Построение линии пересечения плоскостей, заданных различными способами
Две плоскости пересекаются друг с другом по прямой линии. Чтобы её построить, необходимо определить две точки, принадлежащие одновременно каждой из заданных плоскостей. Рассмотрим, как это делается, на следующих примерах.
Найдем линию пересечения плоскостей общего положения α и β для случая, когда пл. α задана проекциями треугольника ABC, а пл. β – параллельными прямыми d и e. Решение этой задачи осуществляется путем построения точек L1 и L2, принадлежащих линии пересечения.
- Вводим вспомогательную горизонтальную плоскость γ1. Она пересекает α и β по прямым. Фронтальные проекции этих прямых, 1”C” и 2”3”, совпадают с фронтальным следом пл. γ1. Он обозначен на рисунке как f0γ1 и расположен параллельно оси x.
- Определяем горизонтальные проекции 1’C’ и 2’3′ по линиям связи.
- Находим горизонтальную проекцию точки L1 на пересечении прямых 1’C’ и 2’3′. Фронтальная проекция точки L1 лежит на фронтальном следе плоскости γ.
- Вводим вспомогательную горизонтальную плоскость γ2. С помощью построений, аналогичных описанным в пунктах 1, 2, 3, находим проекции точки L2.
- Через L1 и L2 проводим искомую прямую l.
Стоит отметить, что в качестве пл. γ удобно использовать как плоскости уровня, так и проецирующие плоскости.
Пересечение плоскостей, заданных следами
Найдем линию пересечения плоскостей α и β, заданных следами. Эта задача значительно проще предыдущей. Она не требует введения вспомогательных плоскостей. Их роль выполняют плоскости проекций П1 и П2.
- Находим точку L’1, расположенную на пересечении горизонтальных следов h0α и h0β. Точка L”1 лежит на оси x. Её положение определяется при помощи линии связи, проведенной из L’1.
- Находим точку L”2 на пересечении фронтальных следов пл. α и β. Точка L’2 лежит на оси x. Её положение определяется по линии связи, проведенной из L”2.
- Проводим прямые l’ и l” через соответствующие проекции точек L1 и L2, как это показано на рисунке.
Таким образом, прямая l, проходящая через точки пересечения следов плоскостей, является искомой.
Пересечение плоскостей треугольников
Рассмотрим построение линии пересечения плоскостей, заданных треугольниками ABC и DEF, и определение их видимости методом конкурирующих точек.
- Через прямую DE проводим фронтально-проецирующую плоскость σ: на чертеже обозначен ее след f0σ. Плоскость σ пересекает треугольник ABC по прямой 35. Отметив точки 3”=A”B”∩f0σ и 5”=A”С”∩f0σ, определяем положение (∙)3′ и (∙)5′ по линиям связи на ΔA’B’C’.
- Находим горизонтальную проекцию N’=D’E’∩3’5′ точки N пересечения прямых DE и 35, которые лежат во вспомогательной плоскости σ. Проекция N” расположена на фронтальном следе f0σ на одной линии связи с N’.
Через прямую BC проводим фронтально-проецирующую плоскость τ: на чертеже обозначен ее след f0τ. С помощью построений, аналогичных тем, что описаны в пунктах 1 и 2 алгоритма, находим проекции точки K.
Фронтально-конкурирующие точки 4 и 5, принадлежащие ΔDEF и ΔABC соответственно, находятся на одной фронтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π2. Так как (∙)5′ находится ближе к наблюдателю, чем (∙)4′, то отсек ΔABC с принадлежащей ему (∙)5 является видимым в проекции на пл. π2. С противоположной стороны от линии N”K” видимость треугольников меняется.
Горизонтально-конкурирующие точки 6 и 7, принадлежащие ΔABC и ΔDEF соответственно, находятся на одной горизонтально-проецирующей прямой, но расположены на разном удалении от плоскости проекций π1. Так как (∙)6” находится выше, чем (∙)7”, то отсек ΔABC с принадлежащей ему (∙)6 является видимым в проекции на пл. π1. С противоположной стороны от линии N’K’ видимость треугольников меняется.
Взаимное расположение трех плоскостей в пространстве
Три плоскости в пространстве могут располагаться так и только так, как показано в следующей таблице.
Плоскости попарно не пересекаются.
Прямые, по которым третья плоскость пересекает две параллельные плоскости, параллельны.
Прямые, по которым пересекаются каждые две плоскости, параллельны.
Все три плоскости имеют единственную общую точку (на рисунке – это точка S)
Все три плоскости имеют общую прямую
Фигура | Рисунок | Свойство |
Три параллельные плоскости | ||
Две параллельные плоскости, пересечённые третьей плоскостью | ||
Третья плоскость параллельна линии пересечения первых двух плоскостей | ||
Третья плоскость пересекает линию пересечения первых двух плоскостей | ||
Третья плоскость проходит через линию пересечения первых двух плоскостей |
Плоскости попарно не пересекаются.
Прямые, по которым третья плоскость пересекает две параллельные плоскости, параллельны.
Прямые, по которым пересекаются каждые две плоскости, параллельны.
Все три плоскости имеют единственную общую точку (на рисунке – это точка S)
Все три плоскости имеют общую прямую
Точка пересечения трех плоскостей
Чтобы найти координаты точки пересечения трех плоскостей, необходимо решить эти уравнения относительно х, у и z, при этом координаты точки пересечения должны удовлетворять уравнениям всех трех плоскостей.
Система уравнений трёх плоскостей имеет вид:
Если определитель этой системы не равен нулю,
то система имеет единственное решение и тогда три плоскости пересекаются в одной точке.
1. Если три плоскости не имеют ни одной общей точки ( или хотя бы две из них параллельны) — система уравнений не имеет решений.
2.Если плоскости имеют бесчисленное множество общих точек ( все они проходят через одну прямую), то система уравнений имеет бесчисленное множество решений.
3.Если система имеет одну общую точку, то система уравнений имеет только одно решение.
Пример 1
Исследовать, есть ли общие точки у плоскостей
x+y+z=1, x-2y-3z=5, 2x-y-2z=6
Оно имеет бесчисленное множество решений. Значит, три плоскости имеют бесчисленное множество общих точек, т. е. проходят через одну прямую.
Решая эти уравнения совместно, получим координаты искомой точки x=-1; y=1; z=2.
Таким образом плоскости имеют одну общую точку (-1; 1; 2), так как система уравнений имеет единственное решение.
Пример 3
Плоскости
не имеют общих точек, так как плоскости (1) и (2) параллельны.
Система уравнений несовместима (уравнения (1) и (2) противоречат друг другу).
Насколько публикация полезна?
Нажмите на звезду, чтобы оценить!
Средняя оценка 4.5 / 5. Количество оценок: 6
[spoiler title=”источники:”]
http://www.resolventa.ru/demo/ist/demoist.htm
[/spoiler]
Три параллельные плоскости |
Две параллельные плоскости, пересечённые третьей плоскостью |
Третья плоскость параллельна линии пересечения первых двух плоскостей |
Третья плоскость пересекает линию пересечения первых двух плоскостей |
Третья плоскость проходит через линию пересечения первых двух плоскостей |
Линия пересечения плоскостей онлайн
С помощю этого онлайн калькулятора можно найти линию пересечения плоскостей. Дается подробное решение с пояснениями. Для нахождения уравнения линии пересечения плоскостей введите коэффициенты в уравнения плоскостей и нажимайте на кнопку “Решить”. Теоретическую часть и численные примеры смотрите ниже.
Инструкция ввода данных. Числа вводятся в виде целых чисел (примеры: 487, 5, -7623 и т.д.), десятичных чисел (напр. 67., 102.54 и т.д.) или дробей. Дробь нужно набирать в виде a/b, где a и b (b>0) целые или десятичные числа. Примеры 45/5, 6.6/76.4, -7/6.7 и т.д.
Линия пересечения плоскостей − теория, примеры и решения
Две плоскости в пространстве могут быть параллельными, могут совпадать или пересекаться. В данной статье мы определим взаимное расположение двух плоскостей, и если эти плоскости пересекаются, выведем уравнение линии пересечения плоскостей.
Пусть задана декартова прямоугольная система координат Oxyz и пусть в этой системе координат заданы плоскости α1 и α2:
α1: A1x+B1y+C1z+D1=0, | (1) |
α2: A2x+B2y+C2z+D2=0, | (2) |
где n1={A1, B1, C1} и n2={A2, B2, C2} − нормальные векторы плоскостей α1 и α2, соответственно.
Найдем уравнение линии пересеченя плоскостей α1 и α2. Для этого рассмотрим следующие случаи:
1. Нормальные векторы n1 и n2 плоскостей α1 и α2 коллинеарны (Рис.1).
Поскольку векторы n1 и n2 коллинеарны, то существует такое число λ≠0, что выполнено равенство n1=λn2, т.е. A1=λA2, B1=λB2, C1=λC2.
Умножив уравнение (2) на λ, получим:
α2: A1x+B1y+C1z+λD2=0, | (3) |
Если выполненио равенство D1=λD2, то плоскости α1 и α2 совпадают, если же D1≠λD2то плоскости α1 и α2 параллельны, то есть не пересекаются.
2. Нормальные векторы n1 и n2 плоскостей α1 и α2 не коллинеарны (Рис.2).
Если векторы n1 и n2 не коллинеарны, то решим систему линейных уравнений (1) и (2). Для этого переведем свободные члены на правую сторону уравнений и составим соответствующее матричное уравнение:
Как решить уравнение (4) посмотрите на странице Метод Гаусса онлайн или Метод Жоржана-Гаусса онлайн.
Так как в системе линейных уравнений (4) векторы n1={A1, B1, C1} и n2={A2, B2, C2} не коллинеарны, то решение этой системы линейных уравнений имеет следующий вид:
где x0, y0, z0, m, p, l действительные числа, а t − переменная.
Равенство (5) можно записать в следующем виде:
Мы получили параметрическое уравнение прямой, которое является линией пересечения плоскостей α1 и α2. Полученное уравнение прямой можно записать в каноническом виде:
Пример 1. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 1}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 9, −5}.
Поскольку направляющие векторы n1 и n2 неколлинеарны, то плолскости α1 и α2 пересекаются.
Для нахождения линии пересечения влоскостей α1 и α2 нужно решить систему линейных уравнений (7) и (8). Для этого составим матричное уравнение этой системы:
Решим систему линейных уравнений (9) отностительно x, y, z. Для решения системы, построим расширенную матрицу:
Обозначим через aij элементы i-ой строки и j-ого столбца.
Первый этап. Прямой ход Гаусса.
Исключим элементы 1-го столбца матрицы ниже элемента a11. Для этого сложим строку 2 со строкой 1, умноженной на −2:
Второй этап. Обратный ход Гаусса.
Исключим элементы 2-го столбца матрицы выше элемента a22. Для этого сложим строку 1 со строкой 2, умноженной на −2/5:
Делим каждую строку матрицы на соответствующий ведущий элемент (если ведущий элемент существует):
Получим решение:
где t− произвольное действительное число.
Запишем (11) в следующем виде:
Получили уравнение линии пересечения плоскостей α1 и α2 в параметрическом виде. Запишем ее в каноническом виде.
Из равентсв выше получим каноническое уравнение прямой:
Ответ. Уравнение линии пересечения плоскостей α1 и α2имеет вид:
Пример 2. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={1, 2, 7}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={2, 4, 14}.
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/2), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/2:
Так как нормальные векторы уравнений (14) и (16) совпадают, а свободные члены разные, то плоскости α1 и α2 не совпадают. Следовательно они параллельны, т.е. не пересекаются.
Пример 3. Найти линию пересечения плоскостей α1 и α2:
Решение. Определим, сначала, взаимное расположение данных плоскостей. Плоскость α1 имеет нормальный вектор n1={A1, B1, C1}={5, −2, 3}. Плоскость α2 имеет нормальный вектор n2={A2, B2, C2}={15, −6, 9}.
Поскольку направляющие векторы n1 и n2 коллинеарны (n1 можно получить умножением n2 на число 1/3), то плоскости α1 и α2 параллельны или совпадают.
При умножении уравнения на ненулевое число уравнение не изменяется. Преобразуем уравнение плоскости α2 умножив на число 1/3:
Так как нормальные векторы уравнений (17) и (19) совпадают, и свободные члены равны, то плоскости α1 и α2 совпадают.
Пусть даны три плоскости . Чтобы найти точку пересечения этих плоскостей, нужно, очевидно, решить систему уравнений
Если определитель этой системы
то система имеет единственное решение, т. е. три плоскости пересекаются в одной точке.
Пример. Найти точку пересечения плоскостей:
Решение. Решая систему уравнений
найдем координаты точки пересечения плоскостей:
Прямая как линия пересечения плоскостей
Прямая
в пространстве может быть определена
как линия пересечения двух непараллельных
плоскостей
и,
то есть как множество точек, удовлетворяющих
системе двух линейных уравнений
(V.5)
Справедливо
и обратное утверждение: система двух
независимых линейных уравнений вида
(V.5)
определяет прямую как линию пересечения
плоскостей (если они не параллельны).
Уравнения системы (V.5)
называются общим
уравнением прямой
в пространстве
.
Пример
V.12.
Составить
каноническое уравнение прямой, заданной
общими уравнениями плоскостей
Решение.
Чтобы написать
каноническое уравнение прямой или, что
тоже самое, уравнение прямой, проходящей
через две данные точки, нужно найти
координаты каких-либо двух точек прямой.
Ими могут служить точки пересечения
прямой с какими-нибудь двумя координатными
плоскостями, например Oyz
и Oxz.
Точка
пересечения прямой с плоскостью Oyz
имеет абсциссу
.
Поэтому, полагая в данной системе
уравнений,
получим систему с двумя переменными:
Ее
решение
,вместе сопределяет точкуискомой прямой. Полагая в данной системе
уравнений,
получим систему
решение
которой
,вместе сопределяет точкупересечения прямой с плоскостьюOxz.
Теперь
запишем уравнения прямой, проходящей
через точки
и:или,
гдебудет направляющим векто-ром этой
прямой.
Пример
V.13.
Прямая задана
каноническим уравнением
.
Составить общее уравнение этой прямой.
Решение.
Каноническое
уравнение прямой можно записать в виде
системы двух независимых уравнений:
Получили
общее уравнение прямой, которая теперь
задана пересечением двух плоскостей,
одна из которых
параллельна осиOz
(),
а другая– осиОу
().
Данную
прямую можно представить в виде линии
пересечения двух других плоскостей,
записав ее каноническое уравнение в
виде другой пары независимых уравнений:
Замечание.
Одна и та же прямая может быть задана
различными системами двух линейных
уравнений (то есть пересечением различных
плоскостей, так как через одну прямую
можно провести бесчисленное множество
плоскостей), а также различными
каноническими уравнениями (в зависимости
от выбора точки на прямой и ее направляющего
вектора).
Ненулевой
вектор, параллельный прямой линии, будем
называть ее направляющим
вектором.
Пусть
в трехмерном пространстве
задана прямая l,
проходящая через точку
,
и ее направляющий вектор.
Любой
вектор
,
где,
лежащий на прямой, коллинеарен с вектором,
поэтому их координаты пропорциональны,
то есть
.
(V.6)
Это
уравнение называется каноническим
уравнением прямой. В частном случае,
когда ﻉ
есть
плоскость, получаем уравнение прямой
на плоскости
.
(V.7)
Пример
V.14.
Найти уравнение прямой, проходящей
через две точки
,.
Будем
считать вектор
направляющим, тогда уравнение искомой
прямой имеет вид
,
где
,,.
Удобно
уравнение (V.6)
записать в параметрической форме. Так
как координаты направляющих векторов
параллельных прямых пропорциональны,
то, полагая
,
получим
где
t
– параметр,
.
Расстояние от точки до прямой
Рассмотри
двухмерное евклидовое пространство ﻉ
с
декартовой системой координат. Пусть
точка
ﻉ
и
lﻉ.
Найдем расстояние от этой точки до
прямой. Положим
,
и прямая l
задается уравнением
(рис.V.8).
Расстояние
,
вектор
,
где
– нормальный вектор прямой l,
и
– коллинеарны, поэтому их координаты
пропорциональны, то есть
,
следовательно,
,
.
Рис.
V.8
Отсюда
или умножая эти уравнения
наA
и B
соответственно и складывая их, находим
,
отсюда
или
.
Формула
(V.8)
определяет
расстояние от точки
до прямой.
Пример
V.15.
Найти уравнение прямой, проходящей
через точку
перпендикулярно прямойl:
и найти расстояние отдо прямойl.
Из
рис. V.8
имеем
,
а нормальный вектор прямойl
.
Из условия перпендикулярности имеем
или
.
Так
как
,
то
.
(V.9)
Это
и есть уравнение прямой, проходящей
через точку
,перпендикулярно
прямой
.
Пусть
имеем уравнение прямой (V.9),
проходящей через точку
,
перпендикулярна прямойl:
.
Найдем расстояние от точкидо прямойl,
используя формулу (V.8).
Для
нахождения искомого расстояния достаточно
найти уравнение прямой, проходящей
через две точки
и точку,
лежащую на прямой в основании
перпендикуляра. Пусть
,
тогда
.
(V.10)
Так
как
,
а вектор,
то
.
(V.11)
Поскольку
точка
лежит на прямойl,
то имеем еще одно равенство
или
Приведем систему
к виду, удобному для применения метода
Крамера
Ее решение имеет
вид
,
.
(V.12)
Подставляя
(V.12)
в (V.10),
получаем исходное расстояние.
Пример
V.16.
В двухмерном пространстве задана точка
и прямая.
Найти расстояние от точкидо прямой; записать уравнение прямой,
проходящей через точкуперпендикулярно заданной прямой и найти
расстояние от точкидо основания перпендикуляра к исходной
прямой.
По
формуле (V.8)
имеем
.
Уравнение
прямой, содержащей перпендикуляр, найдем
как прямую, проходящую через две точки
и,
воспользовавшись формулой (V.11).
Так как
,
то, с учетом того, что,
а,
имеем
.
Для
нахождения координат
имеем систему с учетом того, что точкалежит на исходной прямой
Следовательно,
,,
отсюда.
Рассмотрим
трехмерное евклидовое пространство ﻉ.
Пусть точка
ﻉ
и
плоскость ﻉ.
Найдем расстояние от этой точки
до плоскости,
заданной уравнением
(рис.V.9).
Рис.
V.9
Аналогично
двухмерному пространству имеем
и вектор,
а,
отсюда
.
(V.13)
Уравнение
прямой, содержащей перпендикуляр к
плоскости ,
запишем как уравнение прямой, проходящей
через две точки
и,
лежащую в плоскости:
.
(V.14)
Для
нахождения координат точки
к двум любым равенствам формулы (V.14)
добавим уравнение
.
(V.15)
Решая
систему трех уравнений (V.14),
(V.15),
найдем
,,– координаты точки.
Тогда уравнение перпендикуляра запишется
в виде
.
Для
нахождения расстояния от точки
до плоскости
вместо формулой (V.13)
воспользуемся
.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
- #
Чтобы найти координаты точки пересечения трех плоскостей, необходимо решить эти уравнения относительно х, у и z, при этом координаты точки пересечения должны удовлетворять уравнениям всех трех плоскостей.
Система уравнений трёх плоскостей имеет вид:
A1x + B1y + C1z + D1 = 0
A2x + B2y + C2z + D2 = 0
A3x + B3y + C3z + D3 = 0
Если определитель этой системы не равен нулю,
то система имеет единственное решение и тогда три плоскости пересекаются в одной точке.
Замечания
1. Если три плоскости не имеют ни одной общей точки ( или хотя бы две из них параллельны) — система уравнений не имеет решений.
2.Если плоскости имеют бесчисленное множество общих точек ( все они проходят через одну прямую), то система уравнений имеет бесчисленное множество решений.
3.Если система имеет одну общую точку, то система уравнений имеет только одно решение.
Пример 1
Исследовать, есть ли общие точки у плоскостей
x+y+z=1, x-2y-3z=5, 2x-y-2z=6
Оно имеет бесчисленное множество решений. Значит, три плоскости имеют бесчисленное множество общих точек, т. е. проходят через одну прямую.
Пример 2
х-у+2=0
х+2у-1=0
x+y-z+2=0
Решая эти уравнения совместно, получим координаты искомой точки x=-1; y=1; z=2.
Таким образом плоскости имеют одну общую точку (-1; 1; 2), так как система уравнений имеет единственное решение.
Пример 3
Плоскости
4х-2у+z-4=0 (1)
8х-4у+2z+9=0 (2)
x+y-5z=0 (3)
не имеют общих точек, так как плоскости (1) и (2) параллельны.
Система уравнений несовместима (уравнения (1) и (2) противоречат друг другу).
7757