Как найти путь через производную

15 мая 2014

Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:

[v={S}’={x}’left( t right)]

Точно так же мы можем посчитать и ускорение:

[a={v}’={{S}’}’={{x}’}’left( t right)]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

[v={S}’={x}’left( 2 right)]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

Нам требуется найти производную в точке 2. Давайте подставим:

[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]

[=-16+32-12+5=9]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]

[{x}’left( t right)={{t}^{2}}-8t+19]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

[{{t}^{2}}-8t+19=3]

[{{t}^{2}}-8t+16=0]

[{{left( t-4 right)}^{2}}=0]

[t-4=0]

[t=4]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:

  1. Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
  2. ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
  3. Схема Бернулли. Примеры решения задач
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачи про летающие камни?
  6. B4: счетчики на электричество
Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Для школьников.

Пусть вам предстоит решить задачу, в которой известно только уравнение зависимости пути (или координаты) от времени для движущегося тела. Надо подробнее описать это движение, т. е. узнать скорость, ускорение этого тела в конкретные моменты времени; узнать характер движения этого тела и т. д.

Для этого надо уметь находить производную пути по времени, производную скорости по времени. Как это делать? Об этом и идёт речь в данном занятии. Сначала уясним физический смысл математических понятий.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Итак, взяв производную пути по времени, получим выражение для мгновенной скорости движущейся материальной точки.

Аналогично, взяв производную скорости по времени, получим выражение для тангенциального ускорения

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Пусть нам дано такое уравнение зависимости пути от времени:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Здесь показатель степени времени (т.е. 2) уменьшили на единицу, а 2 поставили перед символом времени.

Ниже на примере показано, как получается уравнение скорости, если известно уравнение пути.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование
Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Надо ещё получить уравнение траектории.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Попробую дать понятие производной как можно проще на примере нахождения мгновенной скорости движения тела (материальной точки). Пусть тело двигается с переменной скоростью вдоль оси Х и нам известно уравнение его движения:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

За время

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

тело переместится на

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

или пройдёт путь

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Тогда средняя скорость движения тела запишется так:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Если перейти к предельному случаю, когда время движения стремится к нулю (к мгновению), то от средней скорости перейдём к мгновенной:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Отношение

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

называется производной пути по времени. Отсюда следует физический смысл мгновенной скорости:

Мгновенная скорость – это физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени.

Теперь перейдём к определению производной, данному в математике, в “начале дифференциального и интегрального исчисления”: Производной функции

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

в точке

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

называется предел отношения приращения функции

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

к приращению независимой переменной

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

при её стремлении к нулю:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование
Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Производная в точке есть определённое число, равное тангенсу угла наклона касательной к графику.

Вернёмся к нашему примеру нахождения мгновенной скорости тела, движущегося вдоль оси х с переменной скоростью.

Вдоль оси абсцисс откладываем время, вдоль оси ординат – пройденный телом путь. Тогда наша кривая покажет зависимость пути от времени движения тела вдоль оси х.

Проведя касательную к нашему графику в некоторой точке, найдём тангенс угла, то есть найдём мгновенную скорость тела (материальной точки) в данный момент времени

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.

Предыдущая запись: Решение задач 3 и 4 на равнопеременное движение

Следующая запись: Занятие 7

Первая запись: Занятие 1.

Алгебра и начала математического анализа, 11 класс

Урок №19. Решение задач с помощью производной.

Перечень вопросов, рассматриваемых в теме

  1. механический смысл первой производной;
  2. механический смысл второй производных;
  3. скорость и ускорение.

Глоссарий по теме

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S’(t).

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается fили

Производная от второй производной называется производной третьего порядка и обозначается или f”’(x). Производную n-го порядка обозначают f(n) (x) или y(n).

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть

Первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Давайте вспомним механический смысл производной:

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S'(t).

Пример 1. Точка движется прямолинейно по закону   (S выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.

Решение: 

скорость прямолинейного движения равна производной пути по времени, то есть .

Подставив в уравнение скорости t=3 с, получим v(3)=32+4∙3-1= 20 (м/с).

Ответ: 20 м/c.

Пример 2. Маховик, задерживаемый тормозом, поворачивается за t с на угол

Найдите:

а) угловую скорость вращения маховика в момент t = 6 с;

б) в какой момент времени маховик остановится?

Решение: а) Угловая скорость вращения маховика определяется по формуле ω=φ’. Тогда ω=(4t-0,2t2)=4-0,4t.

Подставляя t = 6 с, получим ω=4-0,4∙6=1,6 (рад/с). 

б) В тот момент, когда маховик остановится, его скорость будет равна нулю (ω=0) . Поэтому 4-0,4t=0.. Отсюда t=10 c.

Ответ: угловая скорость маховика равна (рад/с); t=10 c.

Пример 3. Тело массой 6 кг движется прямолинейно по закону S=3t2+2t-5. Найти кинетическую энергию тела через 3 с после начала движения.

Решение: найдём скорость движения тела в любой момент времени t.

v= S’=(3t2+2t-5)’=6t+2

Вычислим скорость тела в момент времени t=3. v(3)=6∙3+2=20 (м/с)..

Определим кинетическую энергию тела в момент времени t=3. 

Ответ: Е=1200 Дж

Производная второго порядка. Производная n-го порядка.

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается .

Производная от второй производной называется производной третьего порядка и обозначается y”’ или f”'(x) Производную n-го порядка обозначают f(n) (x) или y(n).

Примеры. Найдем производные четвёртого порядка для заданных функций:

1) f(x)= sin 2x

f'(x)=cos 2x∙(2x)’= 2cos 2x

f (x)=-2sin2x∙(2x)’=-4sin 2x

f”'(x)= -4 cos 2x∙(2x)= -8 cos 2x

f(4)(x)= 8 sin2x∙(2x)’= 16 sin 2x

2) f(x)=23x

f’(x)=3∙ 23x ∙ln2

f (x)= 9∙ 23x ∙ln22

f”'(x)= 27∙ 23x ∙ln32

f(4)(x)= 81∙ 23x ∙ln42

Механический смысл второй производной.

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть 

Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.

Решение:

найдём скорость точки в любой момент времени t.

v=S’=(3t2-3t+8)’=6t-3.

Вычислим скорость в момент времени t=4 c.

v(4)=6∙4-3=21(м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=21(м/с); a= v’= 6 (м/с2).

Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.

Решение: сила, действующая на тело, находится по формуле F=ma. 

Найдём скорость движения точки в любой момент времени t.

v=S’=(t3-3t2+5)’=3t2-6t.

Тогда v(4)=3∙42-6∙4=24 (м/с). 

Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.

Тогда a(4)= 6∙4-6= 18 (м/с2).

F=ma=3∙18= 54 Н

Ответ: F= 54 Н

Разбор решения заданий тренировочного модуля

№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Напишите производную третьего порядка для функции:

f(x)= 3cos4x-5x3+3x2-8

_____________________

Решим данную задачу:

f’’’(x)=( 3cos4x-5x3+3x2-8)’’’=(((3cos4x-5x3+3x2-8)’)’)’=((-12sin4x-15x2+6x)’)’=(-48cos4x-30x)’=192sin4x-30.

Ответ: 192sin4x-30

№ 2. Тип задания: выделение цветом

Точка движется прямолинейно по закону S(t)= 3t2+2t-7. Найти скорость и ускорение точки в момент t=6 c.

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

Решим данную задачу:

Воспользуемся механическим смыслом второй производной:

v= S’(t)=( 3t2+2t-7)’=6t+2.

Вычислим скорость в момент времени t=6 c.

v(6)=6∙6+2=38 (м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t+2)’=6 и a(6)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=38(м/с); a= v’= 6 (м/с2).

Верный ответ:

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

Применение производной в физике и технике

  1. Скорость и ускорение
  2. Физические величины как производные от других величин
  3. Примеры

п.1. Скорость и ускорение

Рассматривая физический смысл производной (см. §42 данного справочника), мы выяснили, что:

Производная функции (y=f(x)) в точке (x_0) равна скорости изменения функции в этой точке.

Например:
Рассмотрим прямолинейное равноускоренное движение.
Уравнение этого движения имеет вид: $$ x(t)=x_0+v_0t+frac{at^2}{2} $$ где (x(t)) – ккордината тела в произвольный момент времени (t, x_0) – начальная координата, (v_0) – начальная скорость, (a=const) – ускорение, действующее на тело.
Чтобы найти скорость тела из этого уравнения, нужно найти производную от координаты по времени: $$ v(t)=x'(t)=left(x_0+v_0t+frac{at^2}{2}right)’=0+v_0cdot 1+frac a2cdot 2t=v_0+at $$ Чтобы найти ускорение, нужно найти производную от скорости: $$ a(t)=v'(t)=x”(t)=(v_0+at)’=0+acdot 1=a=const $$

п.2. Физические величины как производные от других величин

Если рассматривать уравнение процесса (s=f(t)), его производной будет величина $$ f'(t)=lim_{triangle trightarrow 0}frac{triangle s}{triangle t} $$ Такие величины часто встречаются в различных разделах физики и техники.

Исходная величина (процесс)

Производная по времени

Координата (x(t))

Скорость (v(t)=x'(t))
Ускорение (a(t)=v'(t)=x”(t))

Угол поворота (varphi(t))

Угловая скорость (omega(t)=omega'(t))
Угловое ускорение (beta(t)=omega'(t)=varphi”(t))

Масса горючего ракеты (m(t))

Скорость расходования горючего (u(t)=m'(t))

Температура тела (T(t))

Скорость нагрева (v_T(t)=T'(t))

Заряд (q(t))

Сила тока (I(t)=q'(t))

Работа (A(t))

Мощность (N(t)=A'(t))

Магнитный поток (Ф(t))

ЭДС индукции (varepsilon(t)=-Ф'(t))

Число атомов радиоактивного вещества (N(t))

Скорость радиоактивного распада (I(t)=-N'(t))

Конечно же, в физике далеко не обязательно берут производную только по времени.
Например, для теплоты Q(T) теплоемкость равна C(T)=Q'(T), где T – температура.
А для процесса теплопереноса температура u(x,t) в точке с координатой x в момент времени t определяется уравнением теплопроводности: $$ frac{partial u(x,t)}{partial t}-a^2frac{partial^2 u(x,t)}{partial x^2}=f(x,t) $$ и производные берутся по времени (left(frac{partial u}{partial t}right)) и по координате (left(frac{partial u}{partial x}right)), причем по координате берется производная второго порядка (left(frac{partial^2 u}{partial x^2}right)).
Поэтому в физике для производных чаще используются обозначения Лейбница, в которых хорошо видна как функция, так и аргумент.
Например, для производных функции от одной переменной: (frac{partial varphi}{partial t}, frac{partial p}{partial V}, frac{partial Q}{partial T},…)
Для производных функций от многих переменных: (frac{partial u}{partial t}, frac{partial u}{partial x}, frac{partial u}{partial y}, frac{partial u}{partial z},…)

п.3. Примеры

Пример 1. Тело массой 6 кг движется прямолинейно по закону (x(t)=t^2+t+1) (м). Найдите: 1) кинетическую энергию тела через 3 с после начала движения; 2) силу, действующую на тело в это время.
1) Кинетическая энергия равна (E=frac{mv^2}{2})
Скорость тела: (v(t)=x'(t)=(t^2+t+1)’=2t+1)
Через 3 с: (v(3)=2cdot 3+1=7) (м/с)
Подставляем: (E=frac{6cdot 7^2}{2}=147) (Дж)

2) Сила по второму закону Ньютона: (F=ma)
Ускорение тела: (a(t)=v'(t)=(2t+1)’=2) (м/с^2)
Ускорение постоянно.
На тело действует постоянная сила: (F=6cdot 2=12) (Н)

Ответ: 147 Дж; 12 Н

Пример 2. Маховик вращается по закону (varphi (t)=4t-0,5t^2) (рад)
Найдите момент времени, в который маховик остановится.

Угловая скорость: (omega(t)=varphi ‘(t)=(4t-0,5t^2 )’=4-0,5cdot 2t=4-t)
В момент остановки угловая скорость равна 0. Решаем уравнение: $$ 4-t=0Rightarrow t=4 (c) $$ Ответ: 4 c

Пример 3. Ракету запустили вертикально вверх с начальной скоростью 40 м/с. В какой момент времени и на какой высоте ракета достигнет наивысшей точки (g≈10м/с2)?

Выберем начало отсчета на земле ((y_0=0)), направим ось y вверх.
Начальная скорость направлена вверх, её проекция на ось положительна.
Ускорение свободного падения направлено вниз, его проекция отрицательна.
Уравнение движения: $$ y(t)=y_0+v_{0y}t+frac{g_y t^2}{2}=0+40t-frac{10t^2}{2}=40t-5t^2 $$ В верхней точке траектории ракета останавливается, её скорость равна 0.
Найдем скорость: $$ v(t)=y'(t)=40-5cdot 2t=40-10t $$ Найдем момент остановки в верхней точке: $$ 40-10t_0=0Rightarrow t_0=frac{40}{10}=4 (c) $$ Найдем высоту подъема в верхней точке: $$ H_{max}=y(t_0)=40cdot 4-5cdot 4^2=80 (м) $$ Ответ: 4 с, 80 м

Пример 4. Через поперечное сечение проводника проходит заряд (q(t)=ln⁡(t+1)) (Кл). В какой момент времени сила тока в проводнике равна 0,1 А?

Сила тока: $$ I(t)=q'(t)=(ln(t+1))’=frac{1}{t+1} $$ По условию: $$ frac{1}{t_0+1}=0,1Rightarrow t_0+1=frac{1}{0,1}=10Rightarrow t_0=9 (c) $$ Ответ: 9 c

Пример 5. Колесо вращается так, что угол его поворота пропорционален квадрату времени. Первый оборот оно сделало за 8 с. Найдите угловую скорость через 48 с после начала вращения.

По условию угол поворота (varphi (t)=At^2)
Один оборот (2pi) радиан был сделан за 8 с. Получаем уравнение: (Acdot 8^2=2pi)
Находим коэффициент (A=frac{2pi}{8^2}=frac{pi}{32})
Уравнение движения (varphi(t)=frac{pi}{32}t^2) (рад)
Угловая скорость (omega(t)=varphi ‘(t)=left(frac{pi}{32}t^2right)’=frac{pi}{32}cdot 2t=frac{pi}{16}t) (рад/с)
Через 48 секунд (omega(48)=frac{pi}{16}cdot 48=3pi) рад/с – полтора оборота в секунду.
Ответ: (3pi) рад/с

Пример 6. Для нагревания 1 кг жидкости от 0°С до t°C необходимо (Q(t)=1,7t+at^2+bt^3) Дж теплоты.
Известно, что теплоемкость жидкости при температуре 100°С равна 1,71 Дж/К, а для нагревания 1 кг этой жидкости 0°С до 50°C требуется 85,025 Дж теплоты. Найдите коэффициенты a и b.

Теплоемкость: (C(t)=Q'(t)=1,7cdot 1+acdot 2t+bcdot 3t^2=1,7+2at+3bt^2)
По условию: begin{gather*} C(100)=1,7+2acdot 100+3bcdot 100^2-1,71\ 200a+30000b=0,01 end{gather*} Кроме того: begin{gather*} Q(50)=1,7cdot 50+acdot 50^2+bcdot 50^3=85,025\ 2500a+125000b=0,025 end{gather*} Получаем линейную систему: begin{gather*} begin{cases} 200a+30000b=0,01 |:2\ 2500a+125000b=0,025 |:25 end{cases} Rightarrow begin{cases} 100a+15000b=0,005\ 100a+5000b=0,001 end{cases} \ 15000b-5000b=0,005-0,001\ 10000b=0,004\ b=4cdot 10^{-3}cdot 10^{-4}=4cdot 10^{-7} left(frac{Дж}{K^3}right)\ a=frac{0,001-5000b}{100}=frac{10^{-3}-5cdot 10^3cdot 4cdot 10^{-7}}{100}=frac{10^{-3}-2cdot 10^{-3}}{100}=-frac{10^{-3}}{100}\ a=-10^{-5} left(frac{Дж}{K^2}right) end{gather*} Ответ: (a=-10^{-5}frac{Дж}{K^2}; b=4cdot 10^{-7}frac{Дж}{K^3})

Пример 7*. Лестница длиной 5 м стояла вертикально. Потом её нижний конец стали перемещать по полу с постоянной скоростью (v=2) м/с. С какой по абсолютной величине скоростью в зависимости от времени опускается верхний конец лестницы? Постройте график полученной функции.

Пример 7 Лестница со стенами образует прямоугольный треугольник, для которого справедлива теорема Пифагора: $$ x^2(t)+y^2(t)=5^2 $$ Нижний конец движется с постоянной скоростью, его уравнение движения по полу: $$ x(t)=vt=2t $$ Отсюда получаем уравнение движения верхнего конца по стенке: begin{gather*} y^2(t)=25-x^2(t)=25-(2t)^2=25-4t^2\ y(t)=sqrt{25-4t^2} end{gather*}

Время (tgeq 0) имеет ограничение сверху (25-4t^2geq 0Rightarrow t^2leq frac{25}{4}Rightarrow 0leq tleq 2,5 (с))
Скорость скольжения верхнего конца по стенке: begin{gather*} u_y(t)=y'(t)=left(sqrt{25-4t^2}right)’=frac{1}{2sqrt{25-4t^2}}cdot (25-4t^2)’=frac{-8t}{2sqrt{25-4t^2}}\ u_y(t)=-frac{4t}{sqrt{25-4t^2}} end{gather*} Знак «-» указывает на направление скорости вниз и связан с уменьшением координаты (y(t)) со временем. Абсолютная величина найденной скорости: begin{gather*} u(t)=|u_y(t)|=frac{4t}{sqrt{25-4t^2}} end{gather*} 1) ОДЗ: (0leq tleq 2,5)
2) Четность – нет, т.к. функция определена только на положительных t.
Периодичность – нет.
3) Асимптоты:
1. Вертикальная
Рассмотрим односторонние пределы begin{gather*} lim_{trightarrow +0}left(frac{4t}{sqrt{25-4t^2}}right)=frac05=0\ lim_{trightarrow 2,5-0}left(frac{4t}{sqrt{25-4t^2}}right)=frac{10}{0}=+infty end{gather*} При подходе к правой границе (t=2,5) слева функция стремится к (+infty).
В точке (t=2,5) – вертикальная асимптота.
2. Горизонтальных асимптот нет, т.к. ОДЗ ограничено интервалом.
3. Наклонных асимптот нет.

4) Первая производная begin{gather*} u'(t)=4cdotfrac{1cdotsqrt{25-4t^2}-tcdotfrac{-8t}{2sqrt{25-4t^2}}}{25-4t^2}=4cdotfrac{25-4t^2+8t^2}{2(25-4t^2)^{frac32}}=frac{2(4t^2+25)}{(25-4t^2)^{frac32}} end{gather*} (u'(t)gt 0) на всей ОДЗ, функция возрастает.

5) Вторая производная begin{gather*} u”(t)=frac{2(4t^2+25)}{(25-4t^2)^{frac32}}=2cdotfrac{8tcdot(25-4t^2)^{frac32}-(4t^2+25)cdot frac32sqrt{25-4t^2}cdot (-8t)}{(25-4t^3)}=\ =2cdotfrac{8tcdot(25-4t^2)+8tcdotfrac32cdot (4t^2+25)}{(25-4t^2)^{frac52}}=8tcdotfrac{50-8t^2+12t^2+75}{(25-4t^2)^{frac52}}=frac{8t(4t^2+25)}{(25-4t^2)^{frac52}} end{gather*} (u”(t)gt 0) на всей ОДЗ, функция выпуклая вниз.

6) Пересечение с осями
В начале координат: (t=0, u=0)

7) График
Пример 7

Ответ: (u(t)=frac{4t}{sqrt{25-4t^2}})

Пример 8. Под действием нагрузки деталь с поперечным сечением в виде прямоугольника площадью 17 см2 начинает деформироваться. Одна из сторон прямоугольника растет с постоянной скоростью 1 см/ч, а вторая – уменьшается со скоростью 0,5 см/ч. Найдите скорость изменения площади поперечного сечения через 45 мин после начала деформации, если известно, что в этот момент его площадь равна 20 см2.

Длина первой стороны в зависимости от времени: (a(t)=a_0+1cdot t) (см),
время – в часах.
Длина второй стороны: (b(t)=b_0-0,5cdot t).
Площадь в начальный момент: (S_0=a_0 b_0=17 (см^2))
Площадь в произвольный момент t: begin{gather*} S(t)=a(t)cdot b(t)=(a_0+t)(b_0-0,5t)=a_0 b_0+(-0,5a_0+b_0)t-0,5t^2=\ =17+(-0,5a_0+b_0)t-0,5t^2 end{gather*} По условию при (t=45 мин=frac34 ч): begin{gather*} Sleft(frac34right)=17+(-0,5a_0+b_0)cdotfrac34-0,5cdotleft(frac34right)^2=20\ (-0,5a_0+b_0)cdotfrac34=20-17+frac{9}{32}=3+frac{9}{32}\ (-0,5a_0+b_0)=frac43left(3+frac{9}{32}right)=4+frac38=4frac38 end{gather*} Получаем: begin{gather*} S(t)=17+4frac38t-0,5t^2 end{gather*} Скорость изменения площади: begin{gather*} S'(t)=0+4frac38cdot 1-0,5cdot 2t=4frac38-t end{gather*} Через 45 мин: begin{gather*} S’left(frac34right)=4frac38-frac34=3+frac{11}{8}-frac34=3+frac{11-6}{8}=3frac58=3,625 (см^2/ч) end{gather*} Ответ: 3,625 см2

В прошлой статье мы немножко разобрались с тем, что такое механика  и зачем она нужна. Мы уже знаем, что такое система отсчета,  относительность движения и материальная точка. Что ж, пора двигаться дальше!  Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики  и приведем практический пример решения задачи.

Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад  в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат  (или радиус-вектора точки) от времени.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

Перемещение и путь

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

Скорость и ускорение

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной  от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

Мгновенная скорость формула

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Мгновенное ускорение формула

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Тангенциальное ускорение формула

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Нормальное ускорение как найти

Здесь R – радиус окружности, по которой движется тело.

Векторы нормального, тангенциального и полного ускорения

 

Закон равноускоренного движения

Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.

Закон равноускоренного движения

Здесь  – x нулевое- начальная координата. v нулевое – начальная скорость. Продифференцируем по времени, и получим скорость

Закон равноускоренного движения

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Кинематика пример решения задачи

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Добавить комментарий