, z1) и имеет направляющий вектор q1={m1, p1, l1}. Уравнение прямой L2 проходит через точку M2(x2, y2, z2) и имеет направляющий вектор q2={m2, p2, l2}.
Прамая L1 должна лежать на искомой плоскости α, следовательно точка M1 должна нежать на плоскости α.
Уравнение плоскости можно записать формулой
и поскольку M1(x1, y1, z1) принадлежит этой плоскости, то справедливо следующее равенство:
Для того, чтобы плоскость α проходила через прямую L1, нормальный вектор плоскости n={A, B, C} должен быть ортогональным направляющему вектору q1 прямой L1, т.е. скалярное произведение этих векторов должен быть равным нулю:
Для того, чтобы плоскость α была параллельна прямой L2, нормальный вектор плоскости n={A, B, C} должен быть ортогональным направляющему вектору q2 прямой L2, т.е. скалярное произведение этих векторов должен быть равным нулю:
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (4)−(6). Представим систему линейных уравнений (4)−(6) в матричном виде:
Решив однородную систему линейных уравнений (7) найдем частное решение. (как решить систему линейных уравнений посмотрите на странице метод Гаусса онлайн). Подставляя полученные коэффициенты A, B, C и D в уравнение (3), получим уравнение плоскости, проходящей через прямую L1 параллельно прямой L2.
Пример 1.Найти уравнение плоскости α, проходящей через прямую L1:
паралленьно другой прямой L2 :
Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1(1, 1, 5) и имеет направляющий вектор
Прямая L2 проходит через точку M2(x2, y2, z2)=M2(1, 1, −2) и имеет направляющий вектор
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(1, 1, 5) и нормальный вектор плоскости n={A, B, C} перпендикулярна направляющему вектору q1={m1, p1, l1}={1, 1, −3} прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (10)−(12). Подставим значения m1, p1, l1, m2, p2, l2, x1, y1, z1 в (10),(11) и (12):
Представим эти уравнения в матричном виде:
Решим систему линейных уравнений (16) отностительно A, B, C, D:
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n={A, B, C}={−13/24,1/6,−1/8} то она может быть представлена формулой:
Подставляя значения A,B,C,D в (17), получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число −24:
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (19).
——————
Пример 2. Найти уравнение плоскости α, проходящей через прямую L1:
и паралленьной другой прямой L2
Решение. Прямая L1 проходит через точку M1(x1, y1, z1)=M1( −2, 0, 1) и имеет направляющий вектор
Прямая L2 проходит через точку M2(x2, y2, z2)=M2(1, 1,−2) и имеет направляющий вектор
Поскольку плоскость проходит через прямую L1 , то она проходит также через точку M1(x1, y1, z1)=M1(−2, 0, 1) и нормальный вектор плоскости n={A, B, C} перпендикулярна направляющему вектору q1={m1, p1, l1}={5, −8, 3} прямой L1. Тогда уравнение плоскости должна удовлетворять условию:
а условие параллельности прямой L1 и искомой плоскости α представляется следующим равенством:
Так как плоскость α должна быть параллельной прямой L2, то должна выполнятся условие:
Таким образом мы должны решить систему трех уравнений с четыремя неизвестными (22)−(24). Подставим значения m1, p1, l1, m2, p2, l2, x1, y1, z1 в (22),(23) и (24):
Представим эти уравнения в матричном виде:
Решим систему линейных уравнений (28) отностительно A, B, C, D:
Так как искомая плоскость проходит через точку M1 и имеет нормальный вектор n={A, B, C}={11/35,2/35,−13/35} то она может быть представлена формулой:
Подставляя значения A,B,C,D в (30), получим:
Уравнение плоскости можно представить более упрощенном виде, умножив на число 35:
Ответ: Уравнение плоскости, проходящей через прямую (1) параллельно прямой (2) имеет вид (32).
Статья рассматривает понятия параллельность прямой и плоскости. Будут рассмотрены основные определения и приведены примеры. Рассмотрим признак параллельности прямой к плоскости с необходимыми и достаточными условиями параллельности, подробно решим примеры заданий.
Параллельные прямые и плоскость – основные сведения
Прямая и плоскость называются параллельными, если не имеют общих точек, то есть не пересекаются.
Параллельность обозначается «∥». Если в задании по условию прямая a и плоскость α параллельны, тогда обозначение имеет вид a∥α. Рассмотрим рисунок, приведенный ниже.
Считается, что прямая a, параллельная плоскости α и плоскость α, параллельная прямой a, равнозначные, то есть прямая и плоскость параллельны друг другу в любом случае.
Параллельность прямой и плоскости – признак и условия параллельности
Не всегда очевидно, что прямая и плоскость параллельны. Зачастую это нужно доказать. Необходимо использовать достаточное условие, которое даст гарантию на параллельность. Такой признак имеет название признака параллельности прямой и плоскости. Предварительно рекомендуется изучить определение параллельных прямых.
Если заданная прямая a, не лежащая в плоскости α, параллельна прямой b, которая принадлежит плоскости α, тогда прямая a параллельна плоскости α.
Рассмотрим теорему, используемую для установки параллельности прямой с плоскостью.
Если одна из двух параллельных прямых параллельна плоскости, то другая прямая лежит в этой плоскости либо параллельна ей.
Подробное доказательство рассмотрено в учебнике 10-11 класса по геометрии. Необходимым и достаточным условием параллельности прямой с плоскостью возможно при наличии определения направляющего вектора прямой и нормального вектора плоскости.
Для параллельности прямой a, не принадлежащей плоскости α, и данной плоскости необходимым и достаточным условием является перпендикулярность направляющего вектора прямой с нормальным вектором заданной плоскости.
Условие применимо, когда необходимо доказать параллельность в прямоугольной системе координат трехмерного пространства. Рассмотрим подробное доказательство.
Допустим, прямая а в систему координат Оху задается каноническими уравнениями прямой в пространстве , которые имеют вид x-x1ax=y-y1ay=z-z1az или параметрическими уравнениями прямой в пространстве x=x1+ax·λy=y1+ay·λz=z1+az·λ, плоскостью α с общими уравнениями плоскости Ax+By+Cz+D=0.
Отсюда a→=(ax, ay, az) является направляющим вектором с координатами прямой а, n→=(A, B, C) – нормальным вектором заданной плоскости альфа.
Чтобы доказать перпендикулярность n→=(A, B, C) и a→=(ax, ay, az), нужно использовать понятие скалярного произведения. То есть при произведении a→, n→=ax·A+ay·B+az·C результат должен быть равен нулю из условия перпендикулярности векторов.
Значит, что необходимым и достаточным условием параллельности прямой и плоскости запишется так a→, n→=ax·A+ay·B+az·C. Отсюда a→=(ax, ay, az) является направляющим вектором прямой a с координатами, а n→=(A, B, C) – нормальным вектором плоскости α.
Определить, параллельны ли прямая x=1+2·λy=-2+3·λz=2-4·λ с плоскостью x+6y+5z+4=0.
Решение
Получаем, что предоставленная прямая не принадлежит плоскости, так как координаты прямой M(1, -2, 2) не подходят. При подстановке получаем, что 1+6·(-2)+5·2+4=0⇔3=0.
Необходимо проверить на выполнимость необходимое и достаточное условие параллельности прямой и плоскости. Получим, что координаты направляющего вектора прямой x=1+2·λy=-2+3·λz=2-4·λимеют значения a→=(2, 3, -4).
Нормальным вектором для плоскости x+6y+5z+4=0 считается n→=(1, 6, 5). Перейдем к вычислению скалярного произведения векторов a→ и n→. Получим, что a→, n→=2·1+3·6+(-4)·5=0.
Значит, перпендикулярность векторов a→ и n→ очевидна. Отсюда следует, что прямая с плоскостью являются параллельными.
Ответ: прямая с плоскостью параллельны.
Определить параллельность прямой АВ в координатной плоскости Оуz, когда даны координаты A(2, 3, 0), B(4, -1, -7).
Решение
По условию видно, что точка A(2, 3, 0) не лежит на оси Ох, так как значение x не равно 0.
Для плоскости Oxz вектор с координатами i→=(1, 0, 0) считается нормальным вектором данной плоскости. Обозначим направляющий вектор прямой AB как AB→. Теперь при помощи координат начала и конца рассчитаем координаты вектора AB. Получим, что AB→=(2, -4, -7). Необходимо выполнить проверку на выполнимость необходимого и достаточного условия векторов AB→=(2, -4, -7) и i→=(1, 0, 0), чтобы определить их перпендикулярность.
Запишем AB→, i→=2·1+(-4)·0+(-7)·0=2≠0.
Отсюда следует, что прямая АВ с координатной плоскостью Оyz не являются параллельными.
Ответ: не параллельны.
Не всегда заданное условие способствует легкому определению доказательства параллельности прямой и плоскости. Появляется необходимость в проверке принадлежности прямой a плоскости α. Существует еще одно достаточное условие, при помощи которого доказывается параллельность.
При заданной прямой a с помощью уравнения двух пересекающихся плоскостей A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0, плоскостью α – общим уравнением плоскости Ax+By+Cz+D=0.
Необходимым и достаточным условием для параллельности прямой a и плоскости α яляется отсутствие решений системы линейных уравнений, имеющей вид A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0.
Из определения следует, что прямая a с плоскостью α не должна иметь общих точек, то есть не пересекаться, только в этом случае они будут считаться параллельными. Значит, система координат Охуz не должна иметь точек, принадлежащих ей и удовлетворяющих всем уравнениям:
A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0, а также уравнению плоскости Ax+By+Cz+D=0.
Следовательно, система уравнений, имеющая вид A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0, называется несовместной.
Верно обратное: при отсутствии решений системы A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0 не существует точек в Охуz, удовлетворяющих всем заданным уравнениям одновременно. Получаем, что нет такой точки с координатами, которая могла бы сразу быть решениями всех уравнений A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0 и уравнения Ax+By+Cz+D=0. Значит, имеем параллельность прямой и плоскости, так как отсутствуют их точки пересечения.
Система уравнений A1x+B1y+C1z+D1=0A2x+B2y+C2z+D2=0Ax+By+Cz+D=0 не имеет решения, когда ранг основной матрицы меньше ранга расширенной. Это проверяется теоремой Кронекера-Капелли для решения линейных уравнений. Можно применять метод Гаусса для определения ее несовместимости.
Доказать , что прямая x-1=y+2-1=z3 параллельна плоскости 6x-5y+13z-23=0.
Решение
Для решения данного примера следует переходить от канонического уравнения прямой к виду уравнения двух пересекающихся плоскостей. Запишем это так:
x-1=y+2-1=z3⇔-1·x=-1·(y+2)3·x=-1·z3·(y+2)=-1·z⇔x-y-2=03x+z=0
Чтобы доказать параллельность заданной прямой x-y-2=03x+z=0 с плоскостью 6x-5y+13z-23=0 , необходимо уравнения преобразовать в систему уравнений x-y-2=03x+z=06x-5y+13z-23=0.
Видим, что она не решаема, значит прибегнем к методу Гаусса.
Расписав уравнения, получаем, что 1-10230106-51323~1-102031-60113-1113~1-102031-6000-913.
Отсюда делаем вывод, что система уравнений является несовместной, так как прямая и плоскость не пересекаются, то есть не имеют общих точек.
Делаем вывод, что прямая x-1=y+2-1=z3 и плоскость 6x-5y+13z-23=0 параллельны, так как было выполнено необходимое и достаточное условие для параллельности плоскости с заданной прямой.
Ответ: прямая и плоскость параллельны.
Преподаватель математики и информатики. Кафедра бизнес-информатики Российского университета транспорта
Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости онлайн
С помощю этого онлайн калькулятора можно найти уравнение плоскости, проходящей через заданную точку и параллельной данной плоскости. Дается подробное решение с пояснениями. Для нахождения уравнения плоскости, введите координаты точки и коэффициенты уравнения плоскости в ячейки и нажимайте на кнопку “Решить”.
Предупреждение
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Уравнение плоскости, проходящей через данную точку и параллельной заданной плоскости − теория, примеры и решения
Наша задача найти уравнение плоскости, проходящей через точку M0 и параллельной плоскости (1)(Рис.1).
Все параллельные плоскости имеют коллинеарные нормальные векторы. Поэтому для построения параллельной к (1) плоскости, проходящей через точку M0(x0, y0, z0) нужно взять в качестве нормального вектора искомой плоскости, нормальный вектор n=(A, B, C) плоскости (1). Далее нужно найти такое значение D, при котором точка M0(x0, y0, z0) удовлетворяла уравнению плоскости (1):
(2) |
Решим (2) относительно D:
Подставляя значение D из (3) в (1), получим:
Ax+By+Cz−(Ax0+By0+Cz0)=0 | (4) |
Уравнение (4) можно представить также в следующем виде:
A(x−x0)+B(y−y0)+C(z−z0)=0 | (5) |
Уравнение (5) является уравнением плоскости, проходящей через точку M0(x0, y0, z0) и параллельной плоскости (1).
Найти уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости :
(6) |
Запишем коэффициенты нормального вектора плоскости (6):
(7) |
Подставляя координаты точки M0 и координаты нормального вектора в (3), получим:
Подставляя значения A, B, C, D в уравнение плоскости (1), получим:
Уравнение плоскости можно представить в более упрощенном виде, умножив на 4:
Уравнение плоскости, проходящей через точку M0(1, −6, 2) и параллельной плоскости (6) имеет следующий вид:
Общее уравнение прямой: описание, примеры, решение задач
Данная статья продолжает тему уравнения прямой на плоскости: рассмотрим такой вид уравнения, как общее уравнение прямой. Зададим теорему и приведем ее доказательство; разберемся, что такое неполное общее уравнение прямой и как осуществлять переходы от общего уравнения к другим типам уравнений прямой. Всю теорию закрепим иллюстрациями и решением практических задач.
Общее уравнение прямой: основные сведения
Пусть на плоскости задана прямоугольная система координат O x y .
Любое уравнение первой степени, имеющее вид A x + B y + C = 0 , где А , В , С – некоторые действительные числа ( А и В не равны одновременно нулю) определяет прямую линию в прямоугольной системе координат на плоскости. В свою очередь, любая прямая в прямоугольной системе координат на плоскости определяется уравнением, имеющим вид A x + B y + C = 0 при некотором наборе значений А , В , С .
указанная теорема состоит из двух пунктов, докажем каждый из них.
- Докажем, что уравнение A x + B y + C = 0 определяет на плоскости прямую.
Пусть существует некоторая точка М 0 ( x 0 , y 0 ) , координаты которой отвечают уравнению A x + B y + C = 0 . Таким образом: A x 0 + B y 0 + C = 0 . Вычтем из левой и правой частей уравнений A x + B y + C = 0 левую и правую части уравнения A x 0 + B y 0 + C = 0 , получим новое уравнение, имеющее вид A ( x – x 0 ) + B ( y – y 0 ) = 0 . Оно эквивалентно A x + B y + C = 0 .
Полученное уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 является необходимым и достаточным условием перпендикулярности векторов n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) . Таким образом, множество точек M ( x , y ) задает в прямоугольной системе координат прямую линию, перпендикулярную направлению вектора n → = ( A , B ) . Можем предположить, что это не так, но тогда бы векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) не являлись бы перпендикулярными, и равенство A ( x – x 0 ) + B ( y – y 0 ) = 0 не было бы верным.
Следовательно, уравнение A ( x – x 0 ) + B ( y – y 0 ) = 0 определяет некоторую прямую в прямоугольной системе координат на плоскости, а значит и эквивалентное ему уравнение A x + B y + C = 0 определяет ту же прямую. Так мы доказали первую часть теоремы.
- Приведем доказательство, что любую прямую в прямоугольной системе координат на плоскости можно задать уравнением первой степени A x + B y + C = 0 .
Зададим в прямоугольной системе координат на плоскости прямую a ; точку M 0 ( x 0 , y 0 ) , через которую проходит эта прямая, а также нормальный вектор этой прямой n → = ( A , B ) .
Пусть также существует некоторая точка M ( x , y ) – плавающая точка прямой. В таком случае, векторы n → = ( A , B ) и M 0 M → = ( x – x 0 , y – y 0 ) являются перпендикулярными друг другу, и их скалярное произведение есть нуль:
n → , M 0 M → = A ( x – x 0 ) + B ( y – y 0 ) = 0
Перепишем уравнение A x + B y – A x 0 – B y 0 = 0 , определим C : C = – A x 0 – B y 0 и в конечном результате получим уравнение A x + B y + C = 0 .
Так, мы доказали и вторую часть теоремы, и доказали всю теорему в целом.
Уравнение, имеющее вид A x + B y + C = 0 – это общее уравнение прямой на плоскости в прямоугольной системе координат O x y .
Опираясь на доказанную теорему, мы можем сделать вывод, что заданные на плоскости в фиксированной прямоугольной системе координат прямая линия и ее общее уравнение неразрывно связаны. Иначе говоря, исходной прямой соответствует ее общее уравнение; общему уравнению прямой соответствует заданная прямая.
Из доказательства теоремы также следует, что коэффициенты А и В при переменных x и y являются координатами нормального вектора прямой, которая задана общим уравнением прямой A x + B y + C = 0 .
Рассмотрим конкретный пример общего уравнения прямой.
Пусть задано уравнение 2 x + 3 y – 2 = 0 , которому соответствует прямая линия в заданной прямоугольной системе координат. Нормальный вектор этой прямой – это вектор n → = ( 2 , 3 ) . Изобразим заданную прямую линию на чертеже.
Также можно утверждать и следующее: прямая, которую мы видим на чертеже, определяется общим уравнением 2 x + 3 y – 2 = 0 , поскольку координаты всех точек заданной прямой отвечают этому уравнению.
Мы можем получить уравнение λ · A x + λ · B y + λ · C = 0 , умножив обе части общего уравнения прямой на число λ , не равное нулю. Полученное уравнение является эквивалентом исходного общего уравнения, следовательно, будет описывать ту же прямую на плоскости.
Неполное уравнение общей прямой
Полное общее уравнение прямой – такое общее уравнение прямой A x + B y + C = 0 , в котором числа А , В , С отличны от нуля. В ином случае уравнение является неполным.
Разберем все вариации неполного общего уравнения прямой.
- Когда А = 0 , В ≠ 0 , С ≠ 0 , общее уравнение принимает вид B y + C = 0 . Такое неполное общее уравнение задает в прямоугольной системе координат O x y прямую, которая параллельна оси O x , поскольку при любом действительном значении x переменная y примет значение – C B . Иначе говоря, общее уравнение прямой A x + B y + C = 0 , когда А = 0 , В ≠ 0 , задает геометрическое место точек ( x , y ) , координаты которых равны одному и тому же числу – C B .
- Если А = 0 , В ≠ 0 , С = 0 , общее уравнение принимает вид y = 0 . Такое неполное уравнение определяет ось абсцисс O x .
- Когда А ≠ 0 , В = 0 , С ≠ 0 , получаем неполное общее уравнение A x + С = 0 , задающее прямую, параллельную оси ординат.
- Пусть А ≠ 0 , В = 0 , С = 0 , тогда неполное общее уравнение примет вид x = 0 , и это есть уравнение координатной прямой O y .
- Наконец, при А ≠ 0 , В ≠ 0 , С = 0 , неполное общее уравнение принимает вид A x + B y = 0 . И это уравнение описывает прямую, которая проходит через начало координат. В самом деле, пара чисел ( 0 , 0 ) отвечает равенству A x + B y = 0 , поскольку А · 0 + В · 0 = 0 .
Графически проиллюстрируем все вышеуказанные виды неполного общего уравнения прямой.
Известно, что заданная прямая параллельна оси ординат и проходит через точку 2 7 , – 11 . Необходимо записать общее уравнение заданной прямой.
Решение
Прямая, параллельная оси ординат, задается уравнением вида A x + C = 0 , в котором А ≠ 0 . Также условием заданы координаты точки, через которую проходит прямая, и координаты этой точки отвечают условиям неполного общего уравнения A x + C = 0 , т.е. верно равенство:
Из него возможно определить C , если придать A какое-то ненулевое значение, к примеру, A = 7 . В таком случае получим: 7 · 2 7 + C = 0 ⇔ C = – 2 . Нам известны оба коэффициента A и C , подставим их в уравнение A x + C = 0 и получим требуемое уравнение прямой: 7 x – 2 = 0
Ответ: 7 x – 2 = 0
На чертеже изображена прямая, необходимо записать ее уравнение.
Решение
Приведенный чертеж позволяет нам легко взять исходные данные для решения задачи. Мы видим на чертеже, что заданная прямая параллельна оси O x и проходит через точку ( 0 , 3 ) .
Прямую, которая параллельна очи абсцисс, определяет неполное общее уравнение B y + С = 0 . Найдем значения B и C . Координаты точки ( 0 , 3 ) , поскольку через нее проходит заданная прямая, будут удовлетворять уравнению прямой B y + С = 0 , тогда справедливым является равенство: В · 3 + С = 0 . Зададим для В какое-то значение, отличное от нуля. Допустим, В = 1 , в таком случае из равенства В · 3 + С = 0 можем найти С : С = – 3 . Используем известные значения В и С , получаем требуемое уравнение прямой: y – 3 = 0 .
Ответ: y – 3 = 0 .
Общее уравнение прямой, проходящей через заданную точку плоскости
Пусть заданная прямая проходит через точку М 0 ( x 0 , y 0 ) , тогда ее координаты отвечают общему уравнению прямой, т.е. верно равенство: A x 0 + B y 0 + C = 0 . Отнимем левую и правую части этого уравнения от левой и правой части общего полного уравнения прямой. Получим: A ( x – x 0 ) + B ( y – y 0 ) + C = 0 , это уравнение эквивалентно исходному общему, проходит через точку М 0 ( x 0 , y 0 ) и имеет нормальный вектор n → = ( A , B ) .
Результат, который мы получили, дает возможность записывать общее уравнение прямой при известных координатах нормального вектора прямой и координатах некой точки этой прямой.
Даны точка М 0 ( – 3 , 4 ) , через которую проходит прямая, и нормальный вектор этой прямой n → = ( 1 , – 2 ) . Необходимо записать уравнение заданной прямой.
Решение
Исходные условия позволяют нам получить необходимые данные для составления уравнения: А = 1 , В = – 2 , x 0 = – 3 , y 0 = 4 . Тогда:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 1 · ( x – ( – 3 ) ) – 2 · y ( y – 4 ) = 0 ⇔ ⇔ x – 2 y + 22 = 0
Задачу можно было решить иначе. Общее уравнение прямой имеет вид A x + B y + C = 0 . Заданный нормальный вектор позволяет получить значения коэффициентов A и B , тогда:
A x + B y + C = 0 ⇔ 1 · x – 2 · y + C = 0 ⇔ x – 2 · y + C = 0
Теперь найдем значение С, используя заданную условием задачи точку М 0 ( – 3 , 4 ) , через которую проходит прямая. Координаты этой точки отвечают уравнению x – 2 · y + C = 0 , т.е. – 3 – 2 · 4 + С = 0 . Отсюда С = 11 . Требуемое уравнение прямой принимает вид: x – 2 · y + 11 = 0 .
Ответ: x – 2 · y + 11 = 0 .
Задана прямая 2 3 x – y – 1 2 = 0 и точка М 0 , лежащая на этой прямой. Известна лишь абсцисса этой точки, и она равна – 3 . Необходимо определить ординату заданной точки.
Решение
Зададим обозначение координат точки М 0 как x 0 и y 0 . В исходных данных указано, что x 0 = – 3 . Поскольку точка принадлежит заданной прямой, значит ее координаты отвечают общему уравнению этой прямой. Тогда верным будет равенство:
2 3 x 0 – y 0 – 1 2 = 0
Определяем y 0 : 2 3 · ( – 3 ) – y 0 – 1 2 = 0 ⇔ – 5 2 – y 0 = 0 ⇔ y 0 = – 5 2
Ответ: – 5 2
Переход от общего уравнения прямой к прочим видам уравнений прямой и обратно
Как мы знаем, существует несколько видов уравнения одной и той же прямой на плоскости. Выбор вида уравнения зависит от условий задачи; возможно выбирать тот, который более удобен для ее решения. Здесь очень пригодится навык преобразования уравнения одного вида в уравнение другого вида.
Для начала рассмотрим переход от общего уравнения вида A x + B y + C = 0 к каноническому уравнению x – x 1 a x = y – y 1 a y .
Если А ≠ 0 , тогда переносим слагаемое B y в правую часть общего уравнения. В левой части выносим A за скобки. В итоге получаем: A x + C A = – B y .
Это равенство возможно записать как пропорцию: x + C A – B = y A .
В случае, если В ≠ 0 , оставляем в левой части общегь уравнения только слагаемое A x , прочие переносим в правую часть, получаем: A x = – B y – C . Выносим – В за скобки, тогда: A x = – B y + C B .
Перепишем равенство в виде пропорции: x – B = y + C B A .
Конечно, заучивать полученные формулы нет необходимости. Достаточно знать алгоритм действий при переходе от общего уравнения к каноническому.
Задано общее уравнение прямой 3 y – 4 = 0 . Необходимо преобразовать его в каноническое уравнение.
Решение
Запишем исходное уравнение как 3 y – 4 = 0 . Далее действуем по алгоритму: в левой части остаётся слагаемое 0 x ; а в правой части выносим – 3 за скобки; получаем: 0 x = – 3 y – 4 3 .
Запишем полученное равенство как пропорцию: x – 3 = y – 4 3 0 . Так, мы получили уравнение канонического вида.
Ответ: x – 3 = y – 4 3 0 .
Чтобы преобразовать общее уравнение прямой в параметрические, сначала осуществляют переход к каноническому виду, а затем переход от канонического уравнения прямой к параметрическим уравнениям.
Прямая задана уравнением 2 x – 5 y – 1 = 0 . Запишите параметрические уравнения этой прямой.
Решение
Осуществим переход от общего уравнения к каноническому:
2 x – 5 y – 1 = 0 ⇔ 2 x = 5 y + 1 ⇔ 2 x = 5 y + 1 5 ⇔ x 5 = y + 1 5 2
Теперь примем обе части полученного канонического уравнения равными λ , тогда:
x 5 = λ y + 1 5 2 = λ ⇔ x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Ответ: x = 5 · λ y = – 1 5 + 2 · λ , λ ∈ R
Общее уравнение можно преобразовать в уравнение прямой с угловым коэффициентом y = k · x + b , но только тогда, когда В ≠ 0 . Для перехода в левой части оставляем слагаемое B y , остальные переносятся в правую. Получим: B y = – A x – C . Разделим обе части полученного равенство на B , отличное от нуля: y = – A B x – C B .
Задано общее уравнение прямой: 2 x + 7 y = 0 . Необходимо преобразовать то уравнение в уравнение с угловым коэффициентом.
Решение
Произведем нужные действия по алгоритму:
2 x + 7 y = 0 ⇔ 7 y – 2 x ⇔ y = – 2 7 x
Ответ: y = – 2 7 x .
Из общего уравнения прямой достаточно просто получить уравнение в отрезках вида x a + y b = 1 . Чтобы осуществить такой переход, перенесем число C в правую часть равенства, разделим обе части полученного равенства на – С и, наконец, перенесем в знаменатели коэффициенты при переменных x и y :
A x + B y + C = 0 ⇔ A x + B y = – C ⇔ ⇔ A – C x + B – C y = 1 ⇔ x – C A + y – C B = 1
Необходимо преобразовать общее уравнение прямой x – 7 y + 1 2 = 0 в уравнение прямой в отрезках.
Решение
Перенесем 1 2 в правую часть: x – 7 y + 1 2 = 0 ⇔ x – 7 y = – 1 2 .
Разделим на -1/2 обе части равенства: x – 7 y = – 1 2 ⇔ 1 – 1 2 x – 7 – 1 2 y = 1 .
Преобразуем далее в необходимый вид: 1 – 1 2 x – 7 – 1 2 y = 1 ⇔ x – 1 2 + y 1 14 = 1 .
Ответ: x – 1 2 + y 1 14 = 1 .
В общем, несложно производится и обратный переход: от прочих видов уравнения к общему.
Уравнение прямой в отрезках и уравнение с угловым коэффициентом легко преобразовать в общее, просто собрав все слагаемые в левой части равенства:
x a + y b ⇔ 1 a x + 1 b y – 1 = 0 ⇔ A x + B y + C = 0 y = k x + b ⇔ y – k x – b = 0 ⇔ A x + B y + C = 0
Каноническое уравнение преобразуется к общему по следующей схеме:
x – x 1 a x = y – y 1 a y ⇔ a y · ( x – x 1 ) = a x ( y – y 1 ) ⇔ ⇔ a y x – a x y – a y x 1 + a x y 1 = 0 ⇔ A x + B y + C = 0
Для перехода от параметрических сначала осуществляется переход к каноническому, а затем – к общему:
x = x 1 + a x · λ y = y 1 + a y · λ ⇔ x – x 1 a x = y – y 1 a y ⇔ A x + B y + C = 0
Заданы параметрические уравнения прямой x = – 1 + 2 · λ y = 4 . Необходимо записать общее уравнение этой прямой.
Решение
Осуществим переход от параметрических уравнений к каноническому:
x = – 1 + 2 · λ y = 4 ⇔ x = – 1 + 2 · λ y = 4 + 0 · λ ⇔ λ = x + 1 2 λ = y – 4 0 ⇔ x + 1 2 = y – 4 0
Перейдем от канонического к общему:
x + 1 2 = y – 4 0 ⇔ 0 · ( x + 1 ) = 2 ( y – 4 ) ⇔ y – 4 = 0
Ответ: y – 4 = 0
Задано уравнение прямой в отрезках x 3 + y 1 2 = 1 . Необходимо осуществить переход к общему виду уравнения.
Решение:
Просто перепишем уравнение в необходимом виде:
x 3 + y 1 2 = 1 ⇔ 1 3 x + 2 y – 1 = 0
Ответ: 1 3 x + 2 y – 1 = 0 .
Составление общего уравнения прямой
Выше мы говорили о том, что общее уравнение возможно записать при известных координатах нормального вектора и координатах точки, через которую проходит прямая. Такая прямая определяется уравнением A ( x – x 0 ) + B ( y – y 0 ) = 0 . Там же мы разобрали соответствующий пример.
Сейчас рассмотрим более сложные примеры, в которых для начала необходимо определить координаты нормального вектора.
Задана прямая, параллельная прямой 2 x – 3 y + 3 3 = 0 . Также известна точка M 0 ( 4 , 1 ) , через которую проходит заданная прямая. Необходимо записать уравнение заданной прямой.
Решение
Исходные условия говорят нам о том, что прямые параллельны, тогда, как нормальный вектор прямой, уравнение которой требуется записать, возьмем направляющий вектор прямой n → = ( 2 , – 3 ) : 2 x – 3 y + 3 3 = 0 . Теперь нам известны все необходимые данные, чтобы составить общее уравнение прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 2 ( x – 4 ) – 3 ( y – 1 ) = 0 ⇔ 2 x – 3 y – 5 = 0
Ответ: 2 x – 3 y – 5 = 0 .
Заданная прямая проходит через начало координат перпендикулярно прямой x – 2 3 = y + 4 5 . Необходимо составить общее уравнение заданной прямой.
Решение
Нормальный вектором заданной прямой будет направляющий вектор прямой x – 2 3 = y + 4 5 .
Тогда n → = ( 3 , 5 ) . Прямая проходит через начало координат, т.е. через точку О ( 0 , 0 ) . Составим общее уравнение заданной прямой:
A ( x – x 0 ) + B ( y – y 0 ) = 0 ⇔ 3 ( x – 0 ) + 5 ( y – 0 ) = 0 ⇔ 3 x + 5 y = 0
Математический портал
Nav view search
Navigation
Search
- Вы здесь:
- Home
- Аналитическая геометрия
- Прямая в пространстве.
Прямая в пространстве, всевозможные уравнения.
Литература: Сборник задач по математике. Часть 1. Под ред А. В. Ефимова, Б. П. Демидовича.
Существуют такие формы записи уравнения прямой в пространстве:
1) $left<beginA_1x+B_1y+C_1z+D_1=0quad (P_1)\ A_2x+B_2y+C_2z+D_2=0quad (P_2)endright. – $ общее уравнение прямой $L$ в пространстве, как линии пересечения двух плоскостей $P_1$ и $P_2.$
2) $frac=frac=frac
-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$ Вектор $overline S$ является направляющим вектором прямой $L.$
3) $frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$
4) Приравнивая каждую из частей канонического уравнения 2 к прараметру $t,$ получаем параметрическое уравнение прямой:
Расположение двух прямых в пространстве.
Условие параллельности двух прямых: Прямые $L_1$ и $L_2$ параллельны тогда и только тогда, когда $overline_1paralleloverline_2Leftrightarrow$ $frac=frac=frac.$
Условие перпендикулярности двух прямых: $L_1perp L_2Leftrightarrow$ $overline_1perpoverline_2Leftrightarrow$ $cdot+cdot+p_1cdot p_2=0.$
Угол между прямыми:
Расстояние от точки до прямой равно длине перпендикуляра, опущенного из точки на данную прямую.
Пусть прямая $L$ задана уравнением $frac=frac=frac
,$ следовательно $overline S=(m, n, p).$ Пусть также $M_2=(x_2, y_2, z_2) -$ произвольная точка, принадлежащая прямой $L.$ Тогда расстояние от точки $M_1=(x_1, y_1, z_1)$ до прямой $L$ можно найти по формуле: $$d(M_1, L)=frac<|[overline, overline S]|><|overline S|>.$$
Примеры.
2.198. Написать каноническое уравнение прямой, проходящей через точку $M_0(2, 0, -3)$ параллельно:
а) вектору $q(2, -3, 5);$
е) прямой $x=-2+t, y=2t, z=1-frac<1><2>t.$
Решение.
а) Воспользуемся формулой (2) уравнения прямой в пространстве:
$frac=frac=frac
-$ каноническое уравнение прямой $L,$ которая проходит через точку $M(x_0, y_0, z_0)$ параллельно вектору $overline=(m, n, p).$
По условию $M_0(2, 0, -3)$ и $overline=q(2,-3,5).$
б) Прямая, параллельная заданной прямой, должна быть параллельна ее направляющему вектору. Направляющий вектор прямой $frac<5>=frac<2>=frac<-1>$ имеет координаты $overline S(5, 2, -1).$ Далее, находим уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(5, 2, -1)$ как и в пункте а):
в) ось OX имеет направляющий вектор $i=(1, 0, 0).$ Таким образом, ищем уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $i(1, 0, 0):$
д) Прямая, заданная как пересечение двух плоскостей перпендикулярна нормалям обеих плоскостей , поэтому Направляющий вектор прямой
$left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ можно найти как векторное произведение нормалей заданных плоскостей.
Для плоскости $P_1:$ $3x-y+2z-7=0$ нормальный вектор имеет координаты $N_1(3, -1, 2);$
для плосости $P_2:$ $x+3y-2z-3,$ нормальный вектор имеет координаты $N_2(1, 3, -2).$
Находим векторное произведение:
Таким образом, направляющий вектор прямой $left<begin3x-y+2z-7=0,\ x+3y-2z-3=0; endright.$ имеет координаты $overline S (-4, 8, 10).$
Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(-4, 8, 10):$
е) Найдем направляющий вектор прямой $x=-2+t, y=2t, z=1-frac<1><2>t.$ Для этого запишем уравнение этой прямой в каноническом виде:
Отсюда находим направляющий вектор $overline Sleft(1, 2, -frac<1><2>right).$ Умножим координаты направляющего вектора на 2 (чтобы избавиться от дроби): $overline S_1(2, 4, -1).$
Далее нам необходимо найти уравнение прямой проходящей точку $M_0(2, 0, -3)$ параллельно вектору $overline S(2, 4, -1):$
2.199(a). Написать уравнение прямой, проходящей через две заданные точки $M_1 (1, -2, 1)$ и $M_2(3, 1, -1).$
Решение.
Воспользуемся формулой (3) уравнения прямой в пространстве:
$frac=frac=frac -$ уравнение прямой, которая проходит через две точки $A(x_1, y_1, z_1)$ и $B(x_2, y_2, z_2).$
Подставляем заданные точки:
2.204. Найти расстояние между параллельными прямыми
Решение.
Расстояние между параллельными прямыми $L_1$ и $L_2$ равно расстоянию от произвольной точки прямой $L_1$ до прямой $L_2.$ Следовательно, его можно найти по формуле $$d(L_1, L_2)=d(M_1, L_2)=frac<|[overline, overline S]|><|overline S|>,$$ где $M_1-$ произвольная точка прямой $L_1,$ $M_2 – $произвольная точка прямой $L_2,$ $overline S -$ направляющий вектор прямой $L_2.$
Из канонических уравнений прямых берем точки $M_1=(2, -1, 0)in L_1,$ $M_2=(7, 1, 3)in L_2,$ $overline S=(3, 4, 2). $
Отсюда находим $overline=(7-2, 1-(-1),3-0)=(5, 2, 3);$
Ответ: 3.
2.205 (а). Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $L:$ $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$
Решение.
Для того, чтобы найти расстояние от точки $A$ до прямой $L,$ нам необходимо выбрать произвольную точку $M,$ принадлежащую прямой $L$ и найти направляющий вектор этой прямой.
Выбираем точку $M.$ Пусть координата $z=0.$ Подставим это значение в данную систему:
Таким образом, $M=(-14, -frac<25><2>, 0)$
Направляющий вектор найдем, как векторное произведение нормалей заданных плоскостей:
Для плоскости $P_1:$ $2x-2y+z+3=0$ нормальный вектор имеет координаты $N_1(2, -2, 1);$
для плосости $P_2:$ $3x+2y+2z+17=0,$ нормальный вектор имеет координаты $N_2(3, -2, 2).$
Находим векторное произведение:
Таким образом, направляющий вектор прямой $left<begin2x-2y+z+3=0,\ 3x-2y+2z+17=0 endright.$
имеет координаты $overline S (-2, -1, 2).$
Теперь можно воспользоваться формулой $$d(A, L)=frac<|[overline, overline S]|><|overline S|>.$$
$overline=left(2-(-14),3-left(-frac<25><2>right),-1-0right)=left(16, 15frac<1><2>, -1right)$
Ответ: $d(A, L)=15.$
2.212. Написать каноническое уравнение прямой, которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $P: 3x-2y-3z-7=0$ и пересекает прямую $L: frac<3>=frac<-2>=frac<2>.$
Решение.
Запишем уравнение плоскости $P_1,$ которая проходит через точку $M_0(3, -2, -4)$ параллельно плоскости $3x-2y-3z-7=0:$
$P: 3x-2y-3z-7=0Rightarrow overline N=(3; -2; -3).$ Искомая плоскость проходит через точку $M_0(3, -2, -4)$ перпендикулярно вектору $overline N(3, -2, -3).$
$P_1: 3x-9-2y-4-3z-12=0 Rightarrow$
Далее найдем точку пересечения плоскости $P_1$ и прямой $L.$ Для этого запишем уравнение прямой $L$ в параметрической форме:
Далее, подставим значения $x, y$ и $z,$ выраженные через $t$ в уравнение плоскости $P_1,$ и из полученного уравнения выразм $t:$
Подставляя найденное занчение $t$ в уравнение прямой $L,$ найдем координаты точки пересечения:
Таким образом, прямая $L$ и плоскость $P_1$ пересекаются в точке $M_1(8, -8, 5).$
Теперь запишем уравнение прямой, проходящей через точки $M_0(3, -2. -4)$ и $M_1(8, -8, 5)$– это и будет искомая прямая. Воспользуемся формулой ( 3) $frac=frac=frac :$
2.199.
б) Написать уравнение прямой, проходящей через две заданные точки $M_1 (3, -1, 0)$ и $M_2(1, 0, -3).$
б) Найти расстояние от точки $A(2, 3, -1)$ до заданной прямой $ L:$ $left<beginx=3t+5,\ y=2t,\z=-2t-25. endright.$
2.206. Доказать, что прямые $L_1: left<begin2x+2y-z-10=0,\ x-y-z-22=0, endright.$ и $L_2: frac<3>=frac<-1>=frac<4>.$ параллельны и найти расстояние $rho(L_1, L_2)$
2.207. Составить уравнения прямой, проходящей через точки пересечения плоскости $x-3y+2z+1=0$ с прямыми $frac<5>=frac<-2>=frac<-1>$ и $frac<4>=frac<-6>=frac<2>.$
2.211. Написать уравнение прямой, проходящей через точку $M_0(7, 1, 0)$ параллельно плоскости $2x+3y-z-15=0$ и пересекающей прямую $frac<1>=frac<4>=frac<2>.$
[spoiler title=”источники:”]
http://zaochnik.com/spravochnik/matematika/prjamaja-ploskost/obschee-uravnenie-prjamoj/
http://mathportal.net/index.php/analiticheskaya-geometriya/pryamaya-v-prostranstve
[/spoiler]
Онлайн калькулятор. Уравнение плоскости
Предлагаю вам воспользоваться онлайн калькулятором чтобы найти уравнение плоскости.
Воспользовавшись онлайн калькулятором, вы получите детальное пошаговое решение вашей задачи, которое позволит понять алгоритм решения задач на составление уравнения плоскости и закрепить пройденный материал.
Найти уравнение плоскости
Выберите метод решения исходя из имеющихся в задаче данных:
В задаче известны:
Вводить можно числа или дроби (-2.4, 5/7, …). Более подробно читайте в правилах ввода чисел.
Данный калькулятор предназначен для определения взаимного расположения двух плоскостей в пространстве онлайн.
Две плоскости могут иметь три варианта взаимного расположения относительно друг друга. Во-первых, плоскости могут быть параллельны. Во-вторых, они могут быть перпендикулярны. В таком случае угол между плоскостями равен 90 градусам. В-третьих, плоскости могут пересекаться, образовывая при этом два острых и два тупых угла.
Таким образом, с помощью данного калькулятора определяется следующее: пересекаются или нет плоскости, и, если они пересекаются, то перпендикулярны ли они.
Чтобы ответить на вопрос о взаимном расположении плоскостей, необходимо ввести уравнения заданных плоскостей в калькулятор и нажать кнопку «Вычислить».
×
Пожалуйста напишите с чем связна такая низкая оценка:
×
Для установки калькулятора на iPhone – просто добавьте страницу
«На главный экран»
Для установки калькулятора на Android – просто добавьте страницу
«На главный экран»