Перемещение при равноускоренном движении. Уравнение координаты
Этот видеоурок доступен по абонементу
У вас уже есть абонемент? Войти
Как, зная тормозной путь, определить начальную скорость автомобиля и как, зная характеристики движения, такие как начальная скорость, ускорение, время, определить перемещение автомобиля? Ответы мы получим после того, как познакомимся с темой сегодняшнего урока: «Перемещение при равноускоренном движении, зависимость координаты от времени при равноускоренном движении».
Перемещение и путь при равноускоренном прямолинейном движении
теория по физике 🧲 кинематика
Геометрический смысл перемещения заключается в том, что перемещение есть площадь фигуры, заключенной между графиком скорости, осью времени и прямыми, проведенными перпендикулярно к оси времени через точки, соответствующие времени начала и конца движения.
При равноускоренном прямолинейном движении перемещение определяется площадью трапеции, основаниями которой служат проекции начальной и конечной скорости тела, а ее боковыми сторонами — ось времени и график скорости соответственно. Поэтому перемещение (путь) можно вычислить по формуле:
Пример №1. По графику определить перемещение тела в момент времени t=3 с.
Перемещение есть площадь фигуры, ограниченной графиком скорости, осью времени и перпендикулярами, проведенными к ней. Поэтому в нашем случае:
Извлекаем из графика необходимые данные:
- Фигура 1. Начальная скорость — 3 м/с. Конечная — 0 м/с. Время — 1,5 с.
- Фигура 2. Начальная скорость — 0 м/с. Конечная — –3 м/с. Время — 1,5 с (3 с – 1,5 с).
Подставляем известные данные в формулу:
Перемещение равно 0, так как тело сначала проделало некоторый путь, а затем вернулось в исходное положение.
Варианты записи формулы перемещения
Конечная скорость движения тела часто неизвестна. Поэтому при решении задач вместо нее обычно подставляют эту формулу:
В итоге получается формула:
Если движение равнозамедленное, в формуле используется знак «–». Если движение равноускоренное, оставляется знак «+».
Если начальная скорость равна 0 (v0 = 0), эта формула принимает
Вид — группа особей, сходных по морфолого-анатомическим, физиолого-экологическим, биохимическим и генетическим признакам, занимающих естественный ареал, способных свободно скрещиваться между собой и давать плодовитое потомство.
Если неизвестно время движения, но известно ускорение, начальная и конечная скорости, то перемещение можно вычислить по формуле:
Пример №2. Найти тормозной путь автомобиля, который начал тормозить при скорости 72 км/ч. Торможение до полной остановки заняло 3 секунды. Модуль ускорения при этом составил 2 м/с.
Перемещение при разгоне и торможении тела
Все перечисленные выше формулы работают, если направление вектора ускорения и вектора скорости совпадают ( а ↑↑ v ). Если векторы имеют противоположное направление ( а ↑↓ v ), движение следует описывать в два этапа:
Этап торможения
Время торможения равно разности полного времени движения и времени второго этапа:
Когда тело тормозит, через некоторое время t1оно останавливается. Поэтому скорость в момент времени t1 равна 0:
При торможении перемещение s1 равно:
Этап разгона
Время разгона равно разности полного времени движения и времени первого этапа:
Тело начинает разгоняться сразу после преодоления нулевого значения скорости, которую можно считать начальной. Поэтому скорость в момент времени t2 равна:
При разгоне перемещение s2 равно:
При этом модуль перемещения в течение всего времени движения равен:
Полный путь (обозначим его l), пройденный телом за оба этапа, равен:
Пример №3. Мальчик пробежал из состояния покоя некоторое расстояние за 5 секунд с ускорением 1 м/с 2 . Затем он тормозил до полной остановки в течение 2 секунд с другим по модулю ускорением. Найти этот модуль ускорения, если его тормозной путь составил 3 метра.
В данном случае движение нужно разделить на два этапа, так как мальчик сначала разогнался, потом затормозил. Тормозной путь будет соответствовать второму этапу. Через него мы выразим ускорение:
Из первого этапа (разгона) можно выразить конечную скорость, которая послужит для второго этапа начальной скоростью:
Подставляем выраженные величины в формулу:
Перемещение в n-ную секунду прямолинейного равноускоренного движения
Иногда в механике встречаются задачи, когда нужно найти перемещение тела за определенный промежуток времени при условии, что тело начинало движение из состояния покоя. В таком случае перемещение определяется формулой:
За первую секунду тело переместится на расстояние, равное:
За вторую секунду тело переместится на расстояние, равное разности перемещения за 2 секунды и перемещения за 1 секунду:
За третью секунду тело переместится на расстояние, равное разности перемещения за 3 секунды и перемещения за 2 секунды:
Видно, что за каждую секунду тело проходит перемещение, кратное целому нечетному числу:
Из формул перемещений за 1, 2 и 3 секунду можно выявить закономерность: перемещение за n-ную секунду равно половине произведения модуля ускорения на (2n–1), где n — секунда, за которую мы ищем перемещение тела. Математически это записывается так:
Формула перемещения за n-ную секунду
Пример №4. Автомобиль разгоняется с ускорением 3 м/с 2. Найти его перемещение за 6 секунду.
Подставляем известные данные в формулу и получаем:
Таким же способом можно найти перемещение не за 1 секунду, а за некоторый промежуток времени: за 2, 3, 4 секунды и т. д. В этом случае используется формула:
где t — время одного промежутка, а n — порядковый номер этого промежутка.
Пример №5. Ягуар ринулся за добычей с ускорением 2,5 м/с 2 . Найти его перемещение за промежуток времени от 4 до 6 секунд включительно.
Время от 4 до 6 секунд включительно — это 3 секунды: 4-ая, 5-ая и 6-ая. Значит, промежуток времени составляет 3 секунды. До наступления этого промежутка успело пройти еще 3 секунды. Значит, время от 4 до 6 секунд — это второй по счету временной промежуток.
Подставляем известные данные в формулу:
Проекция и график перемещения
Проекция перемещения на ось ОХ. График перемещения — это график зависимости перемещения от времени. Графиком перемещения при равноускоренном движении является ветка параболы. График перемещения при равноускоренном движении, когда вектор скорости направлен в сторону оси ОХ ( v ↑↑OX), а вектора скорости и ускорения сонаправлены ( v ↑↑ a ), принимает следующий вид:
График перемещения при равнозамедленном движении, когда вектор скорости направлен в сторону оси ОХ (v↑↑OX), а вектора скорости и ускорения противоположно ( v ↓↑ a ), принимает следующий вид:
Определение направления знака проекции ускорения по графику его перемещения:
- Если ветви параболического графика смотрят вниз, проекция ускорения тела отрицательна.
- Если ветви параболического графика смотрят вверх, проекция ускорения тела положительна.
Пример №6. Определить ускорение тела по графику его перемещения.
Перемещение тела в момент времени t=0 с соответствует нулю. Значит, ускорение можно выразить из формулы перемещения без начального ускорения. Получим:
Теперь возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 с. Этой точке соответствует перемещение 30 м. Подставляем известные данные в формулу и получаем:
График пути
График пути от времени в случае равноускоренного движения совпадает с графиком проекции перемещения, так как s = l.
В случае с равнозамедленным движением график пути представляет собой линию, поделенную на 2 части:
- 1 часть — до момента, когда скорость тела принимает нулевое значение (v = 0). Эта часть графика является частью параболы от начала координат до ее вершины.
- 2 часть — после момента, при котором скорость тела принимает нулевое значение (v = 0). Эта часть является ветвью такой же, но перевернутой параболы. Ее вершина совпадает с вершиной предыдущей параболы, но ее ветвь направлена вверх.
Такой вид графика (возрастающий) объясняется тем, что путь не может уменьшаться — он либо не меняется (в состоянии покоя), либо растет независимо от того, в каком направлении, с какой скоростью и с каким ускорением движется тело.
Пример №7. По графику пути от времени, соответствующему равноускоренному прямолинейному движению, определить ускорение тела.
При равноускоренном прямолинейном движении графиком пути является ветвь параболы. Поэтому наш график — красный. График пути при равноускоренном прямолинейном движении также совпадает с графиком проекции его ускорения. Поэтому для вычисления ускорения мы можем использовать эту формулу:
Для расчета возьмем любую точку графика. Пусть она будет соответствовать моменту времени t=2 c. Ей соответствует путь, равный 5 м. Значит, перемещение тоже равно 5 м. Подставляем известные данные в формулу:
Тело массой 200 г движется вдоль оси Ох, при этом его координата изменяется во времени в соответствии с формулой х(t) = 10 + 5t – “>– 3t 2 (все величины выражены в СИ).
Установите соответствие между физическими величинами и формулами, выражающими их зависимости от времени в условиях данной задачи.
К каждой позиции первого столбца подберите соответствующую позицию из второго столбца и запишите в таблицу выбранные цифры под соответствующими буквами.
Алгоритм решения
Решение
Из условия задачи известна только масса тела: m = 200 г = 0,2 кг.
Так как тело движется вдоль оси Ox, уравнение движения тела при прямолинейном равноускоренном движении имеет вид:
x ( t ) = x 0 + v 0 t + a t 2 2 . .
Теперь мы можем выделить кинематические характеристики движения тела:
Перемещение тела определяется формулой:
s = v 0 t + a t 2 2 . .
Начальная координата не учитывается, так как это расстояние было уже пройдено до начала отсчета времени. Поэтому перемещение равно:
x ( t ) = v 0 t + a t 2 2 . . = 5 t − 3 t 2
Кинетическая энергия тела определяется формулой:
Скорость при прямолинейном равноускоренном движении равна:
v = v 0 + a t = 5 − 6 t
Поэтому кинетическая энергия тела равна:
E k = m ( 5 − 6 t ) 2 2 . . = 0 , 2 2 . . ( 5 − 6 t ) 2 = 0 , 1 ( 5 − 6 t ) 2
Следовательно, правильная последовательность цифр в ответе будет: 34.
pазбирался: Алиса Никитина | обсудить разбор | оценить
На рисунке показан график зависимости координаты x тела, движущегося вдоль оси Ох, от времени t (парабола). Графики А и Б представляют собой зависимости физических величин, характеризующих движение этого тела, от времени t. Установите соответствие между графиками и физическими величинами, зависимости которых от времени эти графики могут представлять.
К каждой позиции графика подберите соответствующую позицию утверждения и запишите в поле цифры в порядке АБ.
Алгоритм решения
- Определить, какому типу движения соответствует график зависимости координаты тела от времени.
- Определить величины, которые характеризуют такое движение.
- Определить характер изменения величин, характеризующих это движение.
- Установить соответствие между графиками А и Б и величинами, характеризующими движение.
Решение
График зависимости координаты тела от времени имеет вид параболы в случае, когда это тело движется равноускоренно. Так как движение тела описывается относительно оси Ох, траекторией является прямая. Равноускоренное прямолинейное движение характеризуется следующими величинами:
Перемещение и путь при равноускоренном прямолинейном движении изменяются так же, как координата тела. Поэтому графики их зависимости от времени тоже имеют вид параболы.
График зависимости скорости от времени при равноускоренном прямолинейном движении имеет вид прямой, которая не может быть параллельной оси времени.
График зависимости ускорения от времени при таком движении имеет вид прямой, перпендикулярной оси ускорения и параллельной оси времени, так как ускорение в этом случае — величина постоянная.
Исходя из этого, ответ «3» можно исключить. Остается проверить ответ «1». Кинетическая энергия равна половине произведения массы тела на квадрат его скорости. Графиком квадратичной функции является парабола. Поэтому ответ «1» тоже не подходит.
График А — прямая линия, параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости ускорения от времени (или его модуля). Поэтому первая цифра ответа — «4».
График Б — прямая линия, не параллельная оси времени. Мы установили, что такому графику может соответствовать график зависимости скорости от времени (или ее проекции). Поэтому вторая цифра ответа — «2».
pазбирался: Алиса Никитина | обсудить разбор | оценить
pазбирался: Алиса Никитина | обсудить разбор | оценить
Алгоритм решения
- Охарактеризовать движение тела на различных участках графика.
- Выделить участки движения, над которыми нужно работать по условию задачи.
- Записать исходные данные.
- Записать формулу определения искомой величины.
- Произвести вычисления.
Решение
Весь график можно поделить на 3 участка:
- От t1 = 0 c до t2 = 10 с. В это время тело двигалось равноускоренно (с положительным ускорением).
- От t1 = 10 c до t2 = 30 с. В это время тело двигалось равномерно (с нулевым ускорением).
- От t1 = 30 c до t2 = 50 с. В это время тело двигалось равнозамедленно (с отрицательным ускорением).
По условию задачи нужно найти путь, пройденный автомобилем в интервале времени от t1 = 20 c до t2 = 50 с. Этому времени соответствуют два участка:
- От t1 = 20 c до t2 = 30 с — с равномерным движением.
- От t1 = 30 c до t2 = 50 с — с равнозамедленным движением.
- Для первого участка. Начальный момент времени t1 = 20 c. Конечный момент времени t2 = 30 с. Скорость (определяем по графику) — 10 м/с.
- Для второго участка. Начальный момент времени t1 = 30 c. Конечный момент времени t2 = 50 с. Скорость определяем по графику. Начальная скорость — 10 м/с, конечная — 0 м/с.
Записываем формулу искомой величины:
s1 — путь тела, пройденный на первом участке, s2 — путь тела, пройденный на втором участке.
s1и s2 можно выразить через формулы пути для равномерного и равноускоренного движения соответственно:
Теперь рассчитаем пути s1и s2, а затем сложим их:
pазбирался: Алиса Никитина | обсудить разбор | оценить
Путь и перемещение
При своем движении материальная точка описывает некоторую линию, которую называют ее траекторией движения. Траектория может быть прямой линией, а может представлять собой кривую.
Путь – длина участка траектории, который прошла материальная точка за рассматриваемый отрезок времени. Путь – это скалярная величина.
При прямолинейном движении в одном направлении пройденный путь ($Delta s$) равен модулю изменения координаты тела. Так, если тело двигалось по оси X, то путь можно найти как:
где $x_1$ – координата начального положения тела; $x_2$ – конечная координата тела.
Его можно вычислить, если известен модуль скорости ($v=v_x$):
[Delta s=vt left(2right),]
где $t$ – время движения тела.
Графиком, который отображает зависимость пути от времени при равномерном прямолинейном движении, является прямая (рис.1). С увеличением величины скорости увеличивается угол наклона прямой относительно оси времени.
Если по графику $Delta s(t)$ необходимо найти путь, который проделало тело за время $t_1$, то из точки $t_1$ на оси времени проводят перпендикуляр до пересечения с графиком $Delta s(t)$. Затем из точки пересечения восстанавливают перпендикуляр к оси $Delta s$. На пересечении оси и перпендикуляра получают точку $<Delta s>_1$, которая соответствует пройденному пути за время от $t=0 c$ до $t_1$.
Путь не бывает меньше нуля и не может уменьшаться при движении тела.
Перемещение
Перемещением называют вектор, который проводят из начального положения движущейся материальной точки в ее конечное положение:
[Delta overline=overlineleft(t+Delta tright)-overlineleft(tright)left(3right).]
Вектор перемещения численно равен расстоянию между конечной и начальной точками и направлен от начальной точки к конечной.
Приращение радиус-вектора материальной точки – это перемещение ($Delta overline$).
В декартовой системе координат радиус-вектор точки представляют в виде:
где $overline$, $overline$,$ overline$ – единичные орты осей X,Y,Z. Тогда $Delta overline$ равен:
[Delta overline=left[xleft(t+Delta tright)-xleft(tright)right]overline+left[yleft(t+?tright)-yleft(tright)right]overline+left[zleft(t+?tright)-zleft(tright)right]overlineleft(5right).]
При прямолинейном движении вектор перемещения совпадает с соответствующим участком траектории и длина вектора перемещения равна пройденному точкой пути:
[left|Delta overlineright|=Delta s left(6right).]
Длину вектора перемещения (как и любого вектора) можно обозначать как $left|Delta overlineright|$ или просто $Delta r$ (без указания стрелки).
Если тело совершает несколько перемещений, то их можно складывать по правилам сложения векторов:
Если направление движения тела изменяется, то модуль вектора перемещения не равен пройденному телом пути.
Примеры задач на путь и перемещение
Задание: Мяч бросили вертикально вверх от поверхности Земли. Он долетел до высоты 20 м. и упал на Землю. Чему равен путь, который прошел мяч, каков модуль перемещения?
Решение: Сделаем рисунок.
В нашей задаче мяч движется прямолинейно сначала вверх, затем вниз. Так как путь – длина траектории, то получается, что мяч дважды прошел расстояние h, следовательно:
Перемещение – направленный отрезок, соединяющий начальную точку и конечную при движении тела, но тело начало движение из той же точки, в которую вернулось, следовательно, перемещение мяча равно нулю:
Ответ: $ Путь Delta s=2h$. Перемещение $Delta r=0$
Задание: В начальный момент времени тело находилось в точке с координатами $(x_0=3;; y_0=1)$(см). Через некоторый промежуток времени оно переместилось в точку координаты которой ($x=2;;y=4$) (см). Каковы проекции вектора перемещения на оси X и Y?
Решение: Сделаем рисунок.
Радиус – вектор начальной точки запишем как:
Радиус – вектор конечной точки имеет вид:
Вектор перемещения представим как:
Из формулы видим, что:
[Delta r_x=-1;;Delta r_y=3. ]
Ответ: $Delta r_x=-1;;Delta r_y=3 $
[spoiler title=”источники:”]
http://www.webmath.ru/poleznoe/fizika/fizika_88_put_i_peremeshhenie.php
[/spoiler]
Содержание:
- Определение и формула пути
- Виды движения и формулы длины пути
- Единицы измерения пути
- Примеры решения задач
Определение и формула пути
Линия, которую описывает материальная точка при своем движении, называется траекторией.
Определение
Длиной пути называют сумму длин всех участков траектории, которые прошла точка за рассматриваемый промежуток времени
от t1 до t2.
В том случае, если уравнения движения представлены в прямоугольной декартовой системе координат, то длина пути (s) определяется как:
$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d x}{d t}right)^{2}+left(frac{d y}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}+(dot{y})^{2}+(dot{z})^{2}} d t(1)$$
В цилиндрических координатах длина пути может быть выражена как:
$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d rho}{d t}right)^{2}+left(rho frac{d varphi}{d t}right)^{2}+left(frac{d z}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{rho})^{2}+(rho dot{varphi})^{2}+(dot{z})^{2}} d t(2)$$
В сферических координатах формулу длины пути запишем:
$$s=int_{t_{1}}^{t_{2}} sqrt{left(frac{d r}{d t}right)^{2}+left(r frac{d theta}{d t}right)^{2}+left(r sin theta frac{d varphi}{d t}right)^{2}} d t=int_{t_{1}}^{t_{2}} sqrt{(dot{r})^{2}+(r dot{theta})^{2}+(r varphi sin theta)^{2}} d t(3)$$
Местоположение перемещающейся материальной точки в фиксированный момент времени, например t=t1 называют начальным положением.
Очень часто полагают t1=0. Длин пути, который прошла материальная точка из начального положения – скалярная функция времени: s=s(t).
Считают, что за промежуток времени $d t rightarrow 0$ материальная точка проходит путь ds,
который называют элементарным. При этом:
$$d s=|d bar{r}|=v d t$$
где $bar{r}$ – вектор элементарного перемещения материальной точки, v – модуль скорости ее движения.
Виды движения и формулы длины пути
Длина пути при равномерном движении (v=const) точки равна:
$$s=vleft(t_{2}-t_{1}right)(5)$$
где t1 – начало отсчета движения, t2 – окончание отсчета. Формула (5) показывает то, что длина пути, который проходит равномерно движущаяся материальная точка – это линейная функция времени.
Если движение не является равномерным, то можно длину пути
$Delta s$ на отрезке времени от
$t$ до
$t + Delta t$ находят как:
$$Delta s=langle vrangle Delta t(6)$$
где $langle vrangle$ – средняя путевая скорость. При равномерном движении
$langle vrangle = v$ .
Путь, который проходит материальная тоска при равнопеременном движении (a=const)вычисляют как:
$$s=v_{0} t+frac{a t^{2}}{2}(7)$$
где a – постоянное ускорение, v0 – начальная скорость движения.
Единицы измерения пути
Основной единицей измерения пути в системе СИ является: [s]=м
В СГС: [s]=см
Примеры решения задач
Пример
Задание. Траектория движения материальной точки изображена на рис. 1. Каков путь, пройденный точкой,
чему равно перемещение, если точка двигалась 1-2-3-4.
Решение. Перемещение – кратчайшее расстояние между точками 1 и 4. Следовательно, перемещение точки равно:
$$6 – 2 = 4 (m)$$
Путь – длина траектории. Рассматривая график на рис.1 получаем, что путь материальной точки равен:
$$8 + 4 + 8 = 20 (m)$$
Ответ. Путь равен 20 м, перемещение равно 4 м.
236
проверенных автора готовы помочь в написании работы любой сложности
Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!
Пример
Задание. Уравнение движения материальной точки в прямоугольной декартовой системе координат представлено функцией:
x=-0,2t2 (м) . Какой путь пройдет материальная точка за 5 с?
Решение. Так как уравнение движения задано только одной координатой, то в качестве основы для решения
задачи примем формулу пути в виде:
$$s=int_{t_{1}}^{t_{2}} sqrt{(dot{x})^{2}} d t(2.1)$$
Подставим в (2.1) функцию x=-0,2t2, учтем, что $0 c leq t leq 5 c$ имеем:
$$s=int_{0}^{5} sqrt{left(-0,2 frac{dleft(t^{2}right)}{d t}right)^{2}} d t=0,left.4 cdot frac{t^{2}}{2}right|_{0} ^{5}=5(m)$$
Ответ. s=5м.
Читать дальше: Формула равноускоренного движения.
Пример решения задачи по определению траектории равноускоренного движения точки, заданного уравнениями, скорости и ускорения в некоторые моменты времени, координаты начального положения точки, а также путь, пройденный точкой за время t.
Задача
Движение точки A задано уравнениями:
где x и y – в см, а t – в с. Определить траекторию движения точки, скорость и ускорение в моменты времени t0=0 с, t1=1 с и t2=5 с, а также путь, пройденный точкой за 5 с.
Другие примеры решений >
Помощь с решением задач >
Решение
Расчет траектории
Определяем траекторию точки. Умножаем первое заданное уравнение на 3, второе – на (-4), а затем складываем их левые и правые части:
Получилось уравнение первой степени – уравнение прямой линии, значит движение точки – прямолинейное (рисунок 1.5).
Другие видео
Для того, чтобы определить координаты начального положения точки A0, подставим в заданные уравнения значения t0=0; из первого уравнения получим x0=2 см, из второго y0=1 см.
Рисунок 1.5
При любом другом значении t координаты x и y движущейся точки только возрастают, поэтому траекторией точки служит полупрямая 3x-4y=2 с началом в точке A0 (2; 1).
Расчет скорости
Определяем скорость движения точки, найдя сначала ее проекции на оси координат:
тогда
При t0=0с скорость точки v0=0, при t1=1с – v1=5 см/с, при t2=5с – v2=25см/с.
Расчет ускорения
Определяем ускорение точки. Его проекции на оси координат:
Проекции ускорения не зависят от времени движения,
т.е. движение точки равноускоренное, векторы скорости и ускорения совпадают с траекторией точки и направлены вдоль нее.
С другой стороны, поскольку движение точки прямолинейное, то модуль ускорения можно определить путем непосредственного дифференцирования уравнения скорости:
Определение пути
Определяем путь, пройденный точкой за первые 5с движения. Выразим путь как функцию времени:
Проинтегрируем последнее выражение:
Если t=t0=0, то C=s0; в данном случае s0=0, поэтому s=2,5t2. Находим, что за 5с точка проходит расстояние s|t=5с=2,5∙52=62,5 см.
Другие примеры решения задач >
Сохранить или поделиться с друзьями
Вы находитесь тут:
На нашем сайте Вы можете получить решение задач и онлайн помощь
Подробнее
Как по уравнению движения тела определить путь и перемещение?
Наталья Абрамова
Мыслитель
(6349),
на голосовании
13 лет назад
Например, X=10+8t-2t^2 определить путь и перемещение за 5 секунд.
Заранее большое спасибо!!!
Голосование за лучший ответ
Юрий Михайлов
Гуру
(4002)
13 лет назад
Перемещение определяется обычной подстановкой t в уравнение.. . (не забудьте десятку перенести в левую часть) . С путём сложнее.. . Путь – не может уменьшаться. Постройте график перемешения и отразите зеркально относительно горизонтали те участки графика перемещения, где оно уменьшается…
§6. Примеры движения тела. Методы решения задач.
Рассмотрим некоторые характерные примеры движения тела, знание которых будет полезно при дальнейшем изучении физики.
1.Равномерное прямолинейное движение тела.
При равномерном прямолинейном движении тело совершает равные перемещения `Delta vecr` за одинаковые промежутки времени `Delta t`. Иными словами, скорость `vec v` тела не зависит от времени и остаётся постоянной в процессе движения:
При этом зависимость `vec r(t)` имеет вид:
`vec r(t)=vec r_0+vec v t`, (7)
где `vec r_0` – радиус-вектор тела в начальный момент времени $$ t=0$$ . В этой связи вспомним замечание о начальных условиях, сделанное в §4. Вектор $$ {overrightarrow{r}}_{0}$$ здесь является тем начальным условием, которое позволяет однозначно определить радиус-вектор $$ overrightarrow{r}$$ тела в любой момент времени в процессе движения.
Векторное уравнение (7) равносильно системе двух скалярных уравнений, выражающих зависимость от времени $$ t $$ координат $$ x$$ и $$ y$$ движущегося тела:
$$ left{begin{array}{l}xleft(tright)={x}_{0}+{v}_{x}left(tright),\ yleft(tright)={y}_{0}+{v}_{y}left(tright)·end{array}right.$$ | (8) |
где $$ {x}_{0}$$ и $$ {y}_{0}$$ – начальные координаты тела в момент времени $$ t=0$$, а $$ {v}_{x}$$ и $$ {v}_{y}$$ -проекции вектора скорости `vecv` на координатные оси $$ Ox$$ и $$ Oy$$ соответственно.
Траектория равномерного прямолинейного движения тела графически представляет собой отрезок прямой линии (рис. 9), тангенс угла наклона которой к оси абсцисс равен отношению проекций скорости на оси координат: $$ mathrm{tg}alpha ={v}_{y}/{v}_{x}$$. Аналитическое уравнение траектории, т. е. зависимость $$ yleft(xright)$$, легко получить, исключив параметр $$ t$$ из системы уравнений (8):
`y(x)=(v_y)/(v_x)(x-x_0)+y_0`. (9)
Равномерное прямолинейное движение тела на плоскости $$ xOy$$ описывается уравнениями: $$ xleft(tright)=6+3t$$, $$ yleft(tright)=4t$$ (величины измерены в СИ). Запишите уравнение траектории тела. Изобразите графически зависимость модуля вектора скорости от времени $$ vleft(tright)$$. Определите путь, пройденный телом в течение первых пяти секунд движения.
Сравнивая уравнения движения, представленные в условии задачи, с системой уравнений (8), находим:
$$ {x}_{0}=6$$ м, $$ {y}_{0}=0$$ , $$ {v}_{x} =3$$ м/c, $$ {v}_{y} =4$$ м/c.
Уравнение траектории получим, подставив эти значения в общее уравнение (9):
`y(x) =4/3(x – 6)`, или `y(x) = 4/3 x – 8`.
Модуль $$ v$$ скорости тела определим, зная $$ {v}_{x}$$ и $$ {v}_{y}$$:
`v=sqrt(v_x^2+v_y^2)=5` м/с.
График зависимости $$ vleft(tright)$$ представлен на рис. 10. При равномерном прямолинейном движении пройденный путь `Delta S` численно равен модулю вектора `Delta vec r` перемещения тела. Вектор `Deltavec r` для такого движения найдём из уравнения (7): `Deltavec r = vec r (t) – vec r_0 = vec vt`. Его модуль равен: `Delta r = vt`. Таким образом, при равномерном движении путь, пройденный телом в течение времени `t`, определяется по формуле `Delta S = vt`, т. е. численно равен площади прямоугольника под графиком зависимости $$ vleft(tright)$$ . Этот вывод можно обобщить и на случай неравномерного движения.
В нашем примере путь равен площади прямоугольника, заштрихованного на рис. 10:
`Delta S = vt = 5 “м”/”c”*5 “c” = 25 “м”`.
Используя рассуждения аналогичные Примеру 3, несложно показать, что пусть численно равен площади фигуры под графиком скорости при любом произвольном движении материальной точки.
Координаты тела при равномерном прямолинейном движении на плоскости $$ xOy $$ за время $$ t=2$$ c изменились от начальных значений $$ {x}_{0}=5$$ м, $$ {y}_{0}=7$$ м до значений $$ x=-3$$ м и $$ y=1$$ м. Найдите модуль скорости тела. Запишите уравнение траектории тела. Изобразите графически траекторию тела и направление вектора его скорости. Постройте графики зависимости координат тела от времени.
Проекции скорости на оси координат можно найти с помощью уравнений движения (8) и численных данных задачи:
`v_x=(x-x_0)/t=(-3-5)/2=-4` м/с, `v_y=(y-y_0)/t=(1-7)/2=-3` м/с.
Тогда модуль скорости `v=sqrt(v_x^2+v_y^2)=5` м/с.
Уравнение траектории $$ yleft(xright)$$ с учётом (9) и численных данных задачи имеет вид:
$$ yleft(xright)={displaystyle frac{3}{4}}(x-5)+7$$, или $$ yleft(xright)={displaystyle frac{3}{4}}x+{displaystyle frac{13}{4}}$$.
Положение тела в начальный и конечный моменты времени (точки `A` и `B`), его траектория и направление скорости изображены на рис. 11. Зависимость координат тела от времени легко найти аналитически, подставляя начальные условия и значения $$ {v}_{x}$$ и $$ {v}_{y}$$ в общие уравнения движения (8):
$$ xleft(tright)=5-4t,yleft(tright)=7-3t$$.
Графически эти зависимости представлены в виде отрезков прямых на рис. 12.
Заметим, что тангенсы углов наклона отрезков прямых на рис. 12 численно равны коэффициентам при $$ t$$ в соответствующих уравнениях $$ xleft(tright)$$ и $$ yleft(tright)$$, т. е. значениям $$ {v}_{x}$$ и $$ {v}_{y}$$:
`”tg”alpha=-4`, `”tg”beta=-3`.
(Т. к. в данном случае графики уравнений движения представляют собой убывающие функции, то здесь тангесы отрицательны.)
2. Неравномерное движение тела.
Для неравномерного движения характерно то, что с течением времени изменяется скорость движущегося тела, а в общем случае и его ускорение. В качестве примера может служить движение, при котором тело проходит различные участки своего пути с разной скоростью. Такое движение принято характеризовать, прежде всего, средней путевой скоростью. Причём прилагательное «путевая» в условиях задач часто опускается.
Любитель бега трусцой пробежал половину пути со скоростью $$ {v}_{1}=10$$ км/ч. Затем половину оставшегося времени бежал со скоростью $$ {v}_{2}=8$$ км/ч, а потом до конца пути шёл пешком со скоростью $$ {v}_{3}=4$$ км/ч. Определить среднюю скорость движения бегуна.
Из смысла условия задачи следует, что здесь речь идёт о средней путевой скорости. Разобьём весь путь `Delta S` на три участка `Delta S_1`, `Delta S_2` и `Delta S_3`. Время движения на каждом участке обозначим соответственно `Delta t_1`, `Delta t_2`, `Delta t_3`. Средняя скорость бегуна согласно определению, выраженному формулой (3), будет равна:
`v_”cp”= (Delta S_1 +Delta S_2+Delta S_3)/(Delta t_1+Delta t_2+Delta t_3)`.
По условию задачи `Delta S_1 =DeltaS // 2`, `Delta S_2 + Delta S_3 = Delta S //2`. Поскольку `Delta S_1 = v_1Delta t_1`, `Delta S_2 = v_2Delta t_2`, `Delta S_3 = v_3Delta t_3` и, учитывая, что `Delta t_2 = Delta t_3`, найдём время движения на отдельных участках:
`Delta t_1=(Delta S_1)/(v_1)=(Delta S)/(2v_1)`,
`Delta t_2=(Delta S_2)/(v_2)=(Delta S)/(2(v_2+v_3))`,
`Delta t_3=(Delta S_3)/(v_3)=(Delta S)/(2(v_2+v_3))`.
Подставляя эти значения в выражение для `v_”ср”`, получим:
`v_”cp”=(Delta S)/((Delta S)/(2v_1)+(Delta S)/(2(v_2+v_3))+(Delta S)/(2(v_2+v_3))) =(2v_1(v_2+v_3))/(2v_1+v_2+v_3)=7,5` км/ч.
Заметим, что иногда учащиеся подсчитывают среднюю путевую скорость движения по формуле `v_”ср”= (v_1 + v_2 + … + v_n)//n`, где `v_i` – скорость движения на `i`-м участке, `n` – число участков пути. Аналогично поступают и с вектором средней скорости `v_”ср”`. Следует иметь в виду, что такой расчёт в общем случае является ошибочным.
Другим характерным примером неравномерного движения служит так называемое равнопеременное движение, которое целесообразно рассмотреть подробно, не выходя при этом за рамки школьной программы.
3. Равнопеременное движение.
Равнопеременным называется такое неравномерное движение, при котором скорость `vec v` за любые равные промежутки времени `Delta t` изменяется на одинаковую величину `Deltavecv`. В этом случае ускорение `veca` тела не зависит от времени и остаётся постоянным в процессе движения:
(при этом `vec v != “const”`, и траектория движения не обязательно прямолинейная).
При равнопеременном движении скорость $$ overrightarrow{v}$$ тела изменяется с течением времени по закону
`vec v (t)=vec v_0 +vec at`, (11)
где `vecv_0` – скорость тела в начальный момент времени `t=0`.
В свою очередь, зависимость `vecr(t)` имеет вид:
`vec r(t)=vec r_0+vec v_0t+(vec a t^2)/2`, (12)
где `vecr_0` – начальный радиус-вектор тела при `t=0`. Вновь заметим, что величины `vecv_0` и `vecr_0` представляют собой начальные условия, позволяющие в любой момент времени однозначно определить векторы `vecv` и `vecr`.
При координатном способе описания равнопеременного движения векторным уравнениям (11) и (12), равносильны следующие системы уравнений для проекций скорости и радиус-вектора тела на оси выбранной системы отсчёта. Здесь мы ограничиваемся случаем плоского движения, при котором траектория тела лежит в одной плоскости, совпадающей с координатной:
$$ left{begin{array}{l}{v}_{x}left(tright)={v}_{0x}+{a}_{x}t,\ {v}_{y}left(tright)={v}_{0y}+{a}_{y}t.end{array}right.$$ | (13) |
$$ left{begin{array}{l}xleft(tright)={x}_{0}+{v}_{0x}t+{displaystyle frac{{a}_{x}{t}^{2}}{2}},\ yleft(tright)={y}_{0}+{v}_{0y}t+{displaystyle frac{{a}_{y}{t}^{2}}{2}},end{array}right.$$ | (14) |
где $$ {x}_{0}$$ и $$ {y}_{0}$$ – начальные абсцисса и ордината тела (при $$ t=0$$), $$ {v}_{0x}$$ и $$ {v}_{0y}$$ – проекции начальной скорости `vecv_0` тела на координатные оси, $$ {a}_{x}$$ и $$ {a}_{y}$$ – проекции вектора ускорения на оси $$ Ox$$ и $$ Oy$$ соответственно.
В принципе формулы (11) и (12), или равносильные им системы уравнений (13) и (14) позволяют решить любую задачу на движение тела с постоянным ускорением.
В случае прямолинейного движения тела удобнее одну координатную ось, например ось $$ Ox$$, совместить с траекторией тела. Тогда для описания движения будет достаточно одной этой оси, в проекциях на которую векторные уравнения (11) и (12) дают:
$$ {v}_{x}={v}_{0x}+{a}_{x}t$$, $$ x={x}_{0}+{v}_{0x}t+{displaystyle frac{{a}_{x}{t}^{2}}{2}}$$.
Если на промежутке времени от $$ 0$$ до $$ t$$ направление движения тела не изменялось на противоположное, то разность $$ x-{x}_{0}$$текущей и начальной координат тела совпадает с пройденным путём $$ S$$, следовательно,
`S=v_(0x)t+(a_xt^2)/2`.
Эту формулу можно записать по-другому, если подставить в неё время $$ t$$, выраженное из уравнения $$ {v}_{x}={v}_{0x}+{a}_{x}t$$ . Это время будет
`t=(v_x-v_(0x))/a_x`.
Тогда для пути $$ S$$ после несложных преобразований получим
`S=(v_x^2-v_(0x)^2)/(2a_x)`.
Удобство этой формулы заключается в том, что она не содержит времени $$ t$$ в явном виде. Вместе с тем надо помнить, что формула получена в предположении о неизменности направления движения тела.
За `2`c прямолинейного равноускоренного движения тело прошло `20` м, увеличив свою скорость в `3` раза. Определите конечную скорость тела. (ЕГЭ, 2005г., уровень .B )
Пусть за время $$ t=2$$ с скорость тела изменилась от $$ {v}_{0}$$ до $$ v$$. Направим координатную ось $$ Ox$$ вдоль траектории тела в сторону движения. Тогда в проекциях на эту ось можно записать `v=v_0+at`, `a` – модуль ускорения тела. По условию `v_0=1/3v` и, следовательно, `a=2/3v/t`.
За время $$ t$$ тело, движущееся с таким ускорением, пройдёт путь
`S=(v^2-v_0^2)/(2a)`.
С учётом выражений для $$ {v}_{0}$$ и $$ a$$ получим `S=2/3vt`. Откуда искомая скорость `v=3/2S/t`. Подставляя сюда значения `S = 20` м и `t =2` c, найдём окончательно `v =15` м/ с.
Одним из наиболее наглядных примеров равнопеременного движения является движение тела в поле тяжести Земли, которое мы имеем возможность наблюдать повседневно. Для решения задач в этом случае надо заменить в приведённых выше формулах вектор $$ overrightarrow{a}$$ на ускорение свободного падения $$ overrightarrow{g}$$, сообщаемое силой гравитационного притяжения всякому телу, движущемуся в поле тяжести Земли. Рассмотрим три конкретных случая такого движения.
Движение тела, брошенного вертикально.
Тело бросили с поверхности земли, сообщив ему начальную скорость $$ {overrightarrow{v}}_{0}$$ направленную вертикально вверх. Пренебрегая сопротивлением воздуха, определите время $$ tau $$ полёта тела до момента падения на землю; скорость тела в момент падения; максимальную высоту $$ H$$ подъёма тела над землёй; время $$ {tau }_{1}$$ подъёма тела на максимальную высоту; путь `S`, пройденный телом за время полёта и перемещение тела. Начертите графики зависимости от времени $$ t$$ вертикальной координаты тела и проекции на вертикальную ось его скорости в процессе полёта.
Поскольку движение полностью происходит в вертикальном направлении, то для определения пространственного положения тела достаточно одной координатной оси $$ Oy$$. Направим её вертикально вверх, начало отсчёта $$ O$$ поместим в точку бросания (рис. 13). Начальные условия движения тела: $$ {y}_{0}=0,{v}_{0y}={v}_{0}$$.
Проекция ускорения тела на ось $$ Oy$$ в отсутствие сопротивления воздуха равна $$ {a}_{y}=-g$$ , т. к. вектор $$ overrightarrow{g}$$ направлен вертикально вниз противоположно направлению координатной оси. Вторые уравнения систем (13) и (14) с учётом начальных условий имеют вид:
Пусть при $$ t=tau $$ тело упало на землю. В этот момент $$ y=0$$ и уравнение (16) даёт: `0=v_0 tau-(g t^2)/2`. Откуда для $$ tau $$ получаем: $$ tau =0$$ или `tau=(2v_0)/g`. Значение $$ tau =0$$ соответствует начальному моменту бросания тела с поверхности земли, и для нас интереса не представляет. Следовательно, время полёта тела `tau=(2v_0)/g`.
Согласно (15), при $$ t=tau $$ имеем: $$ {v}_{y}={v}_{0}-gt$$. Тогда с учётом найденного значения $$ tau $$ получим $$ {v}_{y}={v}_{0}-2{v}_{0}=-{v}_{0}$$. Таким образом, скорость тела в момент падения равна по величине начальной скорости $$ {v}_{0}$$, но направлена вертикально вниз, её проекция на ось $$ Oy$$ отрицательна.
Пусть при $$ t={tau }_{1}$$ тело находится в наивысшей точке подъёма. Это значит, что $$ y=H,{v}_{y}=0$$. С учётом этих значений уравнения (15) и (16) дают:
`0=v_0-g tau_1`, `H=v_0 tau_1-(g tau_1^2)/2`.
Из первого уравнения определяем время подъёма тела `tau_1=(v_0)/g` и, подставляя $$ {tau }_{1}$$ во второе уравнение, найдём `H=(v_0^2)/(2g)`.
Заметим, что время $$ {tau }_{1}$$ подъёма тела на максимальную высоту вдвое меньше времени $$ tau $$ полёта тела: $$ tau =2{tau }_{1}$$.
Путь $$ S$$, пройденный телом за время полёта, складывается из двух участков: подъёма до высшей точки траектории и падения с высшей точки траектории на поверхность земли. Очевидно, что длины траекторий движения тела на этих участках одинаковы и, значит, $$ S=2H$$. Перемещение тела равно нулю, поскольку начальная и конечная точки траектории тела совпадают.
Зависимость $$ yleft(tright)$$ в соответствии с (16) представляет собой квадратичную функцию, графиком которой, как известно, является парабола (рис. 14). Ветви параболы направлены вниз, т. к. в формуле (16) коэффициент при `t^2` отрицателен.
Зависимость $$ {v}_{y}left(tright)$$ является линейной, и её график представляет собой отрезок прямой линии (рис. 15), тангенс угла наклона которой коси абсцисс равен коэффициенту при $$ t$$ в формуле (15):
`”tg”alpha=-g`.
Движение тела, брошенного горизонтально.
Тело бросили с высоты $$ H$$ над поверхностью земли, сообщив ему начальную скорость $$ {overrightarrow{v}}_{0}$$, направленную горизонтально (рис. 16). Пренебрегая сопротивлением воздуха, определите время $$ tau $$ полёта тела до его падения на землю, дальность $$ l$$ полёта тела, скорость `vecv` тела в момент падения. Выбрав прямоугольную систему координат так, как показано на рис. 16, запишите уравнение траектории движения тела, начертите графики зависимости от времени $$ t$$ координат тела и проекций скорости тела на координатные оси.
Начало отсчёта $$ O$$ поместим на поверхности земли под точкой бросания (рис. 16). Начальные условия движения тела: `x_0=0`, `y_0=H`, `v_(0x)=v_0`, `v_(0y)=0`. Проекции ускорения тела на оси координат при отсутствии сопротивления воздуха равны:
`a_x=0`, `a_y=-g`.
Запишем системы уравнений (13) и (14) с учётом этих значений:
$$ left{begin{array}{l}{v}_{x}={v}_{0},\ {v}_{y}=-gt·end{array}right.$$ | (17) |
$$ left{begin{array}{l}x={v}_{0}t,\ y=H-{displaystyle frac{g{t}^{2}}{2}}·end{array}right.$$ | (18) |
Пусть при $$ t=tau $$ тело упало на землю. Это означает, что $$ y=0$$, $$ x=l$$, и уравнения системы (18) принимают вид:
$$ l={v}_{0}tau $$, `0=H-(g tau^2)/2`.
Решая их ,находим:
`tau= sqrt((2H)/g)`, `l=v_0sqrt((2H)/g)`.
В свою очередь, система уравнений (17) даёт: $$ {v}_{x}={v}_{0},{v}_{y}=-gtau $$. С учётом значения $$ tau $$ получим `v_y=-sqrt(2gH)`, и модуль скорости `vecv` будет равен:
`v=sqrt(v_x^2+v_y^2)=sqrt(v_0^2+2gH)`.
Направление вектора `vecv` определим с помощью угла $$ alpha $$ (рис. 16):
`”tg”alpha=v_y//v_x=(-sqrt(2gH))//v_0`.
Уравнение $$ yleft(xright)$$ траектории движения тела получим, исключив параметр $$ t$$ из системы (18):
`y(x)=-g/(2v_0^2)x^2+H`.
Так как $$ yleft(xright)$$ представляет собой квадратичную функцию, то траекторией движения тела является участок параболы с вершиной в точке бросания. Ветви параболы направлены вниз. Графики, требуемые в условии данного примера, представлены соответственно на рис. 17 и рис. 18.
Движение тела, брошенного под углом к горизонту.
Тело бросили с поверхности земли с начальной скоростью $$ {v}_{0}$$ направленной под углом $$ alpha $$ к горизонту (рис. 19). Пренебрегая сопротивлением воздуха, определите время $$ tau $$ полёта тела до его падения на землю,дальность $$ l$$ полёта тела, скорость тела в момент падения на землю,максимальную высоту $$ H$$ подъёма тела над землёй, время $$ {tau }_{1}$$ подъёма тела на максимальную высоту. Запишите уравнение траектории тела.
Направим оси прямоугольной системы координат, как показано на рис. 19. Начало отсчёта $$ O$$ поместим в точку бросания. Тогда начальные условия движения тела таковы: `x_0=0`, `y_0=0`, `v_(0x)=v_0cosalpha`, `v_(0y)=v_0sinalpha`. При отсутствии сопротивления воздуха $$ {a}_{x}=0,{a}_{y}=g$$ С учётом этих значений системы уравнений (13) и (14) имеют вид:
$$ left{begin{array}{l}{v}_{x}={v}_{0}mathrm{cos}alpha ,\ {v}_{y}={v}_{0}mathrm{sin}alpha -gt·end{array}right.$$ | (19) |
$$ left{begin{array}{l}x=left({v}_{0}mathrm{cos}alpha right)t,\ y=left({v}_{0}mathrm{sin}alpha right)t-{displaystyle frac{g{t}^{2}}{2}}·end{array}right.$$ | (20) |
Пусть при $$ t=tau $$ тело упало на землю, тогда: $$ y=0,x=l$$. Уравнения системы (20) дают:
$$ l=left({v}_{0}mathrm{cos}alpha right)tau $$, $$ 0=left({v}_{0}mathrm{sin}alpha right)tau -{displaystyle frac{g{tau }^{2}}{2}}$$.
Откуда находим
$$ tau ={displaystyle frac{2{v}_{0}mathrm{sin}alpha }{g}}$$, $$ l={displaystyle frac{{v}_{0}^{2}text{sin}2alpha }{g}}$$.
(Здесь использовано равенство $$ 2mathrm{sin}alpha mathrm{cos}alpha =mathrm{sin}2alpha .$$ )
Из полученного выражения для $$ l$$ легко определить угол $$ alpha $$, при котором дальность полёта тела будет максимальной. Действительно, величина $$ l$$ как функция от $$ alpha $$ принимает максимальное значение в том случае, когда $$ mathrm{sin}2alpha =1$$. Это возможно, если `2alpha=90^@`, т. е. `alpha=45^@`.
Модуль скорости тела в момент падения на землю определим с помощью теоремы Пифагора: `v=sqrt(v_x^2+v_y^2)`. В соответствии с системой уравнений (19) в этот момент (при $$ t=tau $$ ) имеем: $$ {v}_{x}={v}_{0}mathrm{cos}alpha $$, $$ {v}_{y}={v}_{0}mathrm{sin}alpha -gtau =-{v}_{0}mathrm{sin}alpha $$.
Следовательно, $$ v=sqrt{{v}_{0}^{2}{mathrm{cos}}^{2}alpha +{v}_{0}^{2}{mathrm{sin}}^{2}alpha }={v}_{0}$$, (так как $$ {mathrm{cos}}^{2}alpha +{mathrm{sin}}^{2}alpha =1$$).
Направление скорости тела в момент падения составляет угол $$ alpha $$ с направлением оси $$ Ox$$. Этот угол отсчитывается по часовой стрелке от направления оси $$ Ox$$.
Пусть при $$ t={tau }_{1}$$ тело достигло максимальной высоты. В этот момент $$ {v}_{y}=0$$, `y=H`. Соответствующие уравнения систем (19) и (20) дают:
$$ 0={v}_{0}mathrm{sin}alpha -g{tau }_{1}$$, $$ H=left({v}_{0}mathrm{sin}alpha right){tau }_{1}-{displaystyle frac{g{tau }_{1}^{2}}{2}}$$.
Отсюда последовательно находим:
$$ {tau }_{1}={displaystyle frac{{v}_{0}mathrm{sin}alpha }{g}}$$, $$ H={displaystyle frac{{v}_{0}^{2}{mathrm{sin}}^{2}alpha }{2g}}$$.
Видим,что $$ tau =2{tau }_{1}$$.
Уравнение траектории получим, исключив из системы (20) время $$ t$$ :
$$ yleft(xright)={displaystyle frac{g}{2{v}_{0}^{2}{mathrm{cos}}^{2}alpha }}{x}^{2}+mathrm{tg}alpha x$$.
График траектории тела представляетсобой участок параболы, ветви которой направлены вниз.