Как найти работу через емкость

Эти зависимости легко проверить экспериментально. Полученные с использованием схемы, графики зависимости силы тока от напряжения при постоянном сопротивлении и силы тока от сопротивления представлены на рисунке. В первом случае использован источник тока с регулируемым выходным напряжением и постоянное сопротивление $R$, во втором — аккумулятор и переменное сопротивление (магазин сопротивлений).

Электрическое сопротивление — это физическая величина, характеризующая противодействие проводника или электрической цепи электрическому току.

Электрическое сопротивление определяется как коэффициент пропорциональности $R$ между напряжением $U$ и силой постоянного тока $I$ в законе Ома для участка цепи.

Единица сопротивления называется омом (Ом) в честь немецкого ученого Г. Ома, который ввел это понятие в физику. Один ом ($1$ Ом) — это сопротивление такого проводника, в котором при напряжении $1$ В сила тока равна $1$ А.

Сопротивление однородного проводника постоянного сечения зависит от материла проводника, его длины $l$ и поперечного сечения $S$ и может быть определено по формуле:

где $ρ$ — удельное сопротивление вещества, из которого изготовлен проводник.

Удельное сопротивление вещества — это физическая величина, показывающая, каким сопротивлением обладает изготовленный из этого вещества проводник единичной длины и единичной площади поперечного сечения.

Величина, обратная $ρ$, называется удельной проводимостью $σ$:

Так как в СИ единицей сопротивления является $1$ Ом, единицей площади $1м^2$, а единицей длины $1$ м, то единицей удельного сопротивления в СИ будет $1$ Ом$·м^2$/м, или $1$ Ом$·$м. Единица удельной проводимости в СИ — $Ом^<-1>м^<-1>$.

На практике площадь сечения тонких проводов часто выражают в квадратных миллиметрах (м$м^2$). В этом случае более удобной единицей удельного сопротивления является Ом$·$м$м^2$/м. Так как $1 мм^2 = 0.000001 м^2$, то $1$ Ом$·$м $м^2$/м$ = 10^<-6>$ Ом$·$м. Металлы обладают очень малым удельным сопротивлением — порядка ($1 ·10^<-2>$) Ом$·$м$м^2$/м, диэлектрики — в $10^<15>-10^<20>$ раз большим.

Зависимость сопротивления от температуры

С повышением температуры сопротивление металлов возрастает. Однако существуют сплавы, сопротивление которых почти не меняется при повышении температуры (например, константан, манганин и др.). Сопротивление же электролитов с повышением температуры уменьшается.

Температурным коэффициентом сопротивления проводника называется отношение величины изменения сопротивления проводника при нагревании на $1°$С к величине его сопротивления при $0°$С:

Зависимость удельного сопротивления проводников от температуры выражается формулой:

В общем случае $α$ зависит от температуры, но если интервал температур невелик, то температурный коэффициент можно считать постоянным. Для чистых металлов $α=(<1>/<273>)K^<-1>$. Для растворов электролитов $α

Источник

Конденсатор

Электрический конденсатор (англ. capacitor) — это устройство, которое может накапливать электрический заряд и хранить его некоторое время. Конденсаторы можно найти практически в любом электронном устройстве. Они бывают разных типов и размеров.

На электрических схемах конденсаторы обозначают двумя параллельными черточками. При этом, у полярных конденсаторов около положительного электрода дополнительно ставится плюсик.

Для чего нужен конденсатор?

У этого прибора есть множество применений. Мы не будем перечислять их все, отметим лишь некоторые.

1) Фильтрация пульсаций в цепях питания. Конденсаторы часто ставят на входе и выходе преобразователей напряжения, на входе питания микросхем. В этом случае конденсаторы служат своего рода амортизаторами, которые могут сгладить неровности напряжения, подобно амортизаторам автомобиля, сглаживающим неровности дороги.

2) Времязадающие электрические цепи. Конденсаторы разной ёмкости заряжаются и разряжаются за разное время. Эту особенность используют в устройствах, где необходимо отсчитывать определенные промежутки времени. Например, с помощью резистора и конденсатора задается период и скважность импульса в микросхеме таймера 555 (урок про таймер 555).

3) Датчики прикосновения. В роли одной из обкладок конденсатора может выступить человек. Эту особенность нашего тела используют в своей работе сенсорные кнопки, тачскрины и тачпады некоторых видов.

4) Хранение данных. Конденсаторы применяются для хранения данных в оперативной памяти — ОЗУ (SRAM). Каждый модуль такой памяти содержит миллиарды отдельных конденсаторов, которые могут быть заряжены или разряжены, что интерпретируется как единица или ноль.

И это далеко не все варианты применения этого незаменимого прибора. Попробуем разобраться, как устройство конденсатора позволяет ему выполнять столько полезных функций!

Устройство простейшего конденсатора

Конденсатор состоит их двух металлических пластин — электродов, называемых также обкладками, между которыми находится тонкий слой диэлектрика.

Собственно, все конденсаторы устроены именно таким (или почти таким) образом, разве что меняется материал обкладок и диэлектрика.

Чтобы увеличить ёмкость конденсатора, не увеличивая его размеры, применяют разные хитрости. Например, если мы возьмем две обкладки в виде длинных полосок фольги, проложим между ними хотя бы тот же полиэтилен и свернем все это как рулет, то получится очень компактный прибор с большой ёмкостью. Именно так устроены плёночные конденсаторы.

Если вместо полиэтилена взять бумагу и пропитать её электролитом, то на поверхности фольги образуется тонкий слой оксида, который не проводит ток. Такой конденсатор будет называться электролитическим.

Существует много разных видов конденсаторов: бумажные, плёночные, оксидные алюминиевые и танталовые, вакуумные и т.п. В нашем уроке мы будем использовать оксидные электролитические конденсаторы из-за их большой ёмкости и доступности.

Полярные и неполярные конденсаторы

Очень важным является разделение конденсаторов на полярные и неполярные.

Приборы на основе оксидов: электролитические алюминиевые и танталовые обычно являются полярными, а значит если перепутать их полярность — они выйдут из строя. Причём этот выход из строя будет сопровождаться бурной электрохимической реакций вплоть до взрыва конденсатора.

На полярных конденсаторах всегда имеется маркировка. Как правило на электролитических конденсаторах на корпусе контрастной полосой отмечается отрицательный вывод (катод), у танталовых (в желтых прямоугольных корпусах) полоской помечается положительный вывод (анод). Если есть сомнения в маркировке, то лучше найти документацию на этот конденсатор и убедиться.

Неполярные же конденсаторы можно включать в цепь какой угодно стороной. К примеру, многослойные керамические конденсаторы — неполярные.

Ёмкость и напряжение конденсатора

Теперь обратим внимание на две важные характеристики конденсатора: ёмкость и номинальное напряжение.

Ёмкость конденсатора характеризует способность конденсатора накапливать заряд. Это как ёмкость банки, в которой хранится, к примеру, вода. Кстати, не зря одним из первых электрических конденсаторов была так называемая Лейденская банка. Она представляла собой обыкновенную стеклянную посуду, снаружи обмотанную фольгой. В банку была налита токопроводящая жидкость — электролит. Фольга и электролит играли роль обкладок, а стекло банки служило тем самым диэлектрическим барьером.

Ёмкость электрического конденсатора измеряют в фарадах. В схемах ёмкость обозначают латинской буквой C. Как правило, ёмкость классических конденсаторов варьируется от нескольких пикофарад (пФ) до нескольких тысяч микрофарад (мкФ). Ёмкость указывается на корпусе конденсатора. Если единицы не указаны — то это пикофарады. Микрофарады часто обозначают как uF — так как буква u внешне похожа на греческую букву мю, которую используют вместо приставки микро.

Существует и особый вид конденсаторов, называемых ионисторами (англ. supercapacitor), которые имеют ёмкость в несколько фарад! Чем больше ёмкость конденсатора, тем больше энергии в нём может храниться и тем дольше он заряжается, при прочих равных условиях.

Номинальное напряжение — второй важный параметр. Это такое напряжение, при котором конденсатор будет работать весь срок службы без критичного изменения своих параметров. Нельзя применять в 12-вольтовой цепи конденсатор на 6 вольт — он быстро выйдет из строя.

Именно эти два параметра обычно наносят на поверхность корпуса конденсатора. На фотографии ниже изображён электролитический конденсатор ёмкостью 470 мкФ и номинальным напряжением 16 Вольт.

А вот на керамических конденсаторах часто указывают только ёмкость. На картинке ниже конденсатор имеет маркировку 104. Что бы это значило?

Последняя цифра в этом коде — количество нулей после двухзначного числа в начале. 104 = 10 0000 пФ = 100 нФ = 0,1 мкФ

Параллельное и последовательное подключение конденсаторов

Как и в случае резисторов, конденсаторы можно составлять в цепочки. Это бывает нужно, когда в схеме необходима какая-то конкретная ёмкость, а у вас нет такого конденсатора.

Параллельное подключение

В отличие от резисторов, при параллельном подключении конденсаторов их ёмкости складываются. Например, если нам нужно получить ёмкость 3000 мкФ, а у нас есть два конденсатора по 1000 мкФ, и 10 штук по 100 мкФ, смело ставим их параллельно и получаем: 1000*2+100*10 = 2000 + 1000 = 3000 мкФ

Последовательно подключение

При последовательном подключении конденсаторы ведут себя как резисторы, соединённые параллельно. Например, посчитаем суммарную ёмкость двух конденсаторов на 100 мкФ, соединённых последовательно:

Суммарная ёмкость Ctot = 50 мкФ.

Заряд и разряд конденсатора — RC-цепочка

Теперь разберёмся с процессами, происходящими внутри конденсатора во время заряда и разряда. Для этого рассмотрим самую простую электрическую цепь с конденсатором. С левой стороны схемы подключим источник питания. Сверху разместим ключ и резистор, а справа сам конденсатор. Участок цепи, на котором есть конденсатор и резистор называют RC-цепью.

При замыкании ключа, в такой цепи образуется электрический ток, сила которого зависит от сопротивления резистора и внутреннего сопротивления самого конденсатора. Заряженные частицы устремятся к конденсатору, но не смогут преодолеть слой диэлектрика (по крайней мере все разом). Вследствие чего, с одной стороны конденсатора накопятся отрицательно заряженные частицы, а с другой стороны — положительно заряженные. Концентрация заряженных частиц на обкладках создаст мощное электрическое поле между ними.

С течением времени, напряжение на конденсаторе растет, а сила тока падает. После завершения процесса заряда, ток в цепи упадет почти до нуля. Останется только очень маленький ток утечки, который образуется благодаря тому, что некоторым заряженным частицам всё же удается проскочить через слой диэлектрика. Напряжение, напротив, станет практически равным напряжению источника.

Когда мы отключим конденсатор от источника питания, этот самый ток утечки постепенно разрядит конденсатор. Эта особенность электрических конденсаторов не даёт нам сделать из них контейнер для длительного хранения энергии. Хотя частично эту проблему решают ионисторы.

Резистор и время заряда конденсатора

Зачем в цепи нужен резистор? Что на мешает подключить его напрямую к источнику? Тому есть две причины.

Резистор ограничивает ток, протекающий через конденсатор. Чем меньше заряженных частиц за единицу времени прибывает в конденсатор, тем больше времени для заряда ему потребуется.

Конденсатор заряжается и разряжается по экспоненциальному закону. Зная это, мы можем легко рассчитать время заряда/разряда в зависимости от его ёмкости и от сопротивления резистора.

По картинке можно понять, что за время T конденсатор заряжается на 63,2%. А вот за время 3T уже на 95%. Время T здесь равно произведению ёмкости конденсатора C на сопротивление R, последовательно соединенного резистора:

Например, у нас есть конденсатор ёмкостью 100 мкФ, соединенный с резистором 1 кОм. Посчитаем за сколько секунд он зарядится хотя бы до 95%:

Теперь умножаем это на 3 и получаем 3T = 0,3 секунды — за такое время конденсатор почти полностью будет заряжен.

Таким образом, меняя ёмкость конденсатора и резистора мы можем управлять временем его заряда, что нам ещё пригодится в будущем.

Вторая важная причина, по которой в цепи присутствует резистор — защита источника питания. Дело в том, что разряженные конденсаторы имеют очень низкое внутреннее сопротивление, которое составляет доли Ома. По сути, их можно рассматривать как обычные проводники. А что будет, если замкнуть выводы питания проводником? Будет короткое замыкание! Такой режим работы цепи является аварийным для источника питания, и его нужно всячески избегать.

Плавное выключение светодиода при помощи конденсатора

Проведем небольшой опыт. Для этого соберем на макетной плате цепь с кнопкой, конденсатором и светодиодом. В качестве источника питания используем контакты питания Ардуино Уно.

Принципиальная схема

Внешний вид макета

Подключим Ардуино к питанию. Затем, нажмем кнопку и светодиод практически мгновенно загорится. Отпустим кнопку — светодиод медленно начнет гаснуть. Почему так происходит?

Сразу после подключения нашей схемы к источнику питания, в ней начинают происходит интересные процессы.

Как уже говорилось ранее, пока конденсатор пустой, ток через него максимален. Следовательно, конденсатор начинает стремительно набирать заряд. При этом светодиоду, который подключен параллельно, ничего не достается 🙁 Напряжение на нем близко к нулю.

С течением времени конденсатор насыщается, благодаря чему ток начинает постепенно переходить в параллельную цепь — через светодиод. Напряжение на светодиоде начинает расти. Наступает момент, когда напряжение на светодиоде принимает критическое значение (для красного светодиода около 1,8 В), при котором он стремительно отбирает остатки тока у конденсатора и вспыхивает!

Когда мы отпускаем кнопку, ситуация становится гораздо проще. Конденсатор становится источником питания для светодиода с резистором. Светодиод начинает медленно высасывать заряд из конденсатора, пока тот не разрядится. Тут мы и наблюдаем медленно угасание.

Меняя сопротивление R1, мы можем влиять на скорость вспыхивания светодиода. Однако, следует учитывать, что увеличивая R1 мы будем снижать ток в цепи, тем самым уменьшая максимальный заряд конденсатора и яркость светодиода.

Увеличивая C1, мы получим более длительное время работы светодиода после выключения источника. Это как поставить более ёмкую батарейку.

Наконец, меняя R2 можно регулировать яркость светодиода, и соответственно, время его работы. Ведь чем меньше тока мы забираем из конденсатора, тем на большее время его хватит.

К размышлению

Итак, мы познакомились с конденсатором — интересным и порой опасным жителем любой электронной платы. В следующих уроках уделим внимание резистору и индуктивности, а также более сложному их собрату — транзистору.

Источник

Главная

Примеры решения задач ТОЭ

Расчет электрической цепи постоянного тока с конденсаторами

Расчет электрической цепи постоянного тока с конденсаторами


Расчет электрической цепи постоянного тока с конденсаторами

Основные положения и соотношения

1. Общее выражение емкости конденсатора

C= Q U .

2. Емкость плоского конденсатора

C= ε a ⋅S d = ε r ⋅ ε 0 ⋅S d ,

здесь

S — поверхность каждой пластины конденсатора;

d — расстояние между ними;

εa = εr·ε0 — абсолютная диэлектрическая проницаемость среды;

εr — диэлектрическая проницаемость среды (относительная диэлектрическая проницаемость);

ε 0 = 1 4π⋅ с 2 ⋅ 10 −7 ≈8,85418782⋅ 10 −12    Ф м  – электрическая постоянная.

3. При параллельном соединении конденсаторов С1, С2, …, Сn эквивалентная емкость равна

C= C 1 + C 2 +…+ C n = ∑ k=1 n C k .

4. При последовательном соединении конденсаторов эквивалентная емкость определяется из формулы

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Для двух последовательно соединенных конденсаторов эквивалентная емкость составляет:

C= C 1 ⋅ C 2 C 1 + C 2 ,

а напряжения между отдельными конденсаторами распределяются обратно пропорционально их емкостям:

U 1 =U⋅ C 2 C 1 + C 2 ;    U 2 =U⋅ C 1 C 1 + C 2 .

5. Преобразование звезды емкостей в эквивалентный треугольник емкостей или обратно (рис. а и б)

Преобразование звезды емкостей в эквивалентный треугольник емкостей

Рис. 0

осуществляется по формулам:

Y→Δ { C 12 = C 1 ⋅ C 2 ΣC ;   C 13 = C 1 ⋅ C 3 ΣC ;   C 23 = C 2 ⋅ C 3 ΣC , где          ΣC= C 1 + C 2 + C 3 , Δ→Y { C 1 = C 12 + C 13 + C 12 ⋅ C 13 C 23 ; C 2 = C 12 + C 23 + C 12 ⋅ C 23 C 13 ; C 3 = C 13 + C 23 + C 13 ⋅ C 23 C 12 .

6. Энергия электростатического поля конденсатора:

W= C⋅ U 2 2 = Q⋅U 2 = Q 2 2C .

7. Расчет распределения зарядов в сложных цепях, содержащих источники э.д.с. и конденсаторы, производится путем составления уравнений по двум законам:

1) По закону сохранения электричества (закон сохранения электрического заряда): алгебраическая сумма зарядов на обкладках конденсаторов, соединенных в узел и не подключенных к источнику энергии, равна алгебраической сумме зарядов, имевшихся на этих обкладках до их соединения:

ΣQ=Σ Q ′ .

2) По второму закону Кирхгофа: алгебраическая сумма э. д. с. в замкнутом контуре равна алгебраической сумме напряжений на участках контура, в том числе на входящих в него конденсаторах:

∑ k=1 n E k = ∑ k=1 n U C k = ∑ k=1 n Q k C k .

Приступая к решению задачи, надо задаться полярностью зарядов на обкладках конденсаторов.

Решение задач на расчет электрической цепи постоянного тока с конденсаторами

Задача. Доказать формулу эквивалентной емкости при последовательном соединении конденсаторов (рис. 1).

эквивалентная емкость при последовательном соединении конденсаторов

Рис. 1

Решение

На рис. 1 представлено последовательное соединение трех конденсаторов. Если батарею конденсаторов подключить к источнику напряжения U12, то на левую пластину конденсатора С1 перейдет заряд +q, на правую пластину конденсатора С3 заряд –q.

Вследствие электризации через влияние правая пластина конденсатора С1 будет иметь заряд –q, а так как пластины конденсаторов С1 и С2 соединены и были электронейтральны, то вследствие закона сохранения заряда заряд левой пластины конденсатора C2 будет равен +q, и т. д. На всех пластинах конденсаторов при таком соединении будет одинаковый по величине заряд.

Найти эквивалентную емкость — это значит найти конденсатор такой емкости, который при той же разности потенциалов будет накапливать тот же заряд q, что и батарея конденсаторов.

Разность потенциалов U12 = φ1 — φ2 складывается из суммы разностей потенциалов между пластинами каждого из конденсаторов

U 12 = φ 1 − φ 2 =( φ 1 − φ A )+( φ A − φ B )+( φ B − φ 2 )= U 1A + U AB + U B2 .

Воспользовавшись формулой напряжения на конденсаторе

U= q C ,

запишем

q C = q C 1 + q C 2 + q C 3 .

Откуда эквивалентная емкость батареи из трех последовательно включенных конденсаторов

1 C = 1 C 1 + 1 C 2 + 1 C 3 .

В общем случае эквивалентная емкость при последовательном соединении конденсаторов

1 C = 1 C 1 + 1 C 2 +…+ 1 C n = ∑ k=1 n 1 C k .

Задача 1. Определить заряд и энергию каждого конденсатора на рис. 2, если система подключена в сеть с напряжением U = 240 В.

Определить заряд и энергию каждого конденсатора, если система подключена в сеть

Рис. 2

Емкости конденсаторов: C1 =50 мкФ; C2 =150 мкФ; C3 =300 мкФ.

Решение

Эквивалентная емкость конденсаторов C1 и C2, соединенных параллельно

C12 = C1 + C2 = 200 мкФ,

эквивалентная емкость всей цепи равна

C= C 12 ⋅ C 3 C 12 + C 3 = 200⋅300 500 =120  мкФ.

Заряд на эквивалентной емкости

Q = C·U = 120·10–6·240 = 288·10–4 Кл.

Той же величине равен заряд Q3 на конденсаторе C3, т.е. Q3 = Q = 288·10–4 Кл; напряжение на этом конденсаторе

U 3 = Q 3 C 3 = 288⋅ 10 −4 300⋅ 10 −6 =96  В.

Напряжение на конденсаторах C1 и C2 равно

U1 = U2 = U — U3 = 240 — 96 = 144 В.

их заряды имеют следующие значения

Q1 = C1·U1 = 50·10–6·144 = 72·10–4 Кл;

Q2 = C2·U2 = 150·10–6·144 = 216·10–4 Кл.

Энергии электростатического поля конденсаторов равны

W 1 = Q 1 ⋅ U 1 2 = 72⋅ 10 −4 ⋅144 2 ≈0,52  Дж; W 2 = Q 2 ⋅ U 2 2 = 216⋅ 10 −4 ⋅144 2 ≈1,56  Дж; W 3 = Q 3 ⋅ U 3 2 = 288⋅ 10 −4 ⋅96 2 ≈1,38  Дж.

Задача 2. Плоский слоистый конденсатор (рис. 3), поверхность каждой пластины которого S = 12 см2, имеет диэлектрик, состоящий из слюды (εr1 = 6) толщиною d1 = 0,3 мм и стекла (εr2 = 7) толщиною d2 =0,4 мм.

Пробивные напряженности слюды и стекла соответственно равны E1 = 77 кВ/мм, E2 = 36 кВ/мм.

Емкость плоского двухслойного конденсатора

Рис. 3

Вычислить емкость конденсатора и предельное напряжение, на которое его можно включать, принимая для более слабого слоя двойной запас электрической прочности.

Решение

Эквивалентная емкость слоистого конденсатора определится как емкость двух последовательно соединенных конденсаторов

C= C 1 ⋅ C 2 C 1 + C 2 = ε a1 ⋅S d 1 ⋅ ε a2 ⋅S d 2 ε a1 ⋅S d 1 + ε a2 ⋅S d 2 = ε a1 ⋅ ε a2 ⋅S ε a1 ⋅ d 2 + ε a2 ⋅ d 1 .

Подставляя сюда числовые значения, предварительно заменив εa1 = εr1·ε0 и εa2 = εr2·ε0, получим

C= ε 0 ⋅ ε r1 ⋅ ε r2 ⋅S ε r1 ⋅ d 2 + ε r2 ⋅ d 1 =8,85⋅ 10 −12 ⋅ 6⋅7⋅12⋅ 10 −4 6⋅0,4⋅ 10 −3 +7⋅0,3⋅ 10 −3 =99⋅ 10 −12   Ф.

Обозначим общее напряжение, подключаемое к слоистому конденсатору, через Uпр, при этом заряд конденсатора будет равен

Q = C·Uпр.

Напряжения на каждом слое будут равны

U 1 = Q C 1 = C⋅ U пр ε a1 ⋅S d 1 = ε a2 ⋅ d 1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр ; U 2 = Q C 2 = C⋅ U пр ε a2 ⋅S d 2 = ε a1 ⋅ d 2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U пр .

Напряженности электростатического поля в каждом слое

E 1 = U 1 d 1 = ε a2 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ′ пр ; E 2 = U 2 d 2 = ε a1 ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ⋅ U ″ пр .

Здесь U’np — общее напряжение, подключаемое к конденсатору, при котором пробивается первый слой, a U”np — общее напряжение, при котором происходит пробой второго слоя.

Из последнего выражения находим

U ′ пр = E 1 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a2 =49,5  кВ; U ″ пр = E 2 ⋅ ε a1 ⋅ d 2 + ε a2 ⋅ d 1 ε a1 =27,0  кВ.

Таким образом, более слабым слоем является второй; согласно условию, принимая для него двойной запас прочности, находим, что конденсатор может быть включен на напряжение, равное

27,0 кВ / 2 = 13,5 кВ.

Задача 3. Обкладки плоского конденсатора с воздушным диэлектриком расположены на расстоянии d1 = 1 см друг от друга. Площадь обкладок S = 50 см2. Конденсатор заряжается до напряжения U = 120 В и затем отсоединяется от источника электрической энергии.

Определить, какую надо совершить работу, если увеличить расстояние между пластинами до d2 = 10 см. Краевым эффектом можно пренебречь; другими словами, емкость конденсатора можно считать обратно пропорциональной расстоянию между обкладками.

Решение

Энергия заряженного плоского конденсатора равна

W 1 = C 1 ⋅ U 2 2 = ε 0 ⋅S d 1 ⋅ U 2 2 ,

где С1 — емкость до раздвижения обкладок.

Так как конденсатор отключен от источника, то при изменении расстояния между обкладками его заряд остается постоянным. Поэтому из~ соотношения

Q = C2·U2,

где C2 — емкость конденсатора после раздвижения обкладок, следует, что, так как C2 = ε0·S/d2 стало меньше в 10 раз (d2 увеличилось в 10 раз), то напряжение на конденсаторе U2 увеличилось в 10 раз, т. е. U2 = 10U.

Таким образом, энергия конденсатора после отключения и раздвижения обкладок на расстояние d2 будет больше первоначальной

W 2 = ε 0 ⋅S d 2 ⋅ U 2 2 2 = ε 0 ⋅S 10 d 1 ⋅ ( 10U ) 2 2 =10⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =10⋅ W 1 .

Увеличение энергии произошло за счет работы внешних сил, затраченной на раздвижение обкладок.

Таким образом, надо совершить работу, равную

W 2 − W 1 =9⋅ W 1 =9⋅ ε 0 ⋅S d 1 ⋅ U 2 2 =2,86⋅ 10 −7   Дж.

Задача 4. Для схемы (рис. 4) определить напряжение каждого конденсатора в двух случаях: при замкнутом и разомкнутом ключе К.

Даны: C1 = 30 мкФ; C2 = 20 мкФ; r1 = 100 Ом. r2 = 400 Ом. r3 = 600 Ом, U = 20 В.

Решение

Ключ К разомкнут. Конденсаторы соединены между собой последовательно; их ветвь находится под полным напряжением источника; напряжение распределяется между ними обратно пропорционально емкостям

U 1 = C 2 C 1 + C 2 ⋅U= 20⋅ 10 −6 30⋅ 10 −6 +20⋅ 10 −6 ⋅20=8  В; U 2 =U− U 1 =20−8=12  В.

Определить напряжение каждого конденсатора

Рис. 4

Ключ К замкнут. Через сопротивления r1 и r2 протекает ток

I= U r 1 + r 2 = 20 500 =0,04  А,

а через сопротивление r3 ток не протекает.

Поэтому точки c и d равнопотенциальны (φc = φd). Следовательно, напряжение между точками a и c (Uac = φa — φc) равно напряжению между точками a и d (Uad = φa — φd).

Таким образом, напряжение на первом конденсаторе равно падению напряжения на сопротивлении r1

UC1 = I·r1 = 0,04·100 = 4 В.

Аналогично напряжение на втором конденсаторе равно

UC2 = I·r2 = 0,04·400 = 16 В.

Задача 5. Определить напряжение на зажимах конденсаторов и их энергию после перевода рубильника из положения 1 в положение 2, показанное пунктиром на рис. 5, если U = 25 В; C1 = 5 мкФ; C2 = 120 мкФ. Конденсатор C2 предварительно не был заряжен.

Определить напряжение на зажимах конденсаторов и их энергию

Рис. 5

Решение

Когда рубильник находится в положении 1, то конденсатор C1 заряжен до напряжения U и его заряд равен

Q = C1·U = 5·10–6·25 = 125·10–6 Кл.

После перевода рубильника в положение 2, заряд Q распределяется между конденсаторами C1 и C2 (рис. 5). Обозначим эти заряды через Q’1 и Q’2.

На основании закона сохранения электричества имеем

Q = Q’1 + Q’2 = 125 10–6 Кл. (1)

По второму закону Кирхгофа имеем

0= U C1 − U C2 = Q ′ 1 C 1 − Q ′ 2 C 2 ,

или

Q ′ 1 5⋅ 10 −6 − Q ′ 2 120⋅ 10 −6 =0.   (2)

Решая уравнения (1) и (2), найдем

Q’1 = 5 10–6 Кл; Q’2 = 120 10–6 Кл.

Доставка свежих и аппетитных японских суши в Новороссийске – ям ям..

Напряжение на зажимах конденсаторов станет равным

U C1 = Q ′ 1 C 1 = U C2 = Q ′ 2 C 2 = 5⋅ 10 −6 5⋅ 10 −6 =1  В.

Энергия обоих конденсаторов будет равна

W= C 1 ⋅ U C1 2 2 + C 2 ⋅ U C2 2 2 =62,5⋅ 10 −6   Дж.

Подсчитаем энергию, которая была запасена в конденсаторе С1, при его подключении к источнику электрической энергии

W нач = C 1 ⋅U 2 = 5⋅ 10 −6 ⋅ 25 2 2 =1562,5⋅ 10 −6   Дж.

Как видим, имеет место большая разница в запасе энергии до и после переключения. Энергия, равная 1562,5·10–6 — 62,5·10–6 = 1500·10–6 Дж, израсходовалась на искру при переключении рубильника из положения 1 в положение 2 и на нагревание соединительных проводов при перетекании зарядов из конденсатора C1 в конденсатор C2 после перевода рубильника в положение 2.

Задача 6. Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2.

Емкости конденсаторов равны: C1 = 10 мкФ; C2 = 30 мкФ; C3 = 60 мкФ; напряжение U = 30 В, а э. д. с. E = 50 В.

Вычислить напряжение, которое окажется на каждом из конденсаторов схемы (рис. 6) после перевода рубильника К из положения 1 в положение 2

Рис. 6

Решение

Рубильник находится в положении 1. Заряд конденсатора C1 равен

Q1 = C1·U = 10·10–6·30 = 0,3·10–3 Кл.

В указанном положении рубильника конденсаторы C2 и C3 соединены последовательно друг с другом, поэтому их заряды равны: Q2 = Q3. Знаки зарядов показаны на рис. 6 отметками без кружков. По второму закону Кирхгофа имеем

E= U C2 + U C3 = Q 2 C 2 + Q 3 C 3 = Q 2 ⋅ C 2 + C 3 C 2 ⋅ C 3 ,

откуда

Q 2 = Q 3 = C 2 ⋅ C 3 C 2 + C 3 ⋅E= 30⋅ 10 −6 ⋅60⋅ 10 −6 90⋅ 10 −6 ⋅50=1⋅ 10 −3   Кл.

При переводе рубильника в положение 2 произойдет перераспределение зарядов. Произвольно задаемся новой полярностью зарядов на электродах (показана в кружках; предположена совпадающей с ранее имевшей место полярностью); соответствующие положительные направления напряжений на конденсаторах обозначены стрелками. Обозначим эти заряды через Q’1, Q’2 и Q’3. Для их определения составим уравнения на основании закона сохранения электрических зарядов и второго закона Кирхгофа.

Для узла a

Q’1 + Q’2 — Q’3 = Q1 + Q2 — Q3. (1)

Для контура 2ebda2

0= U ′ C1 − U ′ C2 = Q ′ 1 C 1 − Q ′ 2 C 1 .

Для контура bcadb

E= U ′ C2 − U ′ C3 = Q ′ 2 C 2 + Q ′ 3 C 3 .

Уравнения (1) — (3), после подстановки числовых значений величин, примут вид

Q’1 + Q’2 — Q’3 = 0,3·10–3; (4)

3Q’1 — Q’2 = 0; (5)

2Q’2 + Q’3 = 3·10–3. (6)

Решая совместно уравнения (4) — (6), получим

Q’1 = 0,33·10–3 Кл; Q’2 = 0,99·10–3 Кл; Q’3 = 1,02·10–3 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность обкладок соответствует предварительно выбранной.

Напряжения на конденсаторах после перевода рубильника будут равны

U C1 = Q ′ 1 C 1 = 0,33⋅ 10 −3 10⋅ 10 6 =33  В; U C2 = Q ′ 2 C 2 = 0,99⋅ 10 −3 30⋅ 10 6 =33  В; U C3 = Q ′ 3 C 3 = 1,02⋅ 10 −3 60⋅ 10 6 =17  В.

Задача 7. Определить заряд и напряжение конденсаторов, соединенных по схеме рис. 7, если C1 = 5 мкФ; C2 = 4 мкФ; C3 = 3 мкФ; э. д. с. источников E1 = 20 В и E2 = 5 В.

Определить заряд и напряжение конденсаторов, соединенных по схеме

Рис. 7

Решение

Составим систему уравнений на основании закона сохранения электричества и второго закона Кирхгофа, предварительно задавшись полярностью обкладок конденсаторов, показанной в кружках

− Q 1 + Q 2 − Q 3 =0; E 1 = U C1 − U C3 = Q 1 C 1 − Q 3 C 3 ; E 2 =− U C2 − U C3 =− Q 2 C 2 − Q 3 C 3 .

Подставляя сюда числовые значения и решая эту систему уравнений, получим, что Q1 = 50 мкКл; Q2 = 20 мкКл; Q3 = –30 мкКл.

Таким образом, истинная полярность зарядов на обкладках конденсаторов C1 и C2 соответствует выбранной, а у конденсатора C3 — противоположна выбранной.

Задача 8. Пять конденсаторов соединены по схеме рис. 3-22, а, емкости которых C1 = 2 мкФ; C2 = 3 мкФ; C3 = 5 мкФ; C4 = 1 мкФ; C5 = 2,4 мкФ.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов

Рис. 8

Индивидуалка Дана (34 лет) т.8 926 650-82-63 Москва, метро Сокол.

Определить эквивалентную емкость системы и напряжение на каждом из конденсаторов, если приложенное напряжение U = 10 В.

Решение

1-й способ. Звезду емкостей C1, C2 и C3 (рис. 8, а) преобразуем в эквивалентный треугольник емкостей (рис. 8, б)

C 12 = C 1 ⋅ C 2 C 1 + C 2 + C 3 =0,6  мкФ; C 13 = C 1 ⋅ C 3 C 1 + C 2 + C 3 =1,0  мкФ; C 23 = C 2 ⋅ C 3 C 1 + C 2 + C 3 =1,5  мкФ.

Емкости C12 и C5 оказываются соединенными параллельно друг другу и подключенными к точкам 1 и 2; их эквивалентная емкость

C6 = C12 + C5 = 3 мкФ.

Аналогично

C7 = C13 + C4 = 2 мкФ.

Схема принимает вид изображенный на рис. 8, в. Емкость схемы между точками а и b равняется

C ab = C 23 + C 6 ⋅ C 7 C 6 + C 7 =2,7  мкФ.

Вычислим напряжение на каждом из конденсаторов.

На конденсаторе C7 напряжение равно

U 7 = C 6 C 6 + C 7 ⋅U=6  В.

Таково же напряжение и на конденсаторах C4 и C13

U4 = U31 = 6 В.

Напряжение на конденсаторе C6 равно

U6 = U — U7 = 4 В;

U5 = U12 = 4 В.

Вычислим заряды

Q4 = C4·U4 = 6·10–6 Кл;

Q5 = C5·U5 = 9,6·10–6 Кл;

Q12 = C12·U12 = 6·10–6 Кл;

Q13 = C13·U31 = 2,4·10–6 Кл.

По закону сохранения электричества для узла 1 схем 8, а и б имеем

Q4 — Q1 + Q5 = –Q4 — Q13 + Q12 + Q5,

отсюда

Q1 = Q13 — Q12 = 3,6·10–6 Кл,

а напряжение на конденсаторе, емкостью C1 составляет

U 1 = Q 1 C 1 =1,8  В.

Далее находим напряжения и заряды на остальных конденсаторах

U31 = U1 + U3,

отсюда

U3 = U31 — U1 = 4,2 В;

Q3 = C3·U3 = 21·10–6 Кл,

также

U12 = U2 — U1 = 4,2 В,

откуда

U2 = U12 + U1 = 5,8 В;

Q2 = C2·U2 = 17,4·10–6 Кл.

Так как знаки всех зарядов оказались положительными, то фактическая полярность зарядов на обкладках совпадает с предварительно выбранной.

2-й способ. Выбрав положительные направления напряжений на конденсаторах (а тем самым и знаки зарядов на каждом из них) по формуле закона сохранения электричества (закона сохранения заряда) составляем два уравнения и по второму закону Кирхгофа три уравнения (рис. 8, а)

для узла 1

Q5 — Q1 — Q4 = 0; (1)

для узла О

Q1 + Q2 — Q3 = 0; (2)

для контура О13О

Q 1 C 1 − Q 4 C 4 + Q 3 C 3 =0;  (3)

для контура О12О

Q 1 C 1 + Q 5 C 5 − Q 2 C 2 =0;  (4)

для контура a3О2b

Q 3 C 3 + Q 2 C 2 =U.  (5)

Система уравнений (1) — (5) — содержит пять неизвестных: Q1, Q2, Q3, Q4 и Q5. Решив уравнения, найдем искомые заряды, а затем и напряжения на конденсаторах. При втором способе решения эквивалентную емкость схемы Сab можно найти из отношения

C ab = Q U ,

где Q = Q3 + Q4, или Q = Q2 + Q5.

Задача 9. В схеме рис. 9 найти распределение зарядов, если E1 = 20 В; E2 = 7 В; C1 = 7 мкФ; C2 = 1 мкФ; C3 = 3 мкФ; C4 = 4 мкФ; C5 = C6 = 5 мкФ.

В схеме найти распределение зарядов

Рис. 9

Решение

При выбранном распределении зарядов (в кружках), как показано на схеме, система уравнений будет иметь вид:

для узла а

Q1 + Q2 + Q3 = 0;

для узла b

Q3 — Q4 — Q5 = 0;

для узла c

Q1 + Q4 + Q6 = 0;

для контура afcba

E 1 = U C1 + U C4 − U C3 = Q 1 C 1 + Q 4 C 4 − Q 3 C 3 ;

ля контура gdbag

E 2 = U C5 − U C3 + U C2 = Q 5 C 5 − Q 3 C 3 + Q 2 C 2 ;

для контура cbdc

0= U C4 − U C5 − U C6 = Q 4 C 4 − Q 5 C 5 − Q 6 C 6 .

Подставляя сюда числовые значения и решая полученную систему шести уравнений, найдем искомые заряды

Q1 = 35 мкКл; Q2 = –5 мкКл; Q3 = –30 мкКл;

Q4 = 20 мкКл; Q5 = 10 мкКл; Q6 = 15 мкКл.

Таким образом, истинные знаки зарядов Q1, Q4, Q5 и Q6 соответствуют выбранным, а знаки Q2 и Q3 противоположны выбранным.

Фактическое расположение знаков зарядов на конденсаторах дано не в кружках.

Задача 10. Определить заряд и энергию каждого конденсатора в схеме (рис. 10). Данные схемы: C1 = 6 мкФ; C2 = 2 мкФ; C3 = 3 мкФ; r1 = 500 Ом; r2 = 400 Ом; U = 45 В.

Определить заряд и энергию каждого конденсатора в схеме

Рис. 10

Решение

Через сопротивления протекает ток

I= U r 1 + r 2 =0,05  А.

Задавшись полярностью зарядов на обкладках конденсаторов, составим систему уравнений:

− Q 1 + Q 2 + Q 3 =0; U= U C1 + U C2 = Q 1 C 1 + Q 2 C 2 ; I⋅ r 1 = U C1 + U C3 = Q 1 C 1 + Q 3 C 3 ,

или

Q 1 = Q 2 + Q 3 ; 45= Q 1 6⋅ 10 −6 + Q 2 2⋅ 10 −6 ; 25= Q 1 6⋅ 10 −6 + Q 3 3⋅ 10 −6 .

Решив эту систему уравнений, найдем, что

Q1 = 90 мкКл; Q2 = 60 мкКл; Q3 = 30 мкКл.


последовательное соединение конденсаторов,
параллельное соединение конденсаторов,
Расчет цепи конденсаторов,
Конденсатор в цепи постоянного тока,
Цепи с конденсаторами

Комментарии

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Для школьников (для лучшего понимания физики).

Ранее было много сказано о проводниках, диэлектриках, конденсаторах. Статьи, посвящённые им, и ссылки на эти статьи можно найти в конце занятий 45, 58 и 70.

Сейчас же вспомним необходимые нам моменты, обратив особое внимание на понятие “конденсатор”, “ёмкость конденсатора”. Затем рассмотрим задачи на работу конденсаторов.

И проводники, и диэлектрики одинаково необходимы в народном хозяйстве. Так, металлические проводники (алюминий, медь, серебро и др.) применяются для изготовления проводов, по которым передаётся ток (направленное движение свободных электронов) от источника тока до потребителя.

Эти провода должны быть изолированы, иначе ток (движущиеся электроны) уйдёт в землю. Конденсатор тоже состоит из проводников и диэлектрика.

Конденсаторы нашли широчайшее распространение прежде всего из-за их способности при зарядке от источника постоянного тока накапливать на себе (конденсировать) значительные электрические заряды.

При разрядке конденсатор отдаёт в цепь накопленный заряд, то есть при разрядке он является своего рода источником электрической энергии, подобно аккумулятору. Только аккумулятор отдаёт свою энергию постепенно, а конденсатор отдаёт накопленную электрическую энергию в виде импульса тока очень быстро (мгновенно). На практике это используется, например, при сварке, раньше в виде вспышки при фотографировании и т. д.

Прежде поговорим об отдельных заряженных проводниках, а потом о системах заряженных проводников, то есть о конденсаторах.

Ёмкость уединённого проводника

Проводники (металлы) имеют кристаллическое строение – в узлах их кристаллической решётки находятся положительно заряженные ионы металла, а между ними двигается очень большое количество свободных (оторвавшихся от своих атомов) электронов. Эти электроны легко перемещаются внутри металла.

В незаряженном проводнике содержится одинаковое количество положительных и отрицательных зарядов

Часть свободных электронов при контакте проводника с другими телами легко может уйти с проводника, тогда проводник зарядится положительно. Наоборот, если свободные электроны пришли на проводник, то он зарядится отрицательно.

На рисунке показан проводник произвольной формы, заряженный положительно.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Избыточные заряды (в данном случае положительные) распределяются по поверхности проводника с некоторой плотностью (плотность – это отношение заряда к площади, на которой он находится). Плотность заряда максимальна на выпуклых участках поверхности (область 1) и минимальна на вогнутых областях поверхности (область 2).

Избыточные заряды распределяются всегда по поверхности проводника из-за их взаимного отталкивания.

Заряженный проводник создаёт вокруг электрическое поле, которое графически изображается силовыми линиями (на рисунке показана только одна силовая линия).

Касательная к силовой линии даёт направление вектора напряжённости Е электрического поля в данной точке (напряжённость поля – силовая характеристика электрического поля). В нашем примере силовые линии начинаются на заряженном проводнике (на “плюсе”) и уходят в бесконечность.

Направлены силовые линии под прямым углом к поверхности проводника, что является условием равновесия зарядов, так как иначе они пришли бы в движение.

Каждая точка электрического поля наряду с напряжённостью Е характеризуется ещё потенциалом (энергетическая характеристика).

Под потенциалом точки электрического поля понимается та работа, которую надо совершить, чтобы перенести единичный заряд из бесконечности (где потенциал принимается равным нулю) в точку поля. Понятно, что чем ближе расположена точка поля к заряженному проводнику, тем выше её потенциал. Потенциал точек на поверхности проводника на рисунке обозначен через

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Во всех точках поверхности заряженного проводника потенциал имеет одинаковое значение (поверхность проводника является эквипотенциальной).

Во всех точках внутри проводника потенциал имеет такое же значение, то есть внутри проводника нет разности потенциалов между точками.

Это значит, что напряжённость электрического поля внутри проводника равна нулю (напряжённость Е связана с разностью потенциалов).

Итак, мы имеем проводник, характеризующийся зарядом q и потенциалом.

Если проводнику сообщить новую порцию зарядов, то эта дополнительная порция зарядов распределится по его поверхности подобным же образом (как показано на рисунке выше).

Если заряд проводника увеличится, например, в 2 раза, то его потенциал тоже увеличится в 2 раза. Отношение же заряда проводника к его потенциалу при этом не меняется, значит это отношение является характеристикой данного проводника. Эту характеристику назвали электрической ёмкостью С проводника.

Итак, ёмкость уединённого проводника не зависит от заряда проводника, не зависит от его потенциала, а определяется их отношением.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Отсюда следует определение ёмкости уединённого проводника:

Ёмкость уединённого проводника есть физическая величина, численно равная заряду, который необходимо сообщить проводнику для того, чтобы изменить его потенциал на единицу потенциала.

Ёмкость уединённого проводника зависит от его размеров и формы и не зависит от материала проводника и его агрегатного состояния.

Ёмкость уединённого проводника прямо пропорциональна диэлектрической проницаемости среды, в которой он находится.

Так, для проводника в виде уединённого шара ёмкость находится по формуле

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Заряженный проводник обладает энергией, которая может быть найдена по формулам

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Задача.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Говорить об ёмкости отдельного заряженного проводника можно только в том случае, если вблизи нет других тел.

Наличие другого тела изменяет ёмкость заряженного проводника, так как его потенциал зависит от электрического поля, создаваемого индуцированными зарядами второго проводника (индуцированные заряды на втором проводнике тоже создают электрическое поле)..

Уединённый проводник обладает малой ёмкостью (может накопить на себе малый электрический заряд). На практике же нужны устройства, которые бы при невысоком потенциале (относительно окружающих тел) могли бы накапливать (конденсировать) на себе значительные заряды. Такие устройства называются конденсаторами.

Ёмкость конденсатора

Конденсатор – это устройство для накопления электрических зарядов.

В основу работы конденсаторов положен тот факт, что электроёмкость заряженного тела возрастает при приближении к нему других тел из-за явления электростатической индукции.

Представим, что этим другим телом является незаряженный проводник. Тогда на ближней поверхности незаряженного проводника 2 появятся индуцированные (см. рисунок ниже) заряды по знаку противоположные заряду проводника, создающего электрическое поле (в данном примере электрическое поле создаёт отрицательно заряженный проводник 1).

На дальней же поверхности поднесённого проводника 2 появятся индуцированные заряды одного знака с зарядом проводника, создающего поле.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Заряды, индуцированные на дальнем конце проводника 2, не окажут особого влияния на проводник 1 из-за большего расстояния до него. К тому же если дальний конец проводника 2 соединить с землёй (заземлить), то одноимённые заряды вообще уйдут с проводника в землю.

Продемонстрируем сказанное следующим рисунком

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

На последнем рисунке показано, что на проводнике, имеющем форму шара, находящемся вблизи заряда +Q (или заряженного проводника с таким зарядом) на ближней области поверхности появляется отрицательный заряд -q

Дальнюю область поверхность шара соединили с землёй и индуцированный на ней положительный заряд ушёл в землю (на самом деле положительный заряд с проводника не может уйти в землю, так как положительно заряженными являются ионы проводника. На самом деле к этой области проводника от земли придут электроны и нейтрализуют положительные заряды заземлённой области проводника).

Таким образом, при поднесении к заряженному проводнику 1 незаряженного проводника 2 потенциал проводника 1 изменяется на величину потенциала, возникающего в проводнике 2 (между проводниками возникает разность потенциалов).

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Теперь два проводника составляют систему, называемую конденсатором, ёмкость которого, называемая взаимной ёмкостью или ёмкостью конденсатора, равна

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Разность потенциалов, возникшая между проводниками, называется ещё напряжением U.

Если проводники 1 и 2 имеют вид пластин, то конденсатор называется плоским конденсатором (он изображён на рисунке ниже):

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Таким образом, плоский конденсатор представляет собой совокупность двух проводящих пластин, заряды которых одинаковы по модулю и противоположны по знаку.

Между проводящими пластинами, называемыми обкладками конденсатора, существует электрическое поле Е, которое при малом расстоянии между обкладками можно считать однородным. Только на краях обкладок силовые линии искривляются (краевой эффект).

В пространстве между обкладками может находиться воздух или создаваться вакуум, или может находиться другой диэлектрик.

Для характеристики способности конденсатора накапливать заряд вводится понятие электрической ёмкости С конденсатора.

Электрическая ёмкость конденсатора – это физическая величина, равная отношению заряда одной из обкладок конденсатора к разности потенциалов (напряжению) между обкладками при их заряжении зарядами +q и -q .

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Заряд q и напряжение U конденсатора зависят друг от друга. Ёмкость же C конденсатора не зависит ни от его заряда, ни от его напряжения – она только численно равна отношению заряда к напряжению.

Можно дать ещё такое определение ёмкости конденсатора:

Ёмкостью конденсатора (взаимной ёмкостью) называется физическая величина численно равная заряду q , который надо перенести с одного проводника на другой для того, чтобы изменить разность потенциалов между ними на единицу потенциала.

Величина ёмкости С плоского конденсатора определяется лишь его геометрией – площадью обкладок S и расстоянием d между ними.

Ёмкость плоского конденсатора зависит от диэлектрика между обкладками, от его диэлектрической проницаемости

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

то есть ёмкость плоского конденсатора пропорциональна диэлектрической проницаемости диэлектрика (диэлектрическая проницаемость воздуха и вакуума равна единице).

Так, если вместо воздуха между обкладками поместить диэлектрик, имеющий большую диэлектрическую проницаемость

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

то емкость конденсатора увеличится во столько же раз:

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Такое выражение для ёмкости конденсатора получается через зависимость между напряжением U и напряжённостью Е электрического поля конденсатора (выражение для Е через плотность заряда получено в Занятии 48):

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Чем меньше расстояние между обкладками, тем точнее находится ёмкость плоского конденсатора по этой формуле.

Заряженный конденсатор обладает энергией, которую можно найти воспользовавшись следующей записью:

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Почему диэлектрик повышает ёмкость конденсатора?

Чтобы ответить на этот вопрос надо вспомнить содержание статьи, посвящённой рассмотрению явления поляризации диэлектрика.

Здесь же приведу одну формулу и один рисунок из этой статьи позволяющих объяснить явление поляризации диэлектрика в электрическом поле конденсатора и причину увеличения ёмкости конденсатора, когда в него вносят диэлектрик.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Здесь Ео – напряжённость электрического поля, когда между обкладками конденсатора находится воздух; Е – напряжённость поля, когда всё пространство между обкладками заполнено диэлектриком; Есв – электрическое поле, создаваемое связанными (поляризационными) зарядами диэлектрика.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Диэлектрическая проницаемость диэлектрика указывает на степень его поляризации в электрическом поле, показывает во сколько раз диэлектрик уменьшает напряжённость электрического поля Ео (поля конденсатора)

Приведённая формула и рисунок говорят о том, что под действием электрического поля Ео конденсатора происходит поляризация диэлектрика.

А именно, связанные отрицательные заряды диэлектрика смещаются в пределах молекулы против поля, а положительные связанные заряды смещаются по полю.

Внутри диэлектрика связанные заряды компенсируют друг друга. На границе же диэлектрика они не скомпенсированы, здесь связанные (поляризационные) заряды имеют некоторую плотность. создавая своё электрическое поле Есв.

Поле Есв связанных зарядов направленное навстречу внешнему электрическому полю Ео.

Результирующее поле Е в диэлектрике, заполняющем объём между обкладками конденсатора, стало меньше Ео.

Тогда уменьшается и напряжение между обкладками, так как U=E d.

Итак, диэлектрик, уменьшив напряжённость электрического поля конденсатора, уменьшил и напряжение между обкладками конденсатора. Это подтверждается и опытом.

Представим себе такую картину. Взяли воздушный конденсатор, зарядили его до заряда q от источника постоянного напряжения и отключили от источника.

Присоединив такой заряженный конденсатор к электрометру, измерили напряжение между его обкладками.

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Когда между обкладками поместили пластину из диэлектрика, то электрометр показал уменьшение напряжения конденсатора, что соответствует рассмотренному выше, то есть напряжение уменьшилось из-за поляризации диэлектрика.

Запомним, что при отключении конденсатора от источника его заряд не меняется – есть в конденсаторе диэлектрик или нет заряд конденсатора остаётся таким же.

Тогда из определения ёмкости конденсатора, выделенного выше жирным шрифтом, а именно, что ёмкость конденсатора численно равна отношению заряда на обкладке к напряжению между обкладками

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

следует, что если заряд конденсатора не изменился (числитель дроби), а напряжение конденсатора уменьшилось (знаменатель дроби), то ёмкость конденсатора увеличилась.

Такое определение ёмкости конденсатора (записанное жирным шрифтом выше) связано с взаимодействием, влиянием заряженных обкладок друг на друга.

Теперь можем ответить на вопрос: почему диэлектрик увеличивает ёмкость конденсатора?

Диэлектрик, находясь в электрическом поле конденсатора, поляризуется и этим уменьшает напряжённость электрического поля конденсатора.и уменьшает напряжение между обкладками. Так как ёмкость конденсатора, по определению, численно равна отношению заряда к напряжению, то при одном и том же заряде на обкладках и уменьшении напряжения между ними, ёмкость конденсатора возрастает.

Ещё можно так сказать, что при сравнительно низком напряжении, которое получается благодаря диэлектрику, конденсатор способен накапливать значительные заряды. Это важно, так как при высоком напряжении может произойти пробой диэлектрика.

Задачи

Задача 1.

Воздушный конденсатор (диэлектриком является воздух) ёмкостью С заряжен до напряжения U. Какую работу надо совершить, чтобы увеличить расстояние между обкладками в 2 раза?

Решение.

Работа, которую надо совершить, чтобы увеличить расстояние между обкладками конденсатора в 2 раза, найдётся через изменение энергии конденсатора:

А = Wк – Wн

Начальная энергия Wн конденсатора (до раздвигания обкладок):

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Конечная энергия конденсатора (когда расстояние между обкладками увеличилось в 2 раза):

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Так как расстояние между обкладками увеличилось в 2 раза, то согласно формуле для ёмкости конденсатора

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

ёмкость конденсатора уменьшится в 2 раза, т. е. Ск = С/2.

Так как конденсатор заряжен и отключен от источника, то заряд на обкладках при раздвигании пластин не меняется.

Но при раздвигании обкладок ёмкость конденсатора уменьшилась в 2 раза Тогда, согласно определению ёмкости конденсатора, напряжение на конденсаторе увеличится в 2 раза: Uк = 2U.

Подставив Ск и Uк в формулу для Wк, получим, что

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Тогда работа, которую надо совершить, чтобы увеличить расстояние между обкладками в 2 раза равна А = Wк – Wн и равна:

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Таким образом, нами получена формула для нахождения совершённой работы, она выражена через известные значения ёмкости и напряжения между обкладками конденсатора.

Задача 2

Весь объём плоского конденсатора заполнен пластиной из диэлектрика и подключен к источнику постоянного напряжения U. Под действием внешней силы диэлектрик с диэлектрической проницаемостью “эпсилон” вытягивается из конденсатора. Рассмотреть возникающие при этом энергетические превращения в системе.

Решение.

При вытягивании диэлектрической пластины из конденсатора, ёмкость С конденсатора уменьшается в “эпсилон” раз.

При этом энергия W конденсатора при постоянном напряжении U, согласно формуле

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

тоже уменьшается в “эпсилон” раз.

Уменьшение энергии W конденсатора при совершении положительной работы А внешней силы не противоречит закону сохранения энергии. Дело в том, что здесь надо учитывать не только конденсатор, но и источник тока, составляющих одну систему.

Что же происходит в источнике при вытягивании диэлектрической пластины из конденсатора?

С уменьшением ёмкости конденсатора, согласно формуле C = q / U уменьшается и заряд конденсатора, так как U есть постоянная величина.

Уменьшение заряда конденсатора на

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

сопровождается прохождением этого заряда через источник в обратном направлении (источник совершает отрицательную работу). Если источником является аккумулятор, то он при этом заряжается.

Используя закон сохранения энергии, можно найти, какую работу совершает внешняя сила при вытягивании диэлектрика из конденсатора.

Но прежде покажем, что в цепи, где конденсатор подсоединён к источнику питания, при любых процессах работа источника равна удвоенному изменению энергии конденсатора.

При указанном изменении заряда конденсатора энергия конденсатора изменяется на

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Источник питания при этом совершает работу

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Отсюда следует, что работа источника равна удвоенному изменению энергии конденсатора

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Теперь составим уравнение в согласии с законом сохранения энергии

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

отсюда можно найти работу, совершённую внешней силой при вытягивании диэлектрика из конденсатора

Ёмкость уединённого проводника. Ёмкость конденсатора. Почему диэлектрик повышает ёмкость конденсатора?

Так как энергия конденсатора уменьшается (изменение энергии есть отрицательная величина), то внешняя сила совершает положительную работу.

Записанное выше уравнение, согласующееся с законом сохранения энергии, позволяет сделать вывод, что при удалении диэлектрической пластины из конденсатора источник совершает отрицательную работуработу (даёт ток обратного направления) за счёт уменьшения энергии конденсатора (его частичной разрядки) и за счёт работы внешней силы.

Продолжение темы с решением задач смотрите в следующей статье.

К.В. Рулёва, к. ф.-м. н., доцент. Подписывайтесь на канал. Ставьте лайки. Спасибо.

Для школьников предлагаются подборки материала по темам:

!. Механика. Кинематика. Равномерное прямолинейное движение.

2. Равнопеременное прямолинейное движение.

3. Движение тела, брошенного под углом к горизонту.

Предыдущая запись: Вектор электрического смещения. Замкнутость цепи переменного тока с конденсатором током смещения.

Следующая запись: Конденсаторы в электрических цепях постоянного тока.

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в конце Занятия 45 .

Ссылки на занятия (статьи), начиная с теплового действия тока, даны в конце Занятия 58.

Ссылки на занятия, начиная с переменного тока, даны в конце Занятия 70 .

Содержание

  1. Что такое конденсатор и для чего он нужен в схемах
  2. Общая концепция
  3. Принцип работы
  4. Конденсатор и цепь постоянного тока
  5. Цепь с переменным током
  6. Назначение и функции конденсаторов
  7. Примеры использования
  8. Фазовые искажения
  9. Как работает конденсатор и катушка в цепи переменного тока
  10. Особенности работы конденсатора
  11. Формула ёмкости
  12. Особенности электроцепи с емкостью и индуктивностью
  13. Виды конденсаторов
  14. Различные характеристики конденсаторов
  15. Где используются конденсаторы
  16. Видео по теме

Что такое конденсатор и для чего он нужен в схемах

Конденсатор — это вторая по популярности радиодеталь после резистора. Он важен и незаменим, участвует в формировании сигналов и фильтрации питания. А ведь изначально, самым первым конденсатором была лейденская банка, которая была изобретена в 1745 году. С тех пор конденсаторы стали неотъемлемой частью электроники.

Общая концепция

Конденсатор состоит из двух проводящих обкладок и диэлектрика между ними. И все, больше ничего. С виду простая радиодеталь, но работает на высоких и низких частотах по-разному.

Обозначается на схеме двумя параллельными линиями.

Принцип работы

Эта радиодеталь хорошо демонстрирует явление электростатической индукции. Разберем на примере.

Если подключить к конденсатору постоянный источник тока, то в начальный момент времени ток начнет скапливаться на обкладках конденсатора. Это происходит за счет электростатической индукции. Сопротивление практически равно нулю.


Электрическое поле за счет электростатической индукции притягивает разноименные заряды на две противоположные обкладки. Это свойство материи называется емкостью. Емкость есть у всех материалов. И даже у диэлектриков, но у проводников она значительно больше. Поэтому обкладки конденсатора выполнены из проводника.

Чем больше емкость — тем больше может накопиться зарядов на обкладках конденсатора, т.е. электрического тока.

Основное свойство конденсатора — это емкость. Она зависит от площади пластин, расстояния между ними и материала диэлектрика, которым заполняют пространство между обкладками.

Когда на обкладках не останется места для электрического тока, то и ток в цепи прекратится. Электростатическая индукция пропадает. Теперь остается электрическое поле, которое держит заряды на своих обкладках и не отпускает их. А электрическому току некуда деваться. Напряжение на конденсаторе станет равным ЭДС (напряжению) источнику тока.

А что будет, если повысить ЭДС (напряжение) источника тока? Электрическое поле начнет все сильнее давить на диэлектрик, поскольку места на обкладках уже нет. Но если напряжение на конденсаторе превысит допустимые знания, то диэлектрик пробьет. И конденсатор станет проводником, заряды освободятся, и ток пойдет по цепи. Как тогда использовать конденсатор для высоких напряжений? Можно увеличить размер диэлектрика и расстояние между обкладками, но при этом уменьшается емкость детали.

Между обкладками находится диэлектрик, который препятствует прохождению постоянного тока. Это именно барьер для постоянного тока. Потому, что постоянный ток создает и постоянное напряжение. А постоянное напряжение может создавать электростатическую индукцию только при замыкании цепи, то есть, когда конденсатор заряжается.

Так конденсатор может сохранять энергию до тех пор, пока к нему не подключится потребитель.

Конденсатор и цепь постоянного тока

Добавим в схему лампочку. Она загорится только во время зарядки.

Еще одна важная особенность — когда происходит процесс зарядки током, то напряжение отстает от тока. Напряжение как бы догоняет ток, поскольку сопротивление нарастает плавно, по мере зарядки. Электрические зарядам нужно время, чтобы переместиться к обкладкам конденсатора. Так называется время зарядки. Оно зависит от емкости, частоты и напряжения.

Лампочка затухает при полной зарядке.

Постоянный электрический ток не проходит через конденсатор только после его зарядки.

Цепь с переменным током

А что если поменять полярность на источнике тока? Тогда конденсатор начнет разряжаться, и снова заряжаться, поскольку меняется полярность источника.


Электростатическая индукция возникает постоянно, если электрический ток переменный. Каждый раз, когда ток начинает менять свое направление, начинается процесс зарядки и разрядки.


Поэтому, конденсатор пропускает переменный электрический ток.

Чем выше частота — тем меньше реактивное (емкостное) сопротивление конденсатора.

Назначение и функции конденсаторов

Конденсатор играет огромную роль как в аналоговой, так и цифровой технике. Они бывают электролитическими и керамическими, и отличаются своими свойствами, но не общей концепцией. Примеры использования:

  • Фильтрует высокочастотные помехи;
  • Уменьшает и сглаживает пульсации;
  • Разделяет сигнал на постоянные и переменные составляющие;
  • Накапливает энергию;
  • Может использоваться как источник опорного напряжения;
  • Создает резонанс с катушкой индуктивности для усиления сигнала.

Примеры использования

В усилителях обычно используются для защиты сабвуферов, фильтрации питания, термостабилизации и разделение постоянной составляющей от переменной. А электролитические в автономных схемах с микроконтроллерами могут долго обеспечивать питание за счет большой емкости.

В данной схеме транзистор VT1 постоянно открыт, чтобы усиливать звук без искажений. Но если вход замнется или на него поступи постоянный ток, то транзистор откроется, перейдет в насыщение и перегреется. Чтобы этого не допустить, нужен конденсатор. С1 позволяет отделить постоянную оставляющую от переменной. Переменный сигнал легко проходит на базу транзистора, а постоянный сигнал не проходит.

Чтобы схема качественно работала, обязательно хорошее питание. Когда схема в пиковые значения потребляет больше тока, то это всегда сильная нагрузка на источник питания. С3 фильтрует помехи по питанию и помогает снизить нагрузку. Чем больше емкость — тем лучше звук, но до определенных значений, все зависит от схемы.

А в блоках питания используется тот же принцип, как и в предыдущей схеме по питанию, но здесь емкость нужна гораздо больше. На этой схеме емкость элеткролита может быть как 1000 мкФ, так и 10 000 мкФ.

Еще на диодный мост можно параллельно включить керамические конденсаторы, которые будут шунтировать схему от высокочастотных наводок и шума сети 220 В.

Фазовые искажения

Конденсатор может искажать переменный сигнал по фазе. Это происходит из-за неверного расчета емкости, общего сопротивления и взаимодействия с другими радиодеталями. Не стоит забывать и о том, что любая радиодеталь имеет как реактивное, так и активное сопротивление.

Источник

Как работает конденсатор и катушка в цепи переменного тока

Работа многих электрических схем строится на использовании конденсаторов. Основной особенностью этих радиоэлементов является то, что они хорошо проводят переменный ток, но не пропускают постоянный.

Особенности работы конденсатора

Радиодеталь представляет собой две пластины, к которым прикреплены металлические выводы. Пластины не соприкасаются между собой. Обычно между ними проложен слой изолятора. Постоянный электроток через конденсатор проходить не может, так как нет контакта между проводниками, но для переменного он не является препятствием.

Когда конденсатор включен в цепь переменного тока, частота напряжения меняется по закону синусоиды. Сначала электродвижущая сила растёт до своего максимума. После этого она уменьшается до нуля, а затем переходит в отрицательную область, где постепенно возрастает до амплитуды, взятой со знаком минус. Затем отрицательная ЭДС уменьшается по абсолютной величине до нуля и начинает возрастать в положительной области до наибольшего значения. Описанный цикл изменений повторяется снова и снова.

Когда конденсатор работает в цепи переменного тока, в нем циклически происходят следующие процессы:

  • При возрастании амплитуды от нулевого значения до максимального происходит накопление заряда. Пластины накапливают равные по абсолютной величине, но противоположные по знаку заряды.
  • При уменьшении до нуля накопление прекращается, заряд уменьшается, так как начинает стекать с пластин конденсатора.
  • Когда напряжение меняется на противоположное, на пластины начинают поступать заряды, которые имеют знаки, противоположные тем, что были раньше.
  • Как только ЭДС достигнет максимального отрицательного значения и станет уменьшаться по абсолютной величине, начнётся разрядка конденсатора.

Описанный здесь цикл повторится с началом возрастания ЭДС. Он будет осуществляться до тех пор, пока переменный ток не будет отключён.

Формула ёмкости

Одна из самых важных характеристик конденсатора — ёмкость. Её обозначают символом C. Несмотря на то, что контакта между пластинами нет, ток будет идти через конденсатор в цепи переменного тока то к пластинам, то от них. Это обусловлено циклически происходящими процессами зарядки и разрядки конденсатора.

Величина ёмкости характеризует способность конденсатора накапливать заряд при поступлении на обкладки определённой разности потенциалов. Ее можно найти по формуле:

Используя эту формулу наряду с законом изменения напряжения, можно узнать силу тока, возникающего в процессе зарядки или разрядки пластин конденсатора в цепи переменного тока. Но для этого необходимо сделать соответствующие преобразования.

Сначала находим напряжение, возникающее на конденсаторе в цепи переменного тока, воспользовавшись формулами для определения ёмкости и разности потенциалов. После преобразований получаем выражение:

Из него находим величину заряда:

Теперь можно получить выражение для электротока в цепи с конденсатором:

Надо сказать, что при выводе формулы для нахождения силы электрического тока были использованы следующие приемы:

  • От выражения для заряда была взята производная по времени.
  • Затем было выполнено эквивалентное тригонометрическое преобразование.
  • Um соответствует максимальному значению амплитуды колебаний электронапряжения.

Полученное выражение позволяет узнать ток зарядки и разрядки конденсатора в любой момент. Изменения тока опережают напряжение на половину «пи». Величина тока будет максимальной при нулевом напряжении. И, наоборот, значение тока станет нулевым, когда напряжение достигнет максимума.

Для определения ёмкости может быть использована еще такая формула:

Как видно из формулы, ёмкость конденсатора увеличивается при увеличении площади пластин и уменьшении расстояния между ними.

Емкостное сопротивление — ещё одна важная характеристика конденсатора. Его можно найти по формуле:

Если взять формулу для определения амплитуды электротока:

И подставить в нее значение ХС, то получим:

После изучения данной формулы становится понятно, что емкостное и активное сопротивление из закона Ома играют одну и ту же роль. Поэтому емкостное можно считать сопротивлением конденсатора переменному электротоку.

Пример использования формул для решения простых задач по нахождению емкости конденсатора можно увидеть на изображении ниже:

Особенности электроцепи с емкостью и индуктивностью

Рассматривая ранее цепь переменного тока с включенным конденсатором, мы могли видеть, что частота колебаний электротока на конденсаторе опережает частоту колебаний электронапряжения на π/2. При включении катушки индуктивности наблюдается обратное явление, то есть, электроток отстает от электронапряжения на π/2. Его амплитуда определяется по формуле:

Знаменатель в данной формуле представляет собой выражение, используемое для определения индуктивного сопротивления:

В итоге получаем формулу для силы электротока:

Индуктивное сопротивление, как и емкостное, зависит от частоты электротока. Поэтому катушка, включенная в постоянную цепь, будет иметь нулевое индуктивное сопротивление.

Конденсатор и катушка индуктивности в цепи переменного тока образуют, так называемый, колебательный контур. Его колебания определяются по формуле:

При вынужденных колебаниях сила элетротока достигает максимума, если колебания электронапряжения и самого контура становятся равными:

Виды конденсаторов

На данный момент существует огромный выбор конденсаторов:

  • Наиболее распространены радиодетали с двумя обкладками, но их может быть и больше.
  • Плоский конденсатор состоит из двух пластин, между которыми расположен тонкий слой диэлектрика. Его толщина должна быть небольшой по сравнению с размерами пластин.
  • В цилиндрическом конденсаторе обе пластины имеют цилиндрическую форму. Одна из них находится внутри другой. Между цилиндрами имеется равномерный тонкий промежуток, который заполнен диэлектриком.
  • Существуют сферические конденсаторы, обкладки которых представляют собой сферы, одна из которых находится внутри другой.

Конденсаторы различаются в зависимости от вида диэлектрика. В частности, может использоваться не только твёрдый, но и жидкий или газообразный диэлектрик. Есть также вакуумные конденсаторы, в которых внутри между обкладками находится вакуум.

Существуют оксидно-полупроводниковые конденсаторы. Один из их электродов является анодом. Диэлектриком выступает покрывающий его оксид. Катодом является полупроводниковый слой, который наносится на слой оксида.

Для изолирующего слоя могут использоваться как органические, так и неорганические материалы. В первом случае применяются бумажные или плёночные материалы. Неорганический диэлектрик выполняется из керамики, стекла, слюды или неорганических синтетических плёнок. Есть и такие, внутри которых содержится электролитический раствор. Конденсаторы с подобным диэлектриком характеризуются относительно высокой ёмкостью.

Еще одна разновидность конденсаторов — подстроечные. Их использование предоставляет возможность изменять значение емкости в определенных пределах, чтобы деталь могла работать наиболее эффективно.

Наряду с конденсаторами общего назначения существуют и те, которые предназначены для специального применения. Примерами таких видов являются дозиметрические, высоковольтные, пусковые, импульсные, помехоподавляющие и некоторые другие радиоэлементы.

Различные характеристики конденсаторов

Основной характеристикой конденсатора является ёмкость. Но при выборе необходимо учитывать и другие.

Для каждого конденсатора существует номинальное напряжение. Если эксплуатация детали будет осуществляться исключительно при таком значении, производитель гарантирует качественную работу в течение всего срока службы.

При увеличении подаваемого на пластины напряжения заряд будет увеличиваться. Если разность потенциалов станет слишком большой, произойдёт пробой радиодетали. В результате между обкладками пройдёт искра, а сам конденсатор станет неисправной. Конденсатор в цепи переменного тока необходимо эксплуатировать в строго заданных параметрах. Иначе срок его эксплуатации существенно сокращается.

Ещё одна характеристика — удельная ёмкость. Она равна отношению ёмкости и массы используемого диэлектрика. С её повышением улучшаются характеристики, но возрастает вероятность пробоя.

В формуле для определения ёмкости используется понятие диэлектрической проницаемости диэлектрика, который находится между пластинами. Эта характеристика определяет то, насколько сильно данное вещество ослабляет влияние электрического поля между обкладками.

В диэлектриках электроны сильно привязаны к ядрам атомов, из-за чего они не перемещаются под действием электрического поля и не образуют электрический ток. Однако при воздействии электрического поля осуществляется поляризация атомов за счет смещения электронов внутри них. Следствием этого является ослабление электрического поля. Его величина зависит от того, какое вещество используется в качестве диэлектрика. Возмущение электрического поля, создаваемое диэлектриком, ослабляет то, которое было приложено к пластинам, и препятствует притоку заряда к пластинам.

Где используются конденсаторы

Радиодетали этого вида находят применение в разных сферах деятельности современного человека:

  • Конденсатор и катушка индуктивности в цепи переменного тока образуют колебательный контур, его используют во многих устройствах.
  • Конденсаторы меняют свои характеристики в зависимости от температуры или влажности окружающей среды, поэтому применяются в самых разных измерительных приборах.
  • Еще одна сфера применения— блоки питания.
  • Используются в цепях с преобразователями переменного тока в постоянный.
  • Применяются в частотных фильтрах.
  • Без конденсатора трудно представить усилитель.
  • Конденсатор является важным элементом для процессоров и других микросхем.

Здесь приведены только некоторые варианты использования. На самом деле их гораздо больше.

Видео по теме

Источник

как, зная емкость аккумуляторов и мощность потребляемую девайсом посчитать, сколько он будет работать от них?



Профи

(730),
закрыт



16 лет назад

Николай

Мастер

(1790)


16 лет назад

t = C*U/P
t = время в часах
С = ёмкость в Ампер часах (миллиамперчасах/1000)
U = напряжение источника
P = мощность девайса в ваттах
Правда в реальности будет чуть меньше, вследствии наличия у батареи внутреннего сопротивления (которое зависит от типа батареи), т.е. часть энергии будет расходоваться на нагрев батарейки. Поэтому наиболее точные результаты даст опыт. (Есть зависимость от температуры воздуха, ..и т.д.)

Источник: Школьная физика и здравый смысл

Пользователь удален

Знаток

(262)


16 лет назад

время = (ёмкость / потребляемый_ток)
а потребляемый_ток = мощность / напряжение_питания
следовательно:
время = ёмкость * напряжение_питания / мощность
вроде так 🙂

Источник: Курс физики средней школы

Добавить комментарий