С помощью мультиметра или цешки можно легко проверить исправность обмоток двигателя компрессора холодильника, но это не гарантирует исправность самого компрессора, т.к., он может заклинить при неправильной заправке хладогентом. Многие компрессоры очень чувствительны к качеству и марке фреона.
- Как отличить пусковую и рабочую обмотку с помощью мультиметра в моторе холодильника
- сопротивление обмоток мотора холодильника АТЛАНТ
- Видео — как прозвонить компрессор с помощью мультиметра
- Сопротивлений обмоток компрессора АСС
- Подборка видео о ремонте холодильника своими руками
Как отличить пусковую и рабочую обмотку с помощью мультиметра в моторе холодильника
- Прозваниваем обмотки на предмет пробоя на корпус, сопротивление любой из клемм не должно быть ниже 50 — 100 ом
- Находим «точку наибольшего сопротивления» т.е., последовательного подключения пусковой и рабочей обмотки (на рисунке клеммы R и S)
- Замеряем сопротивление обмоток относительно точки C
Обмотка с меньшим сопротивлением РАБОЧАЯ, соответственно вторая, с большим сопротивлением ПУСКОВАЯ.
Определить межвитковое замыкание или обрыв обмоток можно с помощью таблиц приведенных ниже. Причиной межвиткового замыкания может быть использование некачественного хладогента. Некоторые горе-умельцы заправляют холодильник даже пропан-бутаном (газ для зажигалок) вместо фреона, такая заправка опасна (пропан взрывоопасен) и непременно приведет к заклиниванию компрессора.
сопротивление обмоток мотора холодильника АТЛАНТ
маркировка компрессора | Сопротивление рабочей обмотки в Омах | Сопротивление пусковой обмотки в Омах |
---|---|---|
С-К 100Н5 | 18,94 | 27,88 |
С-К 100Н5-02 | 18,94 | 27,88 |
С-К 100Н5-10 | 17,61 | 27,88 |
С-К 120Н5 | 18,29 | 21,08 |
С-К 120Н5-02 | 18,29 | 21,08 |
С-К 140Н5 | 15,1 | 20,1 |
С-К 140Н5-02 | 15,1 | 20,1 |
С-К 160Н5-02 | 14,74 | 19,6 |
С-К 160Н5-1 | 14,74 | 19,6 |
С-К 160Н5-1-02 | 14,74 | 19,6 |
С-К 175Н5-02 | 14,29 | 19,08 |
С-К 175Н5-1 | 14,29 | 19,08 |
С-К 175Н5-1-02 | 14,29 | 19,08 |
С-К 200Н5-02 | 11,87 | 17,61 |
С-К 200Н5-1 | 11,87 | 17,61 |
С-К 200Н5-1-02 | 11,87 | 17,61 |
С-КО 60Н5-02 | 40,4 | 63,47 |
С-КО 75Н5-02 | 26,4 | 43,41 |
С-КО 100Н5-02 | 27,88 | 48,94 |
С-КО 120Н5-02 | 18,29 | 21,08 |
С-КО 140Н5-02 | 15,1 | 20,1 |
С-КО 140Н5-1-02 | 15,1 | 20,1 |
С-КО 160Н5-02 | 14,74 | 19,6 |
С-КО 160Н5-1-02 | 14,74 | 19,6 |
С-КО 175Н5-02 | 14,29 | 19,08 |
С-КО 175Н5-1-02 | 14,29 | 19,08 |
С-КО 200Н5-02 | 11,87 | 17,61 |
С-КО 200Н5-1-02 | 11,87 | 17,61 |
С-КО 200Н5-03 | 11,87 | 17,61 |
С-КН 60Н5-02 | 23 | 35 |
С-КН 80Н5-02 | 23 | 35 |
С-КН 90Н5-02 | 18,94 | 27,88 |
С-КН 110Н5-02 | 18,29 | 21,08 |
С-КН 130Н5-02 | 18,29 | 21,08 |
С-КН 150Н5-02 | 15,1 | 20,1 |
CKHA61H50 | 43.35 | 43,25 |
CKHA68H50 | 33,41 | 37,58 |
CKHA72H50 | 28,35 | 34,98 |
CKHA81H50 | 28,65 | 34,47 |
CKHA96H50 | 26,33 | 35,72 |
CKHA101H50 | 19 | 21,2 |
TLX4 KK.3 | 61 | 19 |
TLX4.8 KK.3 | 46 | 22 |
TLX5.7 KK.3 | 37 | 21 |
TLX6.5 KK.3 | 30.00 | 15 |
TLX7.5 KK.3 | 29 | 30 |
TLX8.7 KK.3 | 19 | 13 |
TLY4 KK.3 | 48,06 | 15,69 |
TLY4.8 KK.3 | 38,25 | 17,65 |
TLY5.7 KK.3 | 34,33 | 20,6 |
TLY6.5 KK.3 | 2775,00% | 24,62 |
TLY7.5 KK.3 | 23,24 | 20,69 |
TLY8.7 KK.3 | 17,06 | 14,42 |
Видео — как прозвонить компрессор с помощью мультиметра
- Все измерения проводились при комнатной температуре
Сопротивлений обмоток компрессора АСС
мотор компрессор | мощность Вт | реле | сопротивление пусковой обмотки в омах | сопротивление рабочей обмотки в омах | фреон для заправки |
---|---|---|---|---|---|
GVM 38 AA | 96 | ZAF7 | 19,6 | 24,9 | R134 |
GVM 40 AA | 107 | ZAF7 | 24,3 | 17,3 | R134 |
GVM 44 AA | 122 | ZAF7 | 23,6 | 19,2 | R134 |
GVM 57 AA | 153 | ZAFC | 16,8 | 9,7 | R134 |
GVM 66 AA | 181 | ZA6H | 13 | 14,8 | R134 |
GVY 75 AA | 205 | ZAFA | 9,5 | 20,9 | R134 |
GL 90 AA | 221 | ZAFA | 19,8 | 10,4 | R134 |
GL 99 AA | 247 | ZAFA | 8,9 | 12 | R134 |
GTM 10 AA | 300 | K100-CH | 12,18 | 6,9 | R134 |
GTM 93 AA | 270 | K100-CH | 16,93 | 8,51 | R134 |
HMK 80 AA | 136 | ZAF5 | 29,5 | 18,6 | R600 |
HMK 95 AA | 167 | ZAF5 | 22,9 | 17,2 | R600 |
HVY 44 AA | 71 | ZMFF | 44,7 | 47,3 | R600 |
HVY 57 AA | 88 | ZMFF | 36,2 | 22,2 | R600 |
HVY 67 AA | 107 | ZMFF | 26,2 | 24,6 | R600 |
HVY 75 AA | 117 | ZMF5 | 22,9 | 17,2 | R600 |
- Все измерения проводились при комнатной температуре
- НЕ ЗАБЫВАЙТЕ при проверке компрессора (тестовое включение) установить компрессор согласно маркировки, т.к., при неправильном положении компрессор будет работать без смазки или с недостаточной смазкой, что приведет к поломке.
- Как правило, хладогент R12 и R134 заправляется в холодильники рабочая обмотка которых имеет сопротивление меньше для бытовых холодильников от 10 до 14 ом.
- Если рабочая обмотка имеет сопротивление выше 20 ом, нужно заправлять в компрессор фреон R600.
В нашей группе ВКонтакте мы собрали видео инструкции по ремонту, диагностике неисправностей бытовых холодильников, смотрите и присоединяйтесь к нам!
В этом обзоре мы разглядим обычные неисправности трехфазных асинхронных электродвигателей и методы их предупреждения и устранения.
Электрические неисправности электродвигателя
Электрические неисправности мотора всегда связаны с обмоткой.
- Межвитковое замыкание может появиться при ухудшении изоляции в границах одной обмотки. Вероятные предпосылки: перегрев обмотки, плохая изоляция, износ изоляции вследствие вибрации. Найти межвитковое замыкание бывает трудно. Основной способ диагностики – сопоставление сопротивления и рабочего тока всех 3-х обмоток. 1-ые симптомы межвиткового замыкания – завышенный нагрев мотора и падение момента на валу. При всем этом по одной из фаз ток больше, чем по двум другим.
- Замыкание между обмотками происходит из-за смещения обмоток, механической вибрации и ударов. При отсутствии подабающей электрической защиты может появиться куцее замыкание и пожар.
- Замыкание обмотки на корпус. При данной неисправности электродвигатель может продолжать работать, если некорректно выполнены заземление и защита от недлинного замыкания. Но в работе он будет смертельно небезопасен, так как его потенциал будет находиться под фазным напряжением.
- Обрыв обмотки. Эта неисправность равносильна пропаданию фазы. Если обрыв происходит в работе, то мотор резко теряет мощность и начинает перенагреваться. При верно выполненной защите мотор отключится, так как ток по другим фазам будет повышен.
Для устранения большинства из этих поломок нужна перемотка мотора.
Механические неисправности электродвигателя
Механические неисправности электродвигателя связаны с его устройством.
- Износ и трение в подшипниках. Проявляется в повышении механической вибрации и шума при работе. В данном случае нужна замена подшипников, по другому неисправность приведет к перегреву и падению производительности мотора.
- Проворачивание ротора на валу. Ротор может крутиться в магнитном поле статора, а вал будет неподвижен. Нужна механическая фиксация ротора на валу.
- Зацепление ротора за статор. Эта неувязка связана с механической поломкой подшипников, их посадочных мест либо корпуса мотора. Не считая того, схожая неисправность приводит к повреждению обмотки статора. Фактически не подлежит ремонту.
- Повреждение корпуса мотора. Может происходить из-за ударов, завышенных нагрузок, неверного крепления либо низкого свойства мотора. Ремонт является трудозатратным из-за проблем соосной установки фронтального и заднего подшипников.
- Проворачивание либо повреждение крыльчатки обдува. Невзирая на то, что мотор продолжит работать, он будет перенагреваться, что значительно уменьшит срок его службы. Крыльчатку нужно закрепить (для этого применяется шпонка либо стопорное кольцо) либо поменять.
Аварийные ситуации при работе электродвигателя
Есть неисправности, не связанные конкретно с движком, но действующие на его работу, свойства и срок службы. Большая часть этих дефектов вызваны механической перегрузкой, повышением тока, и, как следствие, перегревом обмоток и корпуса.
- Повышение нагрузки на валу вследствие заклинивания привода или приводимых устройств.
- Перекос напряжения питания, который может быть вызван неуввязками питающей сети или внутренними неуввязками привода.
- Пропадание фазы, которое может произойти на любом участке питания мотора – от питающей трансформаторной подстанции до обмотки мотора.
- Неувязка с обдувом (остыванием). Может появиться из-за повреждения крыльчатки мотора при своем охлаждении, из-за останова вентилятора наружного принудительного остывания либо вследствие значимого увеличения температуры окружающей среды.
Методы защиты электродвигателя
Для защиты электродвигателя от внутренних и наружных дефектов, также для минимизации последующих трудозатрат по его ремонту используют разные устройства.
1. Мотор-автоматы и термические реле
Мотор-автоматы (автоматы защиты мотора) и термические реле применяют для обнаружения превышения тока по одной либо всем фазам мотора. В случае превышения через некоторое время происходит отключение привода.
В отличие от мотор-автомата, у термического реле нет силовой коммутации. Оно имеет только управляющий контакт, который размыкает питание силовой цепи. Мотор-автомат является самостоятельным коммутационным устройством, способным выключать мотор.
Минус термического реле заключается в отсутствии защиты от недлинного замыкания. Мотор-автомат имеет защиту от перегрузки и электромагнитную защиту от недлинного замыкания, которая одномоментно срабатывает и выключает мотор при превышении тока уставки в 10-20 раз.
Данные устройства применяются более обширно и при правильной установке и настройке в состоянии с большой толикой вероятности защитить электродвигатель и оборудование от поломки и других негативных последствий.
2. Электронные реле защиты движков
Данный вид защиты обеспечивает большой выбор разных защит. Главным элементом таких реле является процессор, который анализирует секундные значения напряжения и тока и воспринимает решения на базе данных опций. Это может быть выдача сигнала на индикацию или на отключение мотора.
3. Термисторы и термореле
Когда по некий причине не сработала термическая защита по перегрузке, последний предел обороны — термозащита. Вовнутрь обмотки устанавливается термочувствительный элемент (обычно, термистор либо позистор), который меняет свое сопротивление зависимо от температуры. При скрещении порога срабатывает соответственная защита, и мотор отключается.
Может быть использование более обычных дискретных термореле (термоконтактов), которые размыкают контрольную либо термическую цепь, что приводит к аварийной остановке электродвигателя.
4. Преобразователи частоты
Обычно преобразователи частоты располагают несколькими видами защиты – по превышению момента и тока, по превышению напряжения, обрыву фазы и проч. Не считая того, может быть ограничение момента и тока. В данном случае на мотор будет подаваться напряжение с наименьшим уровнем и частотой, если будет найдена перегрузка. При всем этом будет выдано соответственное сообщение оператору, а мотор может продолжать работать.
Также производители частотных преобразователей советуют устанавливать защитный автомат на входе ПЧ, термическое реле на выходе и термисторную защиту.
Базисные характеристики сопротивления обмоток компрессора холодильника
Компрессор можно именовать основной частью холодильника, его исправность гарантирует поддержание данной температуры в холодильной камере и в морозильнике. Если холодильник не стал замораживать, то прежде всего инспектируют исправность компрессора. Этом можно выполнить без помощи других в домашних критериях полагаясь на данные, приведенные в таблице сопротивления обмоток.
Где находятся обмотки компрессора?
С оборотной стороны холодильника находится компрессор. Он расположен в защитном кожухе, обычно темного цвета. Компрессор представляет собой электродвигатель, в каком есть обмотка. У большинства марок холодильников компрессорные агрегаты особо не отличаются друг от друга, к примеру, Атлант, Индезит, Бирюса, Саратов.
Дабы найти рабочее состояние агрегата нет необходимости снимать защитный кожух. Для измерения сопротивления пригодятся выводы из компрессора. Выводов всего три, каждый отходит от определенной обмотки: общей, рабочей и пусковой.
Реле, которое участвует в запуске мотора, конкретно соединено с этими контактами. В последних разработках в качестве регулятора скорости включения применяются электросхемы.
Как проверить сопротивление обмоток?
Дабы проверить на исправность компрессор, нужно выяснить какое сопротивление обмоток, выполнить это можно с помощью специального устройства — мультиметра (тестера).
Проверка компрессора мультиметром:
- Извлечь пусковое реле: снять крышку и отсоединить реле от контактов.
- При помощи тестера замерить сопротивление. При исправном компрессоре сопротивление между верхним и левым контактами тестера составляет 20 Ом (пусковая обмотка), а между верхним и правым (сопротивление рабочей обмотки компрессора холодильника) — порядка 15 Ом. При всем этом между левым и правым самое большее значение — 30 Ом.
- На усредненные характеристики, приведенные выше оказывает влияние марка холодильника. Так, сопротивление обмоток компрессора холодильника Бирюса, будет отличаться от данных холодильника Атлант, Индезит, Саратов. Но характеристики не должны превосходить разность в 5 Ом. В неприятном случае данные мультиметра будут указывать на неисправность компрессора.
- Не считая того, проверяется сопротивление меж проходными проводами и кожухом агрегата. Для этого щуп мультиметра присоединяется к медной части штуцера (любого), другой щуп крепится к проходным контактам. На исправность компрессора укажет значок обрыва, а на суровую поломку укажет какое-либо значение сопротивления.
Выяснить четкие данные можно из особых таблиц, где обозначено, какое сопротивление пусковой и рабочей обмоток компрессора холодильника типично для определенной марки. Так, в отдельной таблице можно отыскать характеристики для всех марок, к примеру, холодильника Бирюса либо Саратов, Атлант, Индезит.
Поломка холодильника всегда некстати, вне зависимости от погоды и времени года за окном. Этот агрегат основательно вошел в нашу жизнь, и современному человеку обходиться без него ой, как непросто. Как провести экспресс-диагностику и сузить круг подозреваемых узлов, а, может, даже отремонтировать «захандривший» аппарат самостоятельно, рассмотрим в данном материале.
Устройство холодильной установки
Первые электрические холодильники появились в 1913 году. Принцип их действия основан на температурных процессах, происходящих в хладагенте (фреоне) при переходе из жидкого состояния в газообразное и наоборот.
Простейшая схема холодильной установки выглядит следующим образом.
По сути, перед нами схема, используемая в холодильниках и сегодня. В ней есть всего несколько основных узлов:
- компрессор;
- конденсатор;
- дроссель (капилляр);
- испаритель.
Работает такая холодильная установка достаточно просто. Компрессор, создавая давление в замкнутой системе, заставляет газообразный хладагент перейти в жидкое состояние. При этом в большом количестве образуется тепло, отводимое через конденсатор в окружающую среду. Жидкий фреон, пройдя через дроссель, попадает в зону низкого давления системы, в которой происходит его закипание и обратный переход в газообразное состояние. Кипение фреона происходит при отрицательных температурах в испарителе, поэтому образовавшийся в нем холод сильно остужает его стенки, а достаточно герметичная камера аппарата не позволяет холодному воздуху попадать в атмосферу. Поскольку контур, в котором циркулирует хладагент, является замкнутым, то цикл перехода фреона из одного состояния в другое повторяется многократно.
Помимо названных выше основных элементов, конструкция холодильника включает несколько дополнительных узлов:
- терморегулятор. Служит для поддержания заданной температуры внутри камеры;
- фильтр-осушитель. Он отвечает за чистоту хладагента, циркулирующего в контуре.
Более подробно ознакомиться с устройством и принципом действия холодильника можно в статье Клуба DNS.
В последние годы в сегменте бытовых холодильных установок стали очень популярными агрегаты, работающие по принципу No Frost (в буквальном переводе — без инея). Их принципиальное отличие — охлаждение продуктов происходит не от контакта с холодными поверхностями испарителя, а благодаря постоянно циркулирующему в камере охлажденному воздуху.
Основной принцип получения холода внутри камеры остается неизменным. А вот за распространение холодного воздуха внутри агрегата отвечает мощный вентилятор, обеспечивающий его постоянную циркуляцию внутри устройства по специальным воздуховодам.
Диагностика узлов холодильника
Несмотря на всю громоздкость конструкции, у холодильника не так уж много узлов, способных выйти из строя. В большинстве случаев поиск неисправности достаточно прост и не займет много времени.
Проведение диагностики узлов агрегата подразумевает наличие минимальных познаний в области электротехники. Если нет уверенности в собственных силах, работы по поиску и устранению неисправности лучше доверить квалифицированному специалисту!
Важно! Все работы необходимо проводить при отключенном от электрической сети устройстве!
Диагностика компрессора
Компрессор — сердце любого холодильника, от его эффективной работы зависит скорость набора нужной температуры в камере.
Выход из строя компрессора — самая затратная часть ремонта холодильника.
Проблемы с компрессором могут быть вызваны неисправностями электрической или механической части агрегата. Проверить электрическую часть просто. Для этого в арсенале «домашнего диагноста» достаточно иметь лишь мультиметр.
Перед проведением замеров необходимо удостовериться, что агрегат отключен от электрической сети!
Чтобы получить доступ к клеммам компрессора, с его корпуса необходимо демонтировать пуско-защитное реле.
Правая клемма — вывод рабочей обмотки, левая — пусковой обмотки. Верхний вывод является общей точкой двух обмоток мотора холодильника.
Для диагностики необходимо отдельно измерить сопротивление обеих обмоток, а также их общее сопротивление. Для проверки рабочей обмотки замер производится правой и верхней клеммами, пусковой — между левым и верхним выводами.
Как правило, у компрессоров небольшой мощности сопротивление рабочей обмотки находится в пределах 15 Ом, пусковой — около 20 Ом.
Третий замер производится для проверки общей целостности обмоток, для чего измеряют сопротивление между правым и левым выводами клеммной коробки компрессора. В случае нормального состояния обмоток, прибор должен показать суммарное сопротивление двух обмоток (сумму результатов измерений, полученных чуть ранее). Как правило, суммарный результат должен составить 30-35 Ом.
Дополнительно следует удостовериться в отсутствии замыкания обмоток на корпус компрессора. При исправной электрической части все три замера должны показать отсутствие цепи для протекания электрического тока.
Номинальные значения сопротивлений обмоток для конкретной модели компрессора лучше всего найти в Интернете.
Проверка механической части агрегата потребует разгерметизации контура охлаждения. Ее лучше доверить специалисту, имеющему в своем арсенале необходимое оборудование. Для выполнения таких работ потребуются:
- труборез;
- инструмент для вальцовки труб;
- манометр;
- соединительные шланги;
- электронные весы;
- вакуумный насос;
- газовая горелка;
- набор муфт для соединения.
Сама проверка сводится к подключению к диагностируемому компрессору манометра и измерению создаваемого им давления в магистрали. Если после включения холодильника манометр показывает 4 бар и более — компрессор исправен. В противном случае он подлежит замене.
Диагностика капиллярной системы
В случае, когда компрессор работает исправно, а холодильник не производит холод должным образом, вероятной причиной неисправности может выступать засор капиллярной трубки. Данная проблема препятствует нормальной циркуляции хладагента и не позволяет агрегату нормально работать.
Косвенно проблему можно диагностировать по температуре нагнетательного штуцера компрессора. Если он быстро нагревается, но спустя пару минут остывает — с большой долей вероятности можно говорить об имеющемся засоре в капиллярной системе холодильника.
Можно определить засор путем ощупывания поверхности конденсатора. Если он имеет неравномерный нагрев по всей площади или часть его поверхности и вовсе остается холодной, то это также свидетельствует об имеющемся засоре.
Более точно поставить диагноз можно после разгерметизации системы. Достаточно подключить манометр к заправочному патрубку. Если при работающем компрессоре прибор показывает отрицательные значения (образование вакуума), а после выключения агрегата давление в системе остается неизменным или нарастает очень медленно — засор капиллярной системы очевиден.
Вероятные виновники — фильтр-осушитель или капиллярная трубка. При забитом мусором фильтре его просто заменяют новым, а вот в случае засора капиллярной трубки пытаются «продавить» систему при помощи гидравлического пресса.
Диагностика терморегулятора
Терморегулятор отвечает за поддержание в холодильной камере заданной температуры. По своей сути это обычный выключатель, который включает или выключает компрессор при достижении нужных температур внутри устройства.
Если холодильник не включается вовсе или, наоборот, работает без остановки, вероятная причина поломки — выход из строя терморегулятора.
Проверить его просто. В случае, когда компрессор не запускается, нужно замкнуть между собой три провода, подключаемые к узлу, после чего включить холодильник в сеть. В старых моделях холодильников для подключения терморегулятора использовалось два провода. Замыкать их нужно между собой. Если компрессор запустится — виновник найден и его предстоит заменить.
Когда выключения компрессора не происходит, можно предположить, что регулятор вышел из строя и остался в замкнутом положении. Он также подлежит замене.
Замена не представляет особой сложности, главное, при установке нового узла не допускать переломов и замятия сильфонной трубки с газом, отвечающей за срабатывание контактной части узла.
Диагностика узлов холодильника No Frost
При поиске неисправностей системы No Frost методология проверки компрессора и капиллярной системы остаются теми же. Но поскольку в системе появляются новые элементы, остановимся на их проверке более детально.
Проверка вентилятора
Вентилятор — ключевой узел системы No Frost. Именно он обеспечивает принудительную циркуляцию холодного воздуха внутри камеры холодильника. Чтобы проверить его работоспособность, достаточно прислушаться к работе агрегата. Шум работающего вентилятора слышен и «невооруженным» ухом. Также можно приложить руку к выходам воздушных каналов и удостовериться, что из них поступает воздух.
Чтобы убедиться в работе вентилятора визуально, придется снять защитный кожух морозильной камеры, представляющий собой ее заднюю стенку. При осмотре вентилятора нелишним будет уделить внимание его крыльчатке. Лопасти не должны иметь сколов и трещин.
В случае неисправности узла он заменяется новым.
Диагностика системы оттаивания
В холодильниках No Frost особое внимание уделяется чистоте испарителя ото льда и снеговой «шубы». Ведь препятствование прохождению воздуха, нагнетаемого вентилятором, снижает его количество и приводит к недостаточному охлаждению камеры. Как следствие, возрастает потребление электроэнергии и увеличивается нагрузка на компрессор.
Компонентами системы оттаивания являются:
- таймер оттаивания;
- два термореле (может быть одно совмещенное) для отслеживания верхнего и нижнего порогов температуры;
- нагревательный элемент.
Работает система следующим образом. По истечении времени, заданного таймером оттаивания (в зависимости от производителя от 4 до 24 часов), компрессор выключается, и в течение 15-20 минут испаритель нагревается ТЭНом. В результате вся образовавшаяся за цикл работы наледь оттаивает и удаляется в дренажную систему холодильника.
Как это ни парадоксально звучит, но перед диагностикой холодильник No Frost желательно разморозить, дав ему постоять выключенным в течение 10-12 часов. Это может решить проблему оттаивания испарителя без дальнейшего вмешательства.
Работоспособность системы проверяется следующим образом:
- Демонтируются защитный кожух морозильной камеры и пластиковая панель с вентилятором, установленная за ним.
- В зависимости от типа таймера (электронный или механический), на его корпусе либо нажимается кнопка принудительного включения режима оттаивания, либо проворачивается рукоятка (по ходу часовой стрелки) до характерного щелчка.
При этом работа компрессора должна прекратиться, а ТЭНы оттаивания должны начать нагреваться.
Если нагрев ТЭНов не происходит, необходимо убедиться в целостности нагревательных элементов (их номинальное сопротивление составляет 200-300 Ом) и нормальной работе термореле. Одно из них, отвечающее за включение цепи при достижении порога низкой температуры, является нормально разомкнутым. Оно коммутирует цепь при достижении температуры, равной – 10 ° С. Второе реле — нормально замкнутое, его назначение — защита испарителя от перегрева. Реле разрывает цепь питания ТЭНа при достижении температуры в + 10 ° С. Неисправные компоненты системы заменяются новыми.
Если проверка ТЭНа и термореле указывает на их исправность, то единственным «подозреваемым» остается таймер оттаивания. Его необходимо заменить новым узлом такой же модели или компонентом, обладающим теми же характеристиками.
Более подробно о диагностике и ремонте системы оттаивания рассказано в следующем видео:
Как проверить компрессор холодильника
Опубликовано: 30 мая 2020
Вы заметили, что мотор холодильника постоянно работает, включается и почти сразу отключается или вовсе не включается? Температура в камерах выше установленной. Вы подозреваете, что причина в компрессоре. Эта статья поможет самостоятельно разобраться с диагностикой этого узла.
Когда следует проверить компрессор — признаки неисправности
Мотор-компрессор — важный рабочий узел холодильника, который обеспечивает циркуляцию хладагента по системе трубопроводов. Мотор расположен сзади в нижней части холодильного шкафа. Он может находится в закрытом отсеке за панелью или в открытой нише.
В большинстве старых и новых моделей стоят линейные компрессоры с подключением через реле.
В улучшенных современных — инверторные с управлением через преобразователь тока.
Мотор на них подключен через клеммную колодку.
По конструкции компрессоры делятся на поршневые, их большинство, и ротационные. Но признаки неисправности у всех общие. В список основных входят:
- повышенная температура только в одном или в обоих отсеках;
- компрессор работает постоянно, с очень короткими промежутками отдыха;
- узел включается, работает несколько секунд, потом щёлкает реле, и мотор отключается, через некоторое время цикл повторяется, корпус компрессора сильно греется;
- мотор не запускается, корпус не греется.
Неисправности могут быть связаны с дефектами пускозащитного реле или компрессора.
Как проверить компрессор холодильника: рабочий он или нет
Неисправный мотор — частая поломка. Поэтому проверять нужно сначала его.
Список стандартных причин неисправности компрессора выглядит так:
- замыкание пусковой или рабочей обмотки;
- обрыв обмоток;
- замыкание на массу (на корпус);
- «клин» компрессора, когда мотор гудит, но не работает;
- повреждение контактов;
- поломка инвертора (в инверторных компрессорах);
- неисправность платы управления холодильника в цепи подключения компрессора.
Начнём разбор поломок с конца. Найти поломку в блоке управления или проверить контакты сможет только мастер. Знаний на уровне «могу поставить розетку» будет мало. Копаясь в схеме, вы рискуете повредить что-то важное, и тогда ремонт понадобится не только неисправному компрессору.
Проверить замыкания и обрывы в двигателе можно самостоятельно. Вам понадобятся тестер с клещами, оммометр или мультиметр и пара часов свободного времени.
Внимание! Отключайте холодильник от сети при любой работе с электрооборудованием.
Это нужно для вашей безопасности и, чтобы сохранить живыми тестеры. Приборы сгорят, если вы будете «прозванивать» контакты под напряжением. Кроме того, на корпусе холодильника может «сидеть» половина напряжения, примерно 110 В из-за фильтра помех (конденсаторе) в схеме, если домашняя проводка не подключена к защитному нулю, обеспечивающему заземление.
Это напряжение не опасно из-за малой силы тока без контакта с другими металлическими предметами и корпусом одновременно. Но передвигая не обесточенный холодильник, вы можете случайно коснуться батареи, стояка или плиты.
Проверяем кабель холодильника
Прежде чем браться за мотор-компрессор, проверьте кабель оборудования. Иногда сбои в работе связаны с плохим состоянием питающего провода. Осмотрите кабель, ищите разрывы изоляции и сильные перегибы. Повреждение внешней оболочки может говорить о повреждении жил. Если нарушена изоляция или заломана жила, напряжение может падать. Поэтому двигатель запускается с трудом или через раз.
Осмотрите и проверьте вилку. Возможно штыри качаются или выглядят подгоревшими. Это говорит о перегреве и вероятном внутреннем нарушении контактов. Заодно осмотрите розетку. Если она «болтается», то вилка плохо держится, и напряжение периодически падает.
Кабель, вилка и розетка внешне в норме? Тогда будем разбираться с компрессором.
Замыкание на корпус — как можно проверить мотор холодильника
Замыкание на корпус часто становится причиной отказа компрессора. Начальное сопротивление изоляции двигателя равно 1000 МОм, за время работы качество изоляции ухудшается и показатель сопротивления падает до 100 или даже 10 МОм. Когда величина опускается до 1 Мегаома, мотор подлежит замене, а при замере ниже 500 кОм использовать оборудование запрещено.
Поэтому перед диагностикой надо проверить движок на пробой, чтобы не получить удар током от неисправного устройства при проверке тока под напряжением. Для измерения можно использовать мультиметр, омметр или мегаомметр.
Порядок действий:
- Отключите холодильник от сети.
- Снимите панель компрессора, если она есть.
- Снимите пусковое или пускозащитное реле с контактов двигателя.
- Переключите тестер на режим измерения сопротивления.
- Поищите место с облупившейся краской на корпусе двигателя. Или зачистите небольшой участок.
- Приложите один щуп прибора к нижнему левому или правому контакту, а второй к корпусу мотора.
- Проверьте показатель. В исправном двигателе тестер покажет величину, как «бесконечность». Если изоляция нарушена, на экране появится значение близкое к нулю.
- Самый точный показатель даст мегомметр или мультиметр с режимом постоянного напряжения 500 В.
Внимание! Если вы обнаружили пробой обмоток, вызывайте мастера. Пользоваться холодильником с такой неисправностью компрессора опасно для жизни.
Чем отличается замыкание на массу и на корпус? Замкнутый на массу двигатель выдаст полный ноль, и скорее всего не будет работать. При замыкании на корпус сопротивление имеет низкое значение, но отличается от нуля. На такие двигатели не реагирует автомат защиты, но они опасны в работе и требуют замены. УЗО на замыкание на корпус тоже не реагирует, потому что утечки тока в цепи холодильника нет, есть только напряжение на кожухе компрессора.
Тестер показал обрыв? Значит замыкания на корпус нет и можно тестировать дальше.
Как проверить компрессор холодильника мультиметром на исправность
Выводы контактов двигателя расположены треугольником. Верхний называют общим, левый идёт от пусковой обмотки, правый от рабочей. Величина сопротивления между контактами обмоток примерно равна сумме показателей между парами «верхний общий — пусковая обмотка» и «общий — рабочая обмотка».
Показатели замеряют в таком порядке:
- верхний и левый контакт (пусковая обмотка);
- верхний и правый (рабочая обмотка);
- левый и правый (между обмотками).
Как правило, сопротивление пусковой обмотки выше рабочей, но есть модели с обратным распределением и высоким рабочим сопротивлением.
Порядок действий
- Отключите холодильник от сети.
- Снимите панель, если она есть.
- Снимите пусковое реле с контактов двигателя.
- Переключите тестер на режим измерения сопротивления.
- Замерьте пусковую обмотку.
- Замерьте рабочую обмотку.
- Замерьте сопротивление между обмотками.
- Сравните показатели с таблицей сопротивления. Отклонение может составлять 0.1–5 Ом от табличной величины.
Данные по различным моделям компрессоров и маркам холодильников собраны в таблицах.
Внимание! Если между любыми парами контактов на замере тестер показывает ноль, в двигателе есть межвитковое замыкание одной из обмоток.
Данные из замеров не отличаются от табличных значений? Значит компрессор исправен и возможно причина в том, что электропитание поступает с перебоями. Выявить это поможет проверка тока на компрессор.
Как проверить компрессор холодильника без установленного реле
Протестировать ток можно с помощью другого питающего провода и нового реле. Для снятия показаний потребуются токоизмерительные клещи. Они дают более точные показания, чем тестер со щупами.
Внимание! Вы будете измерять ток в проводе под напряжением. Строго соблюдайте технику безопасности. Измеряйте ток на удалении от открытых контактных частей.
Порядок действий такой:
- Отключите холодильник от сети.
- Снимите панель, если она есть.
- Снимите установленное пусковое реле с контактов двигателя.
- Возьмите другое рабочее реле и другой кабель.
- Присоедините контакты кабеля к реле на фазовый выход и рабочую обмотку.
- Включите провод в розетку.
- Замерьте токоизмерительными клещами один провод на участке с изоляцией. Для этого разомкните клещи, пропустите провод внутрь, замкните. Прибор покажет величину тока в контуре.
- Не касайтесь открытых частей! Вы можете получить электротравму.
- Проверьте показание прибора. Величина тока зависит от мощности двигателя. Для 120 Вт ток составит 1.1–1.2А, для 140 Вт норма 1.3А. Если величина ниже нормы, компрессор не может нормально запуститься.
Эти способы подходят для диагностики моторов-компрессоров обычного типа. Для инверторных холодильников нужно использовать другой метод.
Как проверить производительность компрессора холодильника с инвертором
В хладоагрегате инверторного типа из строя чаще выходит не сам компрессор, а токопреобразующий узел. Поэтому сначала проверять нужно инвертор.
Для тестового включения понадобится гирлянда из трёх ламп накаливания мощностью 60 Вт, соединённых треугольником.
Внимание! Вы будете проверять работу инвертора под напряжением. Строго соблюдайте технику безопасности. Не касайтесь проводов и оборудования при включённом генераторе.
Порядок действий:
- Отключите холодильник от сети.
- Снимите панель с компрессора, если она установлена.
- Отсоедините инвертор от компрессора.
- Подключите лампочки к выходу инвертора.
- Включите холодильник в сеть.
- При запуске генератора на рабочем инверторе лампочки будут поочерёдно зажигаться и гаснуть. Проследите четыре цикла. Одна лампа должна светить в полную силу, две других вполнакала. Длительность горения примерно 1 секунда.
Если контрольные лампы горят иначе хотя бы в одном из циклов, то нужно искать неисправность в инверторе. Заниматься полной диагностикой должен специалист. Проверить компрессор можно в описанном выше порядке.
Почему мотор компрессора в холодильнике выходит из строя
Как любой другой, холодильный мотор-компрессор ломается по четырём основным причинам:
- Неправильная эксплуатация холодильника. Холодильный шкаф установлен рядом с источником тепла: батареей отопления или плитой, поэтому двигатель перегревается. Повышенная температура может вызвать пробой изоляции обмоток. Если холодильник подключён к сети с большими перепадами напряжениями или тока без стабилизатора, скачки электрических величин могут спровоцировать перегрев изоляции. Длительный перегрев нарушает целостность обмоток и приводит к замыканию или обрыву.
- Износ двигателя. У мотора есть рабочий ресурс часов. После его выработки производительность падает и ухудшаются изоляционные свойства обмоток. Двигатель теряет мощность, дольше работает без отдыха, из-за чего перегревается. Сопротивление обмоток становится ниже, изоляция греется и трескается. Из-за этого может возникнуть замыкание, обрыв или пробой на корпус.
- Заводской брак двигателя. Хотя брак редкая причина, но иногда это случается. При сборке изоляцию обмоток, контакты, поршень или клапаны компрессора могут повредить. На тестировании брак не проявится, но при работе холодильника дефекты быстро «вылезут», и технику придётся отдавать в гарантийный ремонт.
Вы проверили мотор холодильника на работоспособность и нашли неисправность? Звоните в «Айс Мэн»! Мастер приедет и установит новый компрессор.
Ремонтируем после заявки в течение 24-х часов, даём гарантию 2 года на установленные узлы, запчасти и обслуживание.
Желаем отличной работы вашей технике!
Базовые параметры сопротивления обмоток компрессора холодильника
Компрессор можно назвать основной частью холодильника, его исправность гарантирует поддержание заданной температуры в холодильной камере и в морозильнике. Если холодильник перестал замораживать, то в первую очередь проверяют исправность компрессора. Этом можно сделать самостоятельно в домашних условиях полагаясь на данные, приведенные в таблице сопротивления обмоток.
Где находятся обмотки компрессора?
С обратной стороны холодильника находится компрессор. Он размещен в защитном кожухе, обычно черного цвета. Компрессор представляет собой электродвигатель, в котором есть обмотка. У большинства марок холодильников компрессорные агрегаты особо не отличаются друг от друга, например, Атлант, Индезит, Бирюса, Саратов.
Чтобы определить рабочее состояние агрегата нет необходимости снимать защитный кожух. Для измерения сопротивления понадобятся выводы из компрессора. Выводов всего три, каждый отходит от определенной обмотки: общей, рабочей и пусковой.
Реле, которое участвует в запуске мотора, непосредственно соединено с этими контактами. В последних разработках в качестве регулятора скорости включения используются электросхемы.
Как проверить сопротивление обмоток?
Чтобы проверить на исправность компрессор, необходимо узнать какое сопротивление обмоток, сделать это можно при помощи специального прибора — мультиметра (тестера).
Проверка компрессора мультиметром:
- Извлечь пусковое реле: снять крышку и отсоединить реле от контактов.
- С помощью тестера замерить сопротивление. При исправном компрессоре сопротивление между верхним и левым контактами тестера составляет 20 Ом (пусковая обмотка), а между верхним и правым (сопротивление рабочей обмотки компрессора холодильника) — порядка 15 Ом. При этом между левым и правым самое большее значение — 30 Ом.
- На усредненные показатели, приведенные выше влияет марка холодильника. Так, сопротивление обмоток компрессора холодильника Бирюса, будет отличаться от данных холодильника Атлант, Индезит, Саратов. Однако показатели не должны превышать разность в 5 Ом. В противном случае данные мультиметра будут указывать на неисправность компрессора.
- Кроме того, проверяется сопротивление меж проходными проводами и кожухом агрегата. Для этого щуп мультиметра присоединяется к медной части штуцера (любого), другой щуп крепится к проходным контактам. На исправность компрессора укажет значок обрыва, а на серьезную поломку укажет какое-либо значение сопротивления.
Узнать точные данные можно из специальных таблиц, где указано, какое сопротивление пусковой и рабочей обмоток компрессора холодильника характерно для определенной марки. Так, в отдельной таблице можно найти показатели для всех марок, например, холодильника Бирюса или Саратов, Атлант, Индезит.
Источник
Сопротивление обмоток компрессора холодильника
Для проверки целостности обмоток мотора холодильника, необходимо знать марку самого компрессора. По прилагаемой таблице, вы можете прозвонить компрессор и проверить целы ли обмотки. Если сопротивление обмотки меньше указанного в таблице, возможно произошло межвитковое замыкание.
сопротивление обмоток мотора холодильника АТЛАНТ
маркировка компрессора | Сопротивление рабочей обмотки в Омах | Сопротивление пусковой обмотки в Омах |
---|---|---|
С-К 100Н5 | 18,94 | 27,88 |
С-К 100Н5-02 | 18,94 | 27,88 |
С-К 100Н5-10 | 17,61 | 27,88 |
С-К 120Н5 | 18,29 | 21,08 |
С-К 120Н5-02 | 18,29 | 21,08 |
С-К 140Н5 | 15,1 | 20,1 |
С-К 140Н5-02 | 15,1 | 20,1 |
С-К 160Н5-02 | 14,74 | 19,6 |
С-К 160Н5-1 | 14,74 | 19,6 |
С-К 160Н5-1-02 | 14,74 | 19,6 |
С-К 175Н5-02 | 14,29 | 19,08 |
С-К 175Н5-1 | 14,29 | 19,08 |
С-К 175Н5-1-02 | 14,29 | 19,08 |
С-К 200Н5-02 | 11,87 | 17,61 |
С-К 200Н5-1 | 11,87 | 17,61 |
С-К 200Н5-1-02 | 11,87 | 17,61 |
С-КО 60Н5-02 | 40,4 | 63,47 |
С-КО 75Н5-02 | 26,4 | 43,41 |
С-КО 100Н5-02 | 27,88 | 48,94 |
С-КО 120Н5-02 | 18,29 | 21,08 |
С-КО 140Н5-02 | 15,1 | 20,1 |
С-КО 140Н5-1-02 | 15,1 | 20,1 |
С-КО 160Н5-02 | 14,74 | 19,6 |
С-КО 160Н5-1-02 | 14,74 | 19,6 |
С-КО 175Н5-02 | 14,29 | 19,08 |
С-КО 175Н5-1-02 | 14,29 | 19,08 |
С-КО 200Н5-02 | 11,87 | 17,61 |
С-КО 200Н5-1-02 | 11,87 | 17,61 |
С-КО 200Н5-03 | 11,87 | 17,61 |
С-КН 60Н5-02 | 23 | 35 |
С-КН 80Н5-02 | 23 | 35 |
С-КН 90Н5-02 | 18,94 | 27,88 |
С-КН 110Н5-02 | 18,29 | 21,08 |
С-КН 130Н5-02 | 18,29 | 21,08 |
С-КН 150Н5-02 | 15,1 | 20,1 |
CKHA61H50 | 43.35 | 43,25 |
CKHA68H50 | 33,41 | 37,58 |
CKHA72H50 | 28,35 | 34,98 |
CKHA81H50 | 28,65 | 34,47 |
CKHA96H50 | 26,33 | 35,72 |
CKHA101H50 | 19 | 21,2 |
TLX4 KK.3 | 61 | 19 |
TLX4.8 KK.3 | 46 | 22 |
TLX5.7 KK.3 | 37 | 21 |
TLX6.5 KK.3 | 30.00 | 15 |
TLX7.5 KK.3 | 29 | 30 |
TLX8.7 KK.3 | 19 | 13 |
TLY4 KK.3 | 48,06 | 15,69 |
TLY4.8 KK.3 | 38,25 | 17,65 |
TLY5.7 KK.3 | 34,33 | 20,6 |
TLY6.5 KK.3 | 2775,00% | 24,62 |
TLY7.5 KK.3 | 23,24 | 20,69 |
TLY8.7 KK.3 | 17,06 | 14,42 |
Сопротивлений обмоток компрессора АСС
мотор компрессор | мощность Вт | реле | сопротивление пусковой обмотки в омах | сопротивление рабочей обмотки в омах | фреон для заправки |
---|---|---|---|---|---|
GVM 38 AA | 96 | ZAF7 | 19,6 | 24,9 | R134 |
GVM 40 AA | 107 | ZAF7 | 24,3 | 17,3 | R134 |
GVM 44 AA | 122 | ZAF7 | 23,6 | 19,2 | R134 |
GVM 57 AA | 153 | ZAFC | 16,8 | 9,7 | R134 |
GVM 66 AA | 181 | ZA6H | 13 | 14,8 | R134 |
GVY 75 AA | 205 | ZAFA | 9,5 | 20,9 | R134 |
GL 90 AA | 221 | ZAFA | 19,8 | 10,4 | R134 |
GL 99 AA | 247 | ZAFA | 8,9 | 12 | R134 |
GTM 10 AA | 300 | K100-CH | 12,18 | 6,9 | R134 |
GTM 93 AA | 270 | K100-CH | 16,93 | 8,51 | R134 |
HMK 80 AA | 136 | ZAF5 | 29,5 | 18,6 | R600 |
HMK 95 AA | 167 | ZAF5 | 22,9 | 17,2 | R600 |
HVY 44 AA | 71 | ZMFF | 44,7 | 47,3 | R600 |
HVY 57 AA | 88 | ZMFF | 36,2 | 22,2 | R600 |
HVY 67 AA | 107 | ZMFF | 26,2 | 24,6 | R600 |
HVY 75 AA | 117 | ZMF5 | 22,9 | 17,2 | R600 |
Как мультиметром проверить мотор холодильника — видео
Компрессор холодильника своего рода «черный ящик», в него не заглянешь и не посмотришь на состояние обмоток, может они уже обуглились? Для его проверки можно использовать мультиметр, который покажет сопротивление пусковой и рабочей обмотки.
Как отличить пусковую и рабочую обмотку с помощью мультиметра
Обмотка с меньшим сопротивлением РАБОЧАЯ, соответственно вторая, с большим сопротивлением ПУСКОВАЯ
Кроме того, совсем нелишне проверить сопротивление изоляции компрессора, если оно менее 800 килоом, использовать компрессор опасно, само по себе это тревожный симптом.
Источник
Сопротивление обмоток компрессора холодильника
Компрессор – сердце любого холодильного агрегата. От его работы зависит главное – поддерживает ли холодильник заданную температуру в холодильном и морозильном отделениях.
Неисправности компрессора могут быть связаны с неполадками в циркуляционном контуре, в работе механических узлов, в электрической цепи.
В статье мы рассмотрим неисправности именно электрической части компрессора, для исправления которых нужно измерять сопротивление обмоток компрессора холодильника.
Сопротивление обмоток компрессора холодильника
Устройство компрессора
Совершенно не важно, какой у вас холодильник – Индезит, Бирюса, Атлант, LG или какой-то другой. Конструктивно компрессоры на них устроены одинаково. Если коротко, компрессор – это механизм для сжатия какого-либо продукта и дальнейшего его передвижения по контуру охлаждения. В холодильнике в качестве сжимаемого и передвигаемого продукта выступает фреон. Благодаря циркуляционной системе компрессора в камерах происходит охлаждение и замораживание.
В бытовых холодильниках применяется один из трех типов компрессоров:
В большинстве имеющихся у населения холодильников установлен классический тип компрессора. Такие компрессоры бывают поршневыми, ротационными, центробежными, винтовыми, кулачковыми и прочими. Самый распространенный из них вид – поршневой.
Важная информация: наиболее надежными и экономичными считаются инверторные компрессоры. В отличие от остальных они работают в непрерывном режиме, но на пониженных оборотах. Установка инверторных компрессоров снижает энергопотребление холодильников, но значительно повышает их цену.
Принцип работы поршневого компрессора
Поршневой компрессор состоит из электродвигателя с коленчатым валом и поршня. Такой механизм позволяет вращательное движение мотора переводить в возвратно-поступательное движение поршня. Алгоритм работы поршневого компрессора – следующий:
- Поршень всасывает в камеру пары фреона и затем нагнетает их в радиатор конденсатора под давлением. В радиаторе пары фреона переходят из газообразного состояния в жидкое. Выделяемое при этом тепло рассеивается решеткой радиатора в атмосферу.
- Из конденсатора жидкий фреон подается в капиллярную трубку (препятствие), после которой его давление резко снижается.
- Фреон после капиллярной трубки поступает в испаритель, где он из жидкого состояния опять переходит в газообразное. Этот переход происходит при значительном поглощении тепла в камерах холодильника.
- Цикл повторяется несколько раз до установления в холодильнике заданной температуры, после чего происходит отключение компрессора.
Электрическая схема компрессора
Электрическая схема компрессора довольно проста. В последние годы в ее работе появились дополнительные опции, связанные с использованием электронных плат управления, но принцип работы остался неизменным.
- терморегулятор – скрытая под круглой пластиковой ручкой пружина сильфона. При низкой температуре пружина сжимается и размыкает электрическую цепь компрессора, при повышении температуры она разжимается и цепь замыкает;
- тепловое реле – элемент защиты двигателя. Биметаллическая пластина реле при нагревании двигателя до установленной температуры изгибается и размыкает электрическую цепь;
- электродвигатель компрессора – устройство из двух обмоток, рабочей и пусковой. При включении двигателя напряжение подается на рабочую обмотку. После его повышения срабатывает пусковое реле и включается пусковая обмотка – ротор приходит во вращательное движение.
Неисправности компрессора
Мы рассмотрим неисправности только электрической части узла:
- обрыв обмоток компрессора – может быть сразу на двух обмотках или на одной из двух. Признаки – двигатель холодный, но не пускается, при включении может происходить короткое замыкание;
- межвитковое замыкание рабочей обмотки – из-за замыкания пусковое реле периодически пытается включить компрессор, компрессор сильно нагревается;
- межвитковое замыкание пусковой обмотки – признаки такие же, как и во втором пункте;
- неисправность терморегулятора;
- неисправность пускового реле.
Проверка сопротивления обмоток
Для определения неисправностей в электрической схеме нужно провести замеры напряжения в цепи и сопротивления обмоток мотора-компрессора. Ниже мы опишем последовательность проводимых операций:
- Откройте клеммную коробку на моторе.
- Открутите болты, зажимающие кабели.
- Определите назначение проводов. Обычно коричневый провод – фазовый (подключен к фазе терморегулятора), синий провод – нейтральный (подключен к нейтральному проводу терморегулятора), черный провод подает напряжение на электродвигатель.
- Проверьте мультиметром исправность терморегулятора:
- включите холодильник в сеть;
- температуру в холодильнике установите на максимальное значение;
- замерьте напряжение между коричневым и синим проводами;
- замерьте напряжение между синим и черным проводами.
Наличие напряжения говорит об исправности терморегулятора.
- Проверьте исправность пускового реле, путем замера напряжения между синим и черным проводами. Наличие напряжения говорит об исправности реле.
- Проведите замеры сопротивления обмоток двигателя: сначала определите назначение трех клемм на двигателе. Для этого замерьте между ними сопротивление: клемма с максимальным сопротивлением – пусковая, клемма со средним сопротивлением – рабочая, клемма с минимальным сопротивлением – общая. Сопротивление каждой из обмоток не должно превышать 100 Ом. Превышение этого значения говорит о неисправности обмотки.
- Проверьте сопротивление между каждой клеммой и кожухом мотора. Показатель сопротивления, отличный от бесконечности, говорит о низком сопротивлении изоляции. Эта неисправность будет приводить к срабатыванию защиты в электрощите.
- Проверьте включение компрессора «напрямую» (минуя все остальные элементы электрической цепи):
- приготовьте шнур с тремя проводами и вилкой на конце;
- подсоедините заземляющий провод шнура к кожуху, фазный провод к общей клемме и нейтральный провод к рабочей клемме;
- воткните вилку в сеть;
- замкните отверткой рабочую и пусковую клеммы.
Если компрессор включится в работу, замерьте амперметром рабочий ток на всех обмотках – так вы определите, какая обмотка не работает.
Важная информация: межвитковое замыкание или обрыв обмоток лучше сравнивать с табличными значениями для каждой марки мотора-компрессора.
Источник