Как найти путь по производной от пути

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Для школьников.

Пусть вам предстоит решить задачу, в которой известно только уравнение зависимости пути (или координаты) от времени для движущегося тела. Надо подробнее описать это движение, т. е. узнать скорость, ускорение этого тела в конкретные моменты времени; узнать характер движения этого тела и т. д.

Для этого надо уметь находить производную пути по времени, производную скорости по времени. Как это делать? Об этом и идёт речь в данном занятии. Сначала уясним физический смысл математических понятий.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Итак, взяв производную пути по времени, получим выражение для мгновенной скорости движущейся материальной точки.

Аналогично, взяв производную скорости по времени, получим выражение для тангенциального ускорения

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Пусть нам дано такое уравнение зависимости пути от времени:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Здесь показатель степени времени (т.е. 2) уменьшили на единицу, а 2 поставили перед символом времени.

Ниже на примере показано, как получается уравнение скорости, если известно уравнение пути.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование
Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Надо ещё получить уравнение траектории.

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Попробую дать понятие производной как можно проще на примере нахождения мгновенной скорости движения тела (материальной точки). Пусть тело двигается с переменной скоростью вдоль оси Х и нам известно уравнение его движения:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

За время

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

тело переместится на

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

или пройдёт путь

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Тогда средняя скорость движения тела запишется так:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Если перейти к предельному случаю, когда время движения стремится к нулю (к мгновению), то от средней скорости перейдём к мгновенной:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Отношение

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

называется производной пути по времени. Отсюда следует физический смысл мгновенной скорости:

Мгновенная скорость – это физическая величина, численно равная пределу, к которому стремится средняя скорость за бесконечно малый промежуток времени.

Теперь перейдём к определению производной, данному в математике, в “начале дифференциального и интегрального исчисления”: Производной функции

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

в точке

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

называется предел отношения приращения функции

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

к приращению независимой переменной

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

при её стремлении к нулю:

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование
Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

Производная в точке есть определённое число, равное тангенсу угла наклона касательной к графику.

Вернёмся к нашему примеру нахождения мгновенной скорости тела, движущегося вдоль оси х с переменной скоростью.

Вдоль оси абсцисс откладываем время, вдоль оси ординат – пройденный телом путь. Тогда наша кривая покажет зависимость пути от времени движения тела вдоль оси х.

Проведя касательную к нашему графику в некоторой точке, найдём тангенс угла, то есть найдём мгновенную скорость тела (материальной точки) в данный момент времени

Занятие 6. Физический смысл производной. Дифференцирование. Интегрирование

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.

Предыдущая запись: Решение задач 3 и 4 на равнопеременное движение

Следующая запись: Занятие 7

Первая запись: Занятие 1.

15 мая 2014

Иногда в задаче 6 из ЕГЭ по математике вместо всеми любимых графиков функции или производной дается просто уравнение расстояния от точки до начала координат. Что делать в этом случае? Как по расстоянию найти скорость или ускорение.

На самом деле все просто. Скорость — это производная от расстояния, а ускорение — это производная скорости (или, что то же самое, вторая производная от расстояния). В этом коротком видео вы убедитесь, что такие задачи решаются ничуть не сложнее «классических» заданий 6.

Сегодня мы разберем две задачи на физический смысл производных из ЕГЭ по математике. Эти задания встречаются в части Bи существенно отличаются от тех, что большинство учеников привыкло видеть на пробниках и экзаменах. Все дело в том, что они требуют понимать физический смысл производной функции. В данных задачах речь пойдет о функциях, выражающих расстояния.

Если $S=xleft( t right)$, то $v$ мы можем посчитать следующим образом:

[v={S}’={x}’left( t right)]

Точно так же мы можем посчитать и ускорение:

[a={v}’={{S}’}’={{x}’}’left( t right)]

Эти три формулы – все, что вам потребуется для решения таких примеров на физический смысл производной. Просто запомните, что $v$ — это производная от расстояния, а ускорение — это производная от скорости.

Давайте посмотрим, как это работает при решении реальных задач.

Пример № 1

Материальная точка движется по закону:

[xleft( t right)=-frac{1}{5}{{t}^{5}}+{{t}^{4}}-{{t}^{3}}+5t]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, прошедшее с начала движения. Найдите скорость точки (в м/с) в момент времени $t=2c$.

Это означает, что у нас есть функция, задающая расстояние, а нужно посчитать скорость в момент времени $t=2c$. Другими словами, нам нужно найти $v$, т.е.

[v={S}’={x}’left( 2 right)]

Вот и все, что нам нужно было выяснить из условия: во-первых, как выглядит функция, а во-вторых, что от нас требуется найти.

Давайте решать. В первую очередь, посчитаем производную:

[{x}’left( t right)=-frac{1}{5}cdot 5{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

[{x}’left( t right)=-{{t}^{4}}+4{{t}^{3}}-3{{t}^{2}}+5]

Нам требуется найти производную в точке 2. Давайте подставим:

[{x}’left( 2 right)=-{{2}^{4}}+4cdot {{2}^{3}}-3cdot {{2}^{2}}+5=]

[=-16+32-12+5=9]

Вот и все, мы нашли окончательный ответ. Итого, скорость нашей материальной точки в момент времени $t=2c$ составит 9 м/с.

Пример № 2

Материальная точка движется по закону:

[xleft( t right)=frac{1}{3}{{t}^{3}}-4{{t}^{2}}+19t-11]

где $x$ — расстояние от точки отсчета в метрах, $t$ — время в секундах, измеренное с начала движения. В какой момент времени ее скорость была равна 3 м/с?

Взгляните, в прошлый раз от нас требовалось найти $v$ в момент времени 2 с, а в этот раз от нас требуется найти тот самый момент, когда эта скорость будет равна 3 м/с. Можно сказать, что нам известно конечное значение, а по этому конечному значению нам требуется найти исходное.

В первую очередь, вновь ищем производную:

[{x}’left( t right)=frac{1}{3}cdot 3{{t}^{2}}-4cdot 2t+19]

[{x}’left( t right)={{t}^{2}}-8t+19]

От нас просят найти, в какой момент времени скорость будет равна 3 м/с. Составляем и решаем уравнение, чтобы найти физический смысл производной:

[{{t}^{2}}-8t+19=3]

[{{t}^{2}}-8t+16=0]

[{{left( t-4 right)}^{2}}=0]

[t-4=0]

[t=4]

Полученное число означает, что в момент времени 4 с $v$ материальной точки, движущейся по выше описанному закону, как раз и будет равна 3 м/с.

Ключевые моменты

В заключении давайте еще раз пробежимся по самому главному моменту сегодняшней задачи, а именно, по правилу преобразования расстояние в скорость и ускорение. Итак, если нам в задаче прямо описан закон, прямо указывающий расстояние от материальной точки до точки отсчета, то через эту формулу мы можем найти любую мгновенную скорость (это просто производная). И более того, мы можем найти еще и ускорение. Ускорение, в свою очередь, равно производной от скорости, т.е. второй производной от расстояния. Такие задачи встречаются довольно редко, поэтому сегодня мы их не разбирали. Но если вы увидите в условии слово «ускорение», пусть оно вас не пугает, достаточно просто найти еще одну производную.

Надеюсь, этот урок поможет вам подготовиться к ЕГЭ по математике.

Смотрите также:

  1. Не допускайте таких ошибок, когда видите график производной в задаче 6 из ЕГЭ по математике!
  2. ЕГЭ 2022, задание 6. Касательная и квадратичная функция с параметром
  3. Схема Бернулли. Примеры решения задач
  4. Комбинаторика в задаче B6: средний тест
  5. Как решать задачи про летающие камни?
  6. B4: счетчики на электричество

Производная второго порядка

Содержание:

  1. Производная второго порядка
  2. Производная второго порядка. Пройденный путь, скорость, ускорение
  3. Задача пример №101
  4. Задача пример №102

Производная второго порядка

Производная второго порядка. Пройденный путь, скорость, ускорение

Пусть для функции Производная второго порядка на заданном промежутке существует производная Производная второго порядка. Если функция Производная второго порядка является дифференцируемой функцией, то ее производная для функции Производная второго порядка называется производной второго порядка и обозначается как Производная второго порядка.

Известно, что производная показывает мгновенное изменение. Мгновенное изменение пройденного пути в зависимости от времени является скоростью. Отсюда становится ясным физический смысл производной. При прямолинейном движении по закону Производная второго порядка, мгновенная скорость равна производной функции Производная второго порядка:

Производная второго порядка

Скорость также изменяется в зависимости от времени. Изменение скорости выражается новой величиной, называемой ускорением. Вообще, находя производную функции зависимости пройденного пути от времени, находят функцию скорости. Находя производную от функции скорости получаем ускорение. Т.е. получая два раза подряд производную от функции пройденного пути можно найти ускорение:

Производная второго порядка

Из физики известно, что и скорость, и ускорение являются векторными величинами. Если скорость и ускорение имеют одинаковые знаки, то движение ускоренное, если знаки разные, то движение замедленное. Производная второго порядка используется для решения ряда экономических задач, в том числе задач, моделирующих реальные жизненные ситуации. Умение приблизительно определить является ли скорость изменения положительной или отрицательной имеет важное практическое значение.

Задача пример №101

Найдите производную второго порядка у.

а) Производная второго порядка b) Производная второго порядка

Решение: a) Производная второго порядка находим производную первого порядка

Производная второго порядка находим производную второго порядка

b) Производная второго порядка

Производная второго порядкаПроизводная второго порядка находим производную первого порядка, используя правило дифференцирования производной сложной функции

Производная второго порядка находим производную второго порядка

Задача пример №102

Для функции пройденного пути Производная второго порядка, зависящей от времени Производная второго порядка (Производная второго порядка время в сек., Производная второго порядка расстояние в м, Производная второго порядка), исследуйте связь между функциями расстояния, скорости и ускорения.

Решение:

Из графика Производная второго порядка видно, что угловой коэффициент касательной функции в точках Производная второго порядка и Производная второго порядка равен нулю. Т.е. функция производной в соответствующих точках обнуляется.

В интервалах (0; 2) и (6; 8) угловой коэффициент касательной к графику функции Производная второго порядка положителен и функция Производная второго порядка также положительна (расположена выше оси Производная второго порядка). В интервале (2;6) угловой коэффициент касательной отрицателен и функция Производная второго порядка также отрицательна (расположена ниже оси Производная второго порядка).

Из графика функции Производная второго порядка видно, что в Производная второго порядка угловой коэффициент касательной равен нулю. Эта точка является точкой пересечения графика функции a(t) с осью абсцисс.

На интервале [0; 4) угловой коэффициент касательной к графику функции v(t) отрицателен, а на интервале (4; 8) угловой коэффициент положителен и функция Производная второго порядка на интервале [0; 4) принимает отрицательные значения; а на интервале (4; 8) – положительные значения.

Производная второго порядка

Эта лекция взята из раздела решения задач по математике, там вы найдёте другие лекци по всем темам математики:

Другие темы которые вам помогут понять математику:

  • Производная сложной функции
  • Решение задач с применением производной
  • Производные показательной и логарифмической функций
  • Производные тригонометрических функций

Лекции:

  • Метод Жордана Гаусса
  • Некоторые простые неявные функции
  • Рациональные числа
  • Предел числовой последовательности
  • Пересекающиеся прямые
  • Метод интервалов
  • Обратная матрица примеры решения
  • Дифференцирование функций, заданных неявно и параметрически
  • Полярная система координат: примеры решения
  • Сходимость функционального ряда

Алгебра и начала математического анализа, 11 класс

Урок №19. Решение задач с помощью производной.

Перечень вопросов, рассматриваемых в теме

  1. механический смысл первой производной;
  2. механический смысл второй производных;
  3. скорость и ускорение.

Глоссарий по теме

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S’(t).

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается fили

Производная от второй производной называется производной третьего порядка и обозначается или f”’(x). Производную n-го порядка обозначают f(n) (x) или y(n).

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть

Первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Основная литература:

Колягин Ю.М., Ткачева М.В., Федорова Н.Е. и др., под ред. Жижченко А.Б. Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2014.

Дополнительная литература:

Шабунин М.И., Ткачева М.В., Федорова Н.Е. Дидактические материалы Алгебра и начала математического анализа (базовый и профильный уровни) 11 кл. – М.: Просвещение, 2017.

Теоретический материал для самостоятельного изучения

Давайте вспомним механический смысл производной:

Производная y’(x) функции y=f(x) – это мгновенная скорость изменения этой функции. В частности, если зависимость между пройденным путём S и временем t при прямолинейном неравномерном движении выражается уравнением S=f(t), то для нахождения мгновенной скорости точки в какой-нибудь определённый момент времени t нужно найти производную S’=f’(x) и подставить в неё соответствующее значение t, то есть v(t)=S'(t).

Пример 1. Точка движется прямолинейно по закону   (S выражается в метрах, t – в секундах). Найти скорость движения через 3 секунды после начала движения.

Решение: 

скорость прямолинейного движения равна производной пути по времени, то есть .

Подставив в уравнение скорости t=3 с, получим v(3)=32+4∙3-1= 20 (м/с).

Ответ: 20 м/c.

Пример 2. Маховик, задерживаемый тормозом, поворачивается за t с на угол

Найдите:

а) угловую скорость вращения маховика в момент t = 6 с;

б) в какой момент времени маховик остановится?

Решение: а) Угловая скорость вращения маховика определяется по формуле ω=φ’. Тогда ω=(4t-0,2t2)=4-0,4t.

Подставляя t = 6 с, получим ω=4-0,4∙6=1,6 (рад/с). 

б) В тот момент, когда маховик остановится, его скорость будет равна нулю (ω=0) . Поэтому 4-0,4t=0.. Отсюда t=10 c.

Ответ: угловая скорость маховика равна (рад/с); t=10 c.

Пример 3. Тело массой 6 кг движется прямолинейно по закону S=3t2+2t-5. Найти кинетическую энергию тела через 3 с после начала движения.

Решение: найдём скорость движения тела в любой момент времени t.

v= S’=(3t2+2t-5)’=6t+2

Вычислим скорость тела в момент времени t=3. v(3)=6∙3+2=20 (м/с)..

Определим кинетическую энергию тела в момент времени t=3. 

Ответ: Е=1200 Дж

Производная второго порядка. Производная n-го порядка.

Производная от данной функции называется первой производной или производной первого порядка. Но производная функции также является функцией, и если она дифференцируема, то от неё, в свою очередь, можно найти производную.

Производная от производной называется второй производной или производной второго порядка и обозначается .

Производная от второй производной называется производной третьего порядка и обозначается y”’ или f”'(x) Производную n-го порядка обозначают f(n) (x) или y(n).

Примеры. Найдем производные четвёртого порядка для заданных функций:

1) f(x)= sin 2x

f'(x)=cos 2x∙(2x)’= 2cos 2x

f (x)=-2sin2x∙(2x)’=-4sin 2x

f”'(x)= -4 cos 2x∙(2x)= -8 cos 2x

f(4)(x)= 8 sin2x∙(2x)’= 16 sin 2x

2) f(x)=23x

f’(x)=3∙ 23x ∙ln2

f (x)= 9∙ 23x ∙ln22

f”'(x)= 27∙ 23x ∙ln32

f(4)(x)= 81∙ 23x ∙ln42

Механический смысл второй производной.

Если первая производная функции – это мгновенная скорость изменения любого процесса, заданного функцией, то вторая производная – это скорость изменения скорости, то есть ускорение, то есть 

Итак, первая производная – это скорость изменения процесса, вторая производная – ускорение. (v= S’; a=v’)

Пример 4. Точка движется прямолинейно по закону S(t)= 3t2-3t+8. Найти скорость и ускорение точки в момент t=4 c.

Решение:

найдём скорость точки в любой момент времени t.

v=S’=(3t2-3t+8)’=6t-3.

Вычислим скорость в момент времени t=4 c.

v(4)=6∙4-3=21(м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t-3)’=6 и a(4)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=21(м/с); a= v’= 6 (м/с2).

Пример 5. Тело массой 3 кг движется прямолинейно по закону S(t)=t3-3t2+5. Найти силу, действующую на тело в момент времени t=4 c.

Решение: сила, действующая на тело, находится по формуле F=ma. 

Найдём скорость движения точки в любой момент времени t.

v=S’=(t3-3t2+5)’=3t2-6t.

Тогда v(4)=3∙42-6∙4=24 (м/с). 

Найдём ускорение: a(t)=v’=(3t2-6t)’=6t-6.

Тогда a(4)= 6∙4-6= 18 (м/с2).

F=ma=3∙18= 54 Н

Ответ: F= 54 Н

Разбор решения заданий тренировочного модуля

№ 1. Тип задания: ввод с клавиатуры пропущенных элементов в тексте

Напишите производную третьего порядка для функции:

f(x)= 3cos4x-5x3+3x2-8

_____________________

Решим данную задачу:

f’’’(x)=( 3cos4x-5x3+3x2-8)’’’=(((3cos4x-5x3+3x2-8)’)’)’=((-12sin4x-15x2+6x)’)’=(-48cos4x-30x)’=192sin4x-30.

Ответ: 192sin4x-30

№ 2. Тип задания: выделение цветом

Точка движется прямолинейно по закону S(t)= 3t2+2t-7. Найти скорость и ускорение точки в момент t=6 c.

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

Решим данную задачу:

Воспользуемся механическим смыслом второй производной:

v= S’(t)=( 3t2+2t-7)’=6t+2.

Вычислим скорость в момент времени t=6 c.

v(6)=6∙6+2=38 (м/с)

Найдём ускорение точки в любой момент времени t.

a= v’= (6t+2)’=6 и a(6)= 6 (м/с2) , то есть ускорение в этом случае является величиной постоянной.

Ответ: v=38(м/с); a= v’= 6 (м/с2).

Верный ответ:

  1. v=38 м/с; a=6 м/с2
  2. v=38 м/с; a=5 м/с2
  3. v=32 м/с; a=6 м/с2
  4. v=32 м/с; a=5 м/с2

В прошлой статье мы немножко разобрались с тем, что такое механика  и зачем она нужна. Мы уже знаем, что такое система отсчета,  относительность движения и материальная точка. Что ж, пора двигаться дальше!  Здесь мы рассмотрим основные понятия кинематики, соберем вместе самые полезные формулы по основам кинематики  и приведем практический пример решения задачи.

Присоединяйтесь к нам в телеграм и получайте ежедневную рассылку с полезной информацией по актуальным студенческим вопросам.

Траектория, радиус-вектор, закон движения тела

Кинематикой занимался еще Аристотель. Правда, тогда это не называлось кинематикой. Затем очень большой вклад  в развитие механики, и кинематики в частности, внес Галилео Галилей, изучавший свободное падение и инерцию тел.

Итак, кинематика решает вопрос: как тело движется. Причины, по которым оно пришло в движение, ее не интересуют. Кинематике не важно, сама поехала машина, или ее толкнул гигантский динозавр. Абсолютно все равно.

Сейчас мы будем рассматривать самую простую кинематику – кинематику точки. Представим, что тело (материальная точка) движется. Не важно, что это за тело, все равно мы рассматриваем его, как материальную точку. Может быть, это НЛО в небе, а может быть, бумажный самолетик, который мы запустили из окна. А еще лучше, пусть это будет новая машина, на которой мы едем в путешествие. Перемещаясь из точки А в точку Б, наша точка описывает воображаемую линию, которая называется траекторией движения. Другое определение траектории – годограф радиус вектора, то есть линия, которую описывает конец радиус-вектора материальной точки при движении.

Радиус-вектор – вектор, задающий положение точки в пространстве.

Для того, чтобы узнать положение тела в пространстве в любой момент времени, нужно знать закон движения тела – зависимость координат  (или радиус-вектора точки) от времени.

Перемещение и путь

Тело переместилось из точки А в точку Б. При этом перемещение тела – отрезок, соединяющий данные точки напрямую – векторная величина. Путь, пройденный телом – длина его траектории. Очевидно, перемещение и путь не стоит путать. Модуль вектора перемещения и длина пути совпадают лишь в случае прямолинейного движения.

Перемещение и путь

 

В системе СИ перемещение и длина пути измеряются в метрах.

Перемещение равно разнице радиус-векторов в начальный и конечный моменты времени. Другими словами, это приращение радиус вектора.

Скорость и ускорение

Средняя скорость – векторная физическая величина, равная отношению вектора перемещения к промежутку времени, за которое оно произошло

Скорость и ускорение

А теперь представим, что промежуток времени уменьшается, уменьшается, и становится совсем коротким, стремится к нулю. В таком случае о средней скорости говорить на приходится, скорость становится мгновенной. Те, кто помнит основы математического анализа, тут же поймут, что в дальнейшем нам не обойтись без производной.

Мгновенная скорость – векторная физическая величина, равная производной  от радиус вектора по времени. Мгновенная скорость всегда направлена по касательной к траектории.

Мгновенная скорость формула

В системе СИ скорость измеряется в метрах в секунду

Если тело движется не равномерно и прямолинейно, то у него есть не только скорость, но и ускорение.

Ускорение (или мгновенное ускорение) – векторная физическая величина, вторая производная от радиус-вектора по времени, и, соответственно, первая производная от мгновенной скорости

Мгновенное ускорение формула

Ускорение показывает, как быстро изменяется скорость тела. В случае прямолинейного движения, направления векторов скорости и ускорения совпадают. В случае же криволинейного движения, вектор ускорения можно разложить на две составляющие: ускорение тангенциальное, и ускорение нормальное.

Тангенциальное ускорение показывает, как быстро изменяется скорость тела по модулю и направлено по касательной к траектории

Тангенциальное ускорение формула

Нормальное же ускорение характеризует быстроту изменения скорости по направлению. Векторы нормального и тангенциального ускорения взаимно перпендикулярны, а вектор нормального ускорения направлен к центру окружности, по которой движется точка.

Нормальное ускорение как найти

Здесь R – радиус окружности, по которой движется тело.

Векторы нормального, тангенциального и полного ускорения

 

Закон равноускоренного движения

Рассмотрим далее закон равноускоренного движения, то есть движения с постоянным ускорением. Будем рассматривать простейший случай, когда тело движется вдоль оси x.

Закон равноускоренного движения

Здесь  – x нулевое- начальная координата. v нулевое – начальная скорость. Продифференцируем по времени, и получим скорость

Закон равноускоренного движения

Производная по скорости от времени даст значение ускорения a, которое является константой.

Пример решения задачи

Теперь, когда мы рассмотрели физические основы кинематики, пора закрепить знания на практике и решить какую-нибудь задачу. Причем, чем быстрее, тем лучше.

Кстати! Для всех наших читателей сейчас действует скидка 10% на любой вид работы

Решим такую задачу: точка движется по окружности радиусом 4 метра. Закон ее движения выражается уравнением S=A+Bt^2. А=8м, В=-2м/с^2. В какой момент времени нормальное ускорение точки равно 9 м/с^2? Найти скорость, тангенциальное и полное ускорение точки для этого момента времени.

Решение: мы знаем, что для того, чтобы найти скорость нужно взять первую производную по времени от закона движения, а нормальное ускорение равняется частному квадрата скорости и радиуса окружности, по которой точка движется. Вооружившись этими знаниями, найдем искомые величины.

Кинематика пример решения задачи

Нужна помощь в решении задач? Профессиональный студенческий сервис готов оказать ее.

Добавить комментарий