Как найти путь без начальной скорости

Мы с вами продолжаем рассматривать прямолинейное
равноускоренное движение тела. Теперь давайте рассмотрим, как определить
проекцию вектора перемещения тела при его равноускоренном движении без
начальной скорости. В этом случае уравнение проекции перемещения будет иметь
вид:

Для простоты дальнейших рассуждений будем считать, что
направление векторов перемещения и ускорения тела совпадают. Тогда записанное
нами уравнение мы можем переписать, подставив в него вместо проекций векторов
ускорения и перемещения их модули:

Так как ускорение тела является величиной постоянной, то из
формулы следует, что при прямолинейном равноускоренном движении модуль
вектора перемещения прямо пропорционален квадрату времени, в течение которого
это перемещение совершено.

Например, если тело за некоторый промежуток времени t1 совершило
перемещение s1,
то за вдвое большее время оно совершит в четыре раза большее перемещение. Если
промежуток времени увеличится в 3 раза, по сравнению с первоначальным, то
перемещение тела увеличится уже в 9 раз, по сравнению с первоначальным. Логично
предположить, что в случае увеличения промежутка времени в k раз, перемещение увеличится в k2 раз. Только
помним, что число k
должно быть натуральным:

Данную закономерность можно представить графически в виде
последовательных отрезков перемещений:

Или с помощью графика скорости для равноускоренного движения
без начальной скорости:

Из рисунков хорошо видно, что в случае увеличения
промежутков времени, отсчитываемых от начала движения, в целое число раз,
модули соответствующих векторов перемещений возрастают как ряд квадратов
последовательных натуральных чисел:

Теперь давайте найдём отношения модулей перемещений,
проходимых телом за равные последовательные промежутки времени. Получим, что модули
векторов перемещений, совершаемых телом за равные последовательные промежутки
времени при прямолинейном равноускоренном движении без начальной скорости,
относятся как ряд нечётных чисел:

Полученными закономерностями обладает только равноускоренное
движение. Поэтому ими можно пользоваться в случае, когда требуется определить,
как движется тело — с ускорением или без него.

Например, пусть нам требуется определить, является ли
движение гусеницы равноускоренным, если она за первые 10 секунд движения
переместилась на 5 сантиметров, за вторые 10 секунд — на 15 сантиметров, а за
третьи 10 секунд — на 25 сантиметров.

Для этого найдём отношения перемещений, совершённых за второй
и третий промежутки времени, к перемещению гусеницы на первом отрезке времени:

Таким образом видим, что полученные отношения представляют
собой последовательный ряд нечётных чисел. Значит, движение гусеницы было
равноускоренным.

Закрепление материала. В течение восьми равных
промежутков времени от начала движения тело, двигаясь равноускорено,
переместилось на 160 метров. Какой путь прошло это тело в течение двух первых
таких же промежутков времени?

1. Нахождение пути по графику зависимости скорости от времени

Покажем, как можно найти пройденный телом путь с помощью графика зависимости скорости от времени.

Начнем с самого простого случая – равномерного движения. На рисунке 6.1 изображен график зависимости v(t) – скорости от времени. Он представляет собой отрезок прямой, параллельной осн времени, так как при равномерном движении скорость постоянна.

Путь при равномерном движении

Фигура, заключенная под этим графиком, – прямоугольник (он закрашен на рисунке). Его площадь численно равна произведению скорости v на время движения t. С другой стороны, произведение vt равно пути l, пройденному телом. Итак, при равномерном движении

путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени.

Покажем теперь, что этим замечательным свойством обладает и неравномерное движение.

Пусть, например, график зависимости скорости от времени имеет вид кривой, изображенной на рисунке 6.2.

Путь при неравномерном движении

Разобьем мысленно все время движения на столь малые промежутки, чтобы в течение каждого из них движение тела можно было считать практически равномерным (это разбиение показано штриховыми линиями на рисунке 6.2).

Тогда путь, пройденный за каждый такой промежуток, численно равен площади фигуры под соответствующим ком графика. Поэтому и весь путь равен площади фигур заключенной под всем графиком. (Использованный нами прием лежит в основе интегрального исчисления, основы которого вы будете изучать в курсе «Начала математического анализа».)

2. Путь и перемещение при прямолинейном равноускоренном движении

Применим теперь описанный выше способ нахождения пути к прямолинейному равноускоренному движению.

Начальная скорость тела равна нулю

Направим ось x в сторону ускорения тела. Тогда ax = a, vx = v. Следовательно,

v = at.     (1)

На рисунке 6.3 изображен график зависимости v(t).

График зависимости скорости от времени

? 1. Используя рисунок 6.3, докажите, что при прямолинейном равноускоренном движении без начальной скорости путь l выражается через модуль ускорения a и время движения t формулой

l = at2/2.     (2)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату времени движения.

Этим равноускоренное движение существенно отличается от равномерного.

На рисунке 6.4 приведены графики зависимости пути от времени для двух тел, одно из которых движется равномерно, а другое – равноускоренно без начальной скорости.

Графики зависимости пути от времени для двух тел

? 2. Рассмотрите рисунок 6.4 и ответьте на вопросы.
а) Каким цветом изображен график для тела, движущегося равноускоренно?
б) Чему равно ускорение этого тела?
в) Чему равны скорости тел в тот момент, когда они прошли одинаковый путь?
г) В какой момент времени скорости тел равны?

? 3. Тронувшись с места, автомобиль за первые 4 с проехал расстояние 20 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какое расстояние проедет автомобиль:
а) за 8 с? б) за 16 с? в) за 2 с?

Найдем теперь зависимость проекции перемещения sx от времени. В данном случае проекция ускорения на ось x положительна, поэтому sx = l, ax = a. Таким образом, из формулы (2) следует:

sx = axt2/2.     (3)

Формулы (2) и (3) очень похожи, что приводит порой к ошибкам при решении простых задач. Дело в том, что значение проекции перемещения может быть отрицательным. Так будет, если ось x направлена противоположно перемещению: тогда sx < 0. А путь отрицательным быть не может!

? 4. На рисунке 6.5 изображены графики зависимости от времени пути и проекции перемещения для некоторого тела. Какой цвет у графика проекции перемещения?

Начальная скорость тела не равна нулю

Напомним, что в таком случае зависимость проекции скорости от времени выражается формулой

vx = v0x + axt,     (4)

где v0x – проекция начальной скорости на ось x.

Мы рассмотрим далее случай, когда v0x > 0, ax > 0. В этом случае снова можно воспользоваться тем, что путь численно равен площади фигуры под графиком зависимости скорости от времени. (Другие комбинации знаков проекции начальной скорости и ускорения рассмотрите самостоятельно: в результате получится та же общая формула (5).

На рисунке 6.6 изображен график зависимости vx(t) при v0x > 0, ax > 0.

? 5. Используя рисунок 6.6, докажите, что при прямолинейном равноускоренном движении с начальной скоростью проекция перемещения

sx = v0x + axt2/2.     (5)

Эта формула позволяет найти зависимость координаты x тела от времени. Напомним (см. формулу (6), § 2), что координата x тела связана с проекцией его перемещения sx соотношением

sx = x – x0,

где x0 — начальная координата тела. Следовательно,

x = x0 + sx,     (6)

Из формул (5), (6) получаем:

x = x0 + v0xt + axt2/2.     (7)

6. Зависимость координаты от времени для некоторого тела, движущегося вдоль оси x, выражается в единицах СИ формулой x = 6 – 5t + t2.
а) Чему равна начальная координата тела?
б) Чему равна проекция начальной скорости на ось x?
в) Чему равна проекция ускорения на ось x?
г) Начертите график зависимости координаты x от времени.
д) Начертите график зависимости проекции скорости от времени.
е) В какой момент скорость тела равна нулю?
ж) Вернется ли тело в начальную точку? Если да, то в какой момент (моменты) времени?
з) Пройдет ли тело через начало координат? Если да, то в какой момент (моменты) времени?
и) Начертите график зависимости проекции перемещения от времени.
к) Начертите график зависимости пути от времени.

3. Соотношение между путем и скоростью

При решении задач часто используют соотношения между путем, ускорением и скоростью (начальной v0, конечной v или ими обеими). Выведем эти соотношения. Начнем с движения без начальной скорости. Из формулы (1) получаем для времени движения:

t = v/a.      (8)

Подставим это выражение в формулу (2) для пути:

l = at2/2 = a/2(v/a)2 = v2/2a.     (9)

Главный вывод:

при прямолинейном равноускоренном движении без начальной скорости пройденный телом путь пропорционален квадрату конечной скорости.

? 7. Тронувшись с места, автомобиль набрал скорость 10 м/с на пути 40 м. Движение автомобиля считайте прямолинейным равноускоренным. Не вычисляя ускорения автомобиля, определите, какой путь от начала движения проехал автомобиль, когда его скорость была равна: а) 20 м/с? б) 40 м/с? в) 5 м/с?

Соотношение (9) можно получить также, вспомнив, что путь численно равен площади фигуры, заключенной под графиком зависимости скорости от времени (рис. 6.7).

Это соображение поможет вам легко справиться со следующим заданием.

? 8. Используя рисунок 6.8, докажите, что при торможении с постоянным ускорением тело проходит до полной остановки путь lт = v02/2a, где v0 – начальная скорость тела, a – модуль ускорения.

В случае торможения транспортного средства (автомобиль, поезд) путь, пройденный до полной остановки, называют тормозным путём. Обратите внимание: тормозной путь при начальной скорости v0 и путь, пройденный при разгоне с места до скорости v0 с тем же по модулю ускорением a, одинаковы.

? 9. При экстренном торможении на сухом асфальте ускорение автомобиля равно по модулю 5 м/с2. Чему равен тормозной путь автомобиля при начальной скорости: а) 60 км/ч (максимальная разрешенная скорость в городе); б) 120 км/ч? Найдите тормозной путь при указанных скоростях во время гололеда, когда модуль ускорения равен 2 м/с2. Сравните найденные вами значения тормозного пути с длиной классной комнаты.

? 10. Используя рисунок 6.9 и формулу, выражающую площадь трапеции через ее высоту и полусумму оснований, докажите, что при прямолинейном равноускоренном движении:
а) l = (v2 – v02)/2a, если скорость тела увеличивается;
б) l = (v02 – v2)/2a, если скорость тела уменьшается.

? 11. Докажите, что проекции перемещения, начальной и конечной скорости, а также ускорения связаны соотношением

sx = (vx2 – v0x2)/2ax     (10)

? 12. Автомобиль на пути 200 м разогнался от скорости 10 м/с до 30 м/с.
а) С каким ускорением двигался автомобиль?
б) За какое время автомобиль проехал указанный путь?
в) Чему равна средняя скорость автомобиля?

Лютый опыт

Дополнительные вопросы и задания

13. От движущегося поезда отцепляют последний вагон, после чего поезд движется равномерно, а вагон – с постоянным ускорением до полной остановки.
а) Изобразите на одном чертеже графики зависимости скорости от времени для поезда и вагона.
б) Во сколько раз путь, пройденный вагоном до остановки, меньше пути, пройденного поездом за то же время?

14. Отойдя от станции, электричка какое-то время ехала равноускоренно, затем в течение 1 мин – равномерно со скоростью 60 км/ч, после чего снова равноускоренно до остановки на следующей станции. Модули ускорений при разгоне и торможении были различны. Расстояние между станциями электричка прошла за 2 мин.
а) Начертите схематически график зависимости проекции скорости электрички от времени.
б) Используя этот график, найдите расстояние между станциями.
в) Какое расстояние проехала бы электричка, если бы на первом участке пути она разгонялась, а на втором – тормозила? Какова была бы при этом ее максимальная скорость?

15. Тело движется равноускоренно вдоль оси x. В начальный момент оно находилось в начале координат, а проекция его скорости была равна 8 м/с. Через 2 с координата тела стала равной 12 м.
а) Чему равна проекция ускорения тела?
б) Постройте график зависимости vx(t).
в) Напишите формулу, выражающую в единицах СИ зависимость x(t).
г) Будет ли скорость тела равна нулю? Если да, то в какой момент времени?
д) Побывает ли тело второй раз в точке с координатой 12 м? Если да, то в какой момент времени?
е) Вернется ли тело в начальную точку? Если да, то в какой момент времени, и чему будет равен пройденный при этом путь?

16. После толчка шарик вкатывается вверх по наклонной плоскости, после чего возвращается в начальную точку. На расстоянии b от начальной точки шарик побывал дважды через промежутки времени t1 и t2 после толчка. Вверх и вниз вдоль наклонной плоскости шарик двигался с одинаковым по модулю ускорением.
а) Направьте ось x вверх вдоль наклонной плоскости, выберите начало координат в точке начального положения шарика и напишите формулу, выражающую зависимость x(t), в которую входят модуль начальной скорости шарика v0 и модуль ускорения шарика a.
б) Используя эту формулу и тот факт, что на расстоянии b от начальной точки шарик побывал в моменты времени t1 и t2 составьте систему двух уравнений с двумя неизвестными v0 и a.
в) Решив эту систему уравнений, выразите v0 и a через b, t1 и t2.
г) Выразите весь пройденный шариком путь l через b, t1 и t2.
д) Найдите числовые значения v0, a и l при b = 30 см, t1 = 1с, t2 = 2 с.
е) Постройте графики зависимости vx(t), sx(t), l(t).
ж) С помощью графика зависимости sx(t) определите момент, когда модуль перемещения шарика был максимальным.

Движение тела без начальной скорости


Движение тела без начальной скорости

4.4

Средняя оценка: 4.4

Всего получено оценок: 178.

4.4

Средняя оценка: 4.4

Всего получено оценок: 178.

Во многих случаях тело начинает движение из состояния покоя, то есть, из состояния с нулевой начальной скоростью. Поговорим кратко о движении тела без начальной скорости.

Начальная скорость тела в Системе Отсчета

Описание движения тела начинается с определения Системы Отсчета – то есть с определения тела отсчета, координатных осей и метода измерения времени.

Система отсчета

Рис. 1. Система отсчета.

При этом возможны случаи, когда скорость тела в нулевой момент времени равна нулю. То есть, тело в начальный рассматриваемый момент времени не движется относительно тела отсчета (хотя, оно может двигаться в других системах).

Например, пассажир движущегося поезда некоторое время сидит на своем месте, а потом переходит на другое место. В Системе Отсчета, связанной с рельсами, он постоянно движется. Однако, в Системе Отсчета, связанной с вагоном, он в нулевой момент времени покоится, и лишь спустя некоторое время начинает движение.

Поезд, пассажир, относительность движения

Рис. 2. Поезд, пассажир, относительность движения.

Таким образом, начальная скорость тела зависит от выбранной Системы Отсчета.

Формулы кинематики для случая нулевой начальной скорости

Если начальная скорость тела равна нулю, а тело через некоторое время переместилось, значит, на тело действовала некоторая сила, которая привела к появлению ускорения, в результате которого и произошло перемещение тела. Иначе говоря, тело двигалось с ускорением. То есть, можно использовать общие формулы кинематики для равноускоренного движения:

$$overrightarrow x=overrightarrow x_0+overrightarrow v_0t+{overrightarrow at^2over 2}$$

$$overrightarrow v=overrightarrow v_0+overrightarrow at$$

Подставив в эти формулы $overrightarrow v_0 = 0$, получим:

$$overrightarrow x=overrightarrow x_0+{overrightarrow at^2over 2}$$

$$overrightarrow v=overrightarrow at$$

Если построить графики этих формул и сравнить их с общими графиками, то можно отметить следующие особенности.

График пути представляет собой параболу, такую же, как при движении с начальной скоростью. Однако, эта парабола симметрична относительно оси ординат, и ее вершина пересекает эту ось. Следовательно, если тело двигалось с тем же ускорением до принятого в Системе Отсчета начального момента, то в этот момент перемещение тела имеет экстремальное (наибольшее или наименьшее) значение. Например, если рассматривается свободное падение тела, то нулевой момент будет соответствовать высшей точке траектории.

График скорости представляет собой прямую, имеющую тот же наклон, как и при движении с начальной скоростью, но, пересекающую начало координат.

Графики пути и скорости для равноускоренного движения

Рис. 3. Графики пути и скорости для равноускоренного движения.

Выбор Системы Отсчета

Формулы, описывающие движение тела без начальной скорости, проще. Поэтому при решении задач следует, по возможности, выбирать Систему Отсчета так, чтобы у рассматриваемого тела начальная скорость была равна нулю.

Особенно простая форма получается, если и начальное перемещение тела также будет нулевым. Например, для описанного выше примера перехода пассажира с одного места на другое – Систему Отсчета разумно связать с креслом пассажира.

Заключение

Что мы узнали?

Формулы кинематики для движения без начальной скорости проще. Поэтому следует по возможности выбирать Систему Отсчета так, чтобы рассматриваемые тела в этой системе не имели начальной скорости.

Тест по теме

Доска почёта

Доска почёта

Чтобы попасть сюда – пройдите тест.

    Пока никого нет. Будьте первым!

Оценка доклада

4.4

Средняя оценка: 4.4

Всего получено оценок: 178.


А какая ваша оценка?

Рассмотрим некоторые особенности перемещения тела при прямолинейном равноускоренном движении без начальной скорости. Уравнение, которое описывает это движение, было выведено Галилеем в (XVI) веке. Необходимо помнить, что при прямолинейном равномерном или неравномерном движении модуль перемещения совпадает по своему значению с пройденным путём. Формула выглядит следующим образом:

s=v0t+at22

, где (а) — это ускорение.

Сравним графики равномерного и равноускоренного движения.

Графики прямолинейного равномерного движения

Зависимость ускорения от времени. Так как при равномерном движении ускорение равно нулю, то зависимость (a(t)) — прямая линия, которая лежит на оси времени.

Зависимость скорости от времени. Скорость со временем не изменяется, график (v(t)) — прямая линия, параллельная оси времени.

Правило определения пути по графику (v(t)): численное значение перемещения (пути) — это площадь прямоугольника под графиком скорости.

Зависимость пути от времени. График (s(t)) — наклонная линия.

Иллюстрация к теории I.gif

Рис. (1). График зависимости скорости от времени при равномерном прямолинейном движении

иллюстрация к теории II.gif

Рис. (2). График зависимости пути от времени при равномерном прямолинейном движении

Графики равноускоренного движения


Зависимость ускорения от времени. Ускорение со временем не изменяется, имеет постоянное значение, график (a(t)) — прямая линия, параллельная оси времени.

Зависимость скорости от времени. Скорость изменяется согласно линейной зависимости.

Зависимость пути от времени. При равноускоренном движении путь изменяется согласно квадратной зависимости:

s=v0t+at22

. В координатах зависимость имеет вид:

x=x0+v0xt+axt22

.

Графиком является ветка параболы.

иллюстрация к теории III.gif

Рис. (3). График зависимости пути от времени при равноускоренном движении

Источники:

Рис. 1. График зависимости скорости от времени при равномерном прямолинейном движении. © ЯКласс.
Рис. 2. График зависимости пути от времени при равномерном прямолинейном движении. © ЯКласс.

Рис. 3. График зависимости пути от времени при равноускоренном движении. © ЯКласс.

Равномерно ускоренное движение без начальной скорости

Перемещение выраженное через скорость и время

Тело начинает двигаться равноускоренно из состояния покоя.

На графике скорости перемещение равно площади треугольника

[s = frac{ut}{2}]

Здесь:
u — скорость тела через промежуток времени t,
s — перемещение тела за время t,
t — время движения,

График скорости - Равномерно ускоренное движение без начальной скорости
График скорости – Равномерно ускоренное движение без начальной скорости

Скорость выраженная через ускорение и время

Поскольку движение начинается из состояния покоя, то изменение скорости равно величине скорости, достигнутой к моменту времени t, и скорость вычисляется по следующей формуле:

[u = at]

График ускорения - Равномерно ускоренное движение без начальной скорости
График ускорения – Равномерно ускоренное движение без начальной скорости

Перемещение выраженное через ускорение и время

Из формул (1) и (2) получается следующая формула пройденного пути:

[s = frac{at^2}{2}]

Здесь:
a — ускорение тела, постоянное в течение времени t,
s — перемещение тела за время t,
t — время движения,

График перемещения - Равномерно ускоренное движение без начальной скорости
График перемещения – Равномерно ускоренное движение без начальной скорости

Равномерно ускоренное движение без начальной скорости

стр. 399

Добавить комментарий