Как найти работу электрического тока если

В этой статье я объясню, что такое работа электрического тока, какие единицы измерения для нее используются и какие важные формулы необходимо знать.

Что такое работа электрического тока?

Давайте рассмотрим обычную батарейку. По сути, батарейка преобразует химическую энергию в электрическую энергию электронов. Если теперь подключить её в электрическую цепь, то электроны могут совершать работу, используя свою электрическую энергию, например, зажигать лампочку.

Если вы хотите узнать, сколько электрической энергии было преобразовано в другой вид энергии, то вам нужно рассчитать работу электрического тока.

Определение понятия «электрическая работа» и её единицы измерения.

Работа электрического тока [A] позволяет определить, сколько электрической энергии было или может быть преобразовано в другие виды энергии.

Когда вы рассчитываете работу электрического тока, вы знаете, сколько электрической энергии было преобразовано в другие формы энергии. А уже какие другие формы энергии могут быть — это зависит от ситуации (несколько примеров в списке ниже):

  • Ваш тостер преобразует электрическую энергию в тепловую;
  • Когда вы включаете лампочку, электрическая энергия преобразуется в световую;
  • Электродвигатель преобразует электрическую энергию в механическую.

Единицей измерения работы электрического тока в СИ является Джоуль [Дж], также часто используется в качестве единицы измерения Ватт-секунда [Вт·с]. Один джоуль всегда соответствует одной ватт-секунде. То есть 1 Дж = 1 Вт·с .

Другой важной единицей измерения является киловатт-час [кВт·ч]. Один киловатт-час равен 3 600 000 ватт-секунд или джоулей.

1 кВт·ч = 1 * 103 Вт·ч = 1 * 103 * 3600 Вт·с = 3,6 * 106 Вт·с = 3,6 * 106 Дж.

Полезный факт: а вы знали, что именно электрическую работу измеряют электросчётчики установленные в наших домах и квартирах! Электросчётчики измеряют работу электрического тока в кВт·ч.

По какой формуле вычисляется работа электрического тока?

Если вы на каком-либо участке электрической цепи под действием электрического напряжения U привели в движение заряд q, то вы можете рассчитать электрическую работу A как напряжение U, приложенное на концах этого участка цепи, умноженное на электрический заряд q, который прошёл по нему, то есть: A = U * q .

Зная, что электрический заряд, прошедший по участку цепи, можно определить, измерив силу тока и время его прохождения: q = I * t. Тогда электрическую работу A [Дж] можно определить как напряжение U [В], умноженное на силу тока I [А] и умноженное на время t [с], то есть: A = U * I * q .

Работа электрического тока на участке цепи равна произведению напряжения на концах этого участка на силу тока и на время, в течение которого совершалась работа.

Чуть ниже в статье мы разберем два практических примера, которые покажут применение данных формул. Однако перед этим мы кратко рассмотрим еще несколько важных формул.

Примечание: Вы обязательно должны запомнить первые две формулы. Следующие ниже формулы менее важны, но могут быть полезны для вас при решении тех или иных задач.

Другие формулы для определения работы электрического тока.

Закон Ома для участка цепи связывает напряжение U и ток I. Это позволяет нам рассчитать электрическую работу A другим способом.

Итак, согласно закона Ома, U = I * R или I = U / R , где R — это электрическое сопротивление.

Тогда вы можете подставить эти формулы в A = U * I * t. В итоге получатся другие формулы для нахождения работы электрического тока:

  • A = I2 * R * t ;
  • A = (U2 * t ) / R .

Примеры задач

Пример 1.

У вас есть батарея, подающая постоянное напряжение 12 В и ток 2,3 А. Вы используете эту батарею для освещения лампочки в течение 1 часа. Теперь вы хотите знать, какая работа электрического тока была произведена.

Мы знаем формулу для определения работы электрического тока: A = U * I * q, тогда получаем:

A = 12 В * 2,3 А * 1 ч = 27,6 Вт·ч .

Чтобы дать вам представление о единицах измерения, давайте переведем результат в ватт-секунды и джоули

27,6 Вт·ч = 27,6 * 3600 Вт·с = 99360 Вт·с = 99360 Дж.

Пример 2.

У вас есть батарейка с напряжением 5 В. Эта батарейка совершает электрическую работу в 10*10-2 Вт·с. Нам нужно рассчитать рассчитать количество электрического заряда q, перемещенного между полюсами батареи.

Мы знаем формулу для определения работы электрического тока: A = U * q, тогда q = A / U. Подставляя значения в формулу получаем:

q = 10*10-2 Вт·с / 5 В = 0,02 Кл.

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.

зависимость.svg

Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:

q=I⋅t

.

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:

A=U⋅q

.

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:

A=U⋅I⋅t

.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда

Единицы измерения величин:

работа электрического тока ([A]=1) Дж;

напряжение на участке цепи ([U]=1) В;

сила тока, проходящего по участку ([I]=1) А;

время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

в_пример.svgpower-8191WKS.jpg

Рис. (3). Схема и часы для измерения

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени:

N = Аt

.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,

A=U⋅I⋅t

, разделить на время.

Мощность электрического тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I

. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока:

P=U⋅I

.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

зависимость1.svg

Рис. (5). Зависимость между мощностью, напряжением и силой тока

За единицу мощности принят ватт: (1) Вт = (1) Дж/с.

Из формулы

P=U⋅I

следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

в_пример.svg

Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт

.

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.png Jauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png 

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Рис. (9). Маркировка

В таблице дана мощность, потребляемая различными приборами и устройствами:

Таблица (1). Мощность различных приборов

Название

Рисунок

Мощность

 Калькулятор

441.jpg

(0,001) Вт

 Лампы дневного света

lampy-dnevnogo-sveta-potolochnye1.jpg

(15 — 80) Вт

 Лампы накаливания

l1.png

(25 — 5000) Вт

 Компьютер

apple-1834328_640.jpg

(200 — 450) Вт

 Электрический чайник

skolko-elektroe-nergii-potreblyaet-chajnik-nowbest.ru_.jpg

(650 — 3100) Вт

 Пылесос

6a.jpg

(1500 — 3000) Вт

 Стиральная машина

atlant.jpeg

(2000 — 4000) Вт

 Трамвай

64216.jpg

(150 000 — 240000) Вт

Источники:

Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1.  Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.

В сегодняшней статье мы займемся решением задач на тему «Работа и мощность постоянного тока». Вдруг кому-нибудь пригодится.

Кстати, много полезной информации для студентов, а также приятные скидки, вы найдете на нашем телеграм-канале. Подписывайтесь!

Работа и мощность тока: задачи с решением

Перед непосредственным решением задач на работу и мощность электрического тока повторите теорию, ознакомьтесь с общей памяткой по решению задач. Также мы собрали для вас вместе более 40 формул по физике, держите их под рукой.

Задача №1. Мощность электрического тока

Условие

Сопротивление нити накала электрической лампы составляет 400 Ом, а напряжение на нити равно 100 В. Какова мощность тока в лампе?

Решение

По определению, мощность тока на участке цепи равна работе, деленной на время, за которое она была совершена:

Задача №1. Мощность электрического тока

Подставим значения, и найдем мощность:

Задача №1. Мощность электрического тока

Ответ: 25 Вт.

Задача №2. Расчет мощности электрического тока

Условие

Два резистора соединены параллельно и последовательно. В каком из двух резисторов мощность тока больше (и во сколько раз) соответственно при параллельном и последовательном соединении?

Задача №2. Расчет мощности электрического тока

Решение

1) При последовательном соединении сила тока в каждом резисторе одинакова, а мощность тока напрямую зависит от сопротивления резисторов:

Задача №2. Расчет мощности электрического тока

Мощность тока во втором резисторе больше в 10 раз.

2) При параллельном соединении на резисторах будет разная сила тока, но одинаковое напряжение. Для мощности тока целесообразно использовать формулу:

Задача №2. Расчет мощности электрического тока

Мощность тока в первом резисторе больше в 10 раз.

Ответ: В 10 раз больше во втором резисторе; в 10 раз больше в первом резисторе.

Задача №3. Работа электрического тока

Условие

Какова работа электрического тока в паяльнике, если сила тока в цепи равна 3 А, а сопротивление паяльника – 40 Ом? Время работы паяльника – 30 минут. Какое количество теплоты выделится в паяльнике за это время?

Решение

По закону Джоуля-Ленца, работа тока на наподвижном проводнике с сопротивлением R, преобразуется в тепло.

Задача №3. Работа электрического тока

Вычислим работу:

Задача №3. Работа электрического тока

При вычислениях не забывайте переводит все величины в систему СИ.

Работа тока равна выделившемуся количеству теплоты.

Ответ: 648 кДж.

Задача №4.  Расчет работы электрического тока

Условие

Какую работу ток совершает в электродвигателе за 20 минут, если сила тока в цепи равна 0,2 А, а напряжение составляет 12 В.

Решение

Применим формулу для работы тока:

Задача №4.  Расчет работы электрического тока

Ответ: 2880 Дж.

Напоследок мы приберегли для вас задачу посложнее.

Задача №5 на закон Джоуля-Ленца

Условие

Сила тока в проводнике сопротивлением R=20 Ом нарастает в течение времени Δt=2 с по линейному закону от I0=0 до Imax=6 А. Определить количество теплоты Q1, выделившееся в этом проводнике за первую секунду, и Q2 – за вторую, а также найти отношение этих количеств теплоты Q2/Q1. 

Решение

Закон Джоуля – Ленца применим в случае постоянного тока (I =const). Если же сила тока в проводнике изменяется, то указанный закон справедлив для бесконечно малого промежутка времени и записывается в виде:

Задача №5 на закон Джоуля-Ленца

Здесь сила тока I является некоторой функцией времени. В нашем случае I=kt, где k – коэффициент пропорциональности, равный отношению приращений силы тока к интервалу времени, за который произошло это приращение:

Задача №5 на закон Джоуля-Ленца

С учетом этого, формула для количества теплоты примет вид:

Задача №5 на закон Джоуля-Ленца

Для определения количества теплоты, выделившегося за конечный промежуток времени, выражение для бесконечно малого количества теплоты следует проинтегрировать в пределах от t1 до t2: 

Задача №5 на закон Джоуля-Ленца

При определении количества теплоты, выделившегося за первую секунду, пределы интегрирования t1 =О, t2= 1 с и, следовательно, Q1=60 Дж, а за вторую секунду – пределы интегрирования t1= 1 с, t2=2 с и тогда Q2=420 Дж.

Кстати, читайте в нашем блоге о том, как считать интегралы.

За вторую секунду выделится теплоты в 7 раз больше, чем за первую секунду.

Ответ: 60 Дж; 420 Дж; в 7 раз больше.

Вопросы на работу и мощность электрического тока

Вопрос 1. Что такое работа электрического тока?

Ответ. Работа электрического тока – это физическая величина, которая показывает, какая работа была совершена электрическим полем при перемещении зарядов по проводнику. Она равна произведению силы тока на участке цепи, напряжению на концах этого участка и времени, в течение которого протекает ток по проводнику.

Вопросы на работу и мощность электрического тока

Единица измерения работы – 1 Джоуль.

Вопрос 2. Сформулируйте закон Джоуля-Ленца.

Ответ. Это эмпирический закон преобразования работы тока в тепло. Он был экспериментально установлен независимо друг от друга Дж. Джоулем и Э. Ленцем. 

Работа электрического тока, протекающего по неподвижному проводнику с сопротивлением R, преобразуется в тепло, выделяющееся на проводнике.

Вопросы на работу и мощность электрического тока

При прохождении тока по проводнику положительные ионы в узлах кристаллических решеток проводника за счет энергии тока начинают сильнее колебаться, что сопровождается увеличением внутренней энергии проводника, т.е. его нагреванием.

Вопрос 3. Что такое мощность электрического тока?

Ответ. Мощность тока – физическая величина, характеризующая скорость совершения током работы. Мощность равна отношению работы к интервалу времени, за которые она была совершена:

Вопросы на работу и мощность электрического тока

Единицей измерения мощности является Ватт. 1 Ватт – это мощность, при которой за одну секунду совершается работа в 1 Джоуль.

Вопрос 4. Приведите пример внесистемной единицы измерения работы.

Ответ. На практике часто пользуются единицей, называемой ватт-час (втч). Так как в часе 3 600 секунд,  1 ватт-час равен 3 600 Дж.

Вопрос 5. Как измерить работу тока?

Ответ. В простейшем случае для измерения работы тока нужны амперметр, вольтметр и часы. На практике работу электрического тока измеряют с помощью счетчиков.

Нужна помощь в решении задач и выполнении других заданий? Профессиональный сервис для учащихся всегда к вашим услугам.

Чтобы подсчитать работу электрического тока, вспомним определение понятия напряжения: U=А/q

Следовательно, работа электрического тока равна:

A=qU

Электрический заряд можно выразить через силу тока и его время протекания q=It:

А = IUt

Итак, работа электрического тока равна произведению силы тока на напряжение и на время протекания тока по цепи.

Работа электрического тока выражается в джоулях (Дж) . В качестве внесистемной единицы принята работа тока силой 1 А в течение 1 ч на участке цепи с напряжением 1 В. Эту единицу работы назвали ватт-час (1 Вт-ч) : 1 Вт-ч = 3600 Дж = 3,6 кДж. На практике используют более крупные, кратные ей единицы:

1 гВт-ч= 102 Вт-ч = 3,6·105Дж,
1 кВт-ч= 103 Вт-ч = 3,6·106Дж,
1 МВт-ч = 106 Вт-ч = 3,6·109Дж.

Из курса физики VII класса вы знаете, что мощность равна отношению совершенной работы ко времени, в течение которого эта работа была совершена. Мощность в механике принято обозначать буквой N, в электротехнике — буквой Р. Следовательно, мощность равна:

Р = А/t.

Пользуясь этой формулой, найдем мощность электрического тока. Так как работа тока определяется формулой А = IUt, то мощность электрического тока равна:

Р = IU.

За единицу мощности ватт (Вт) принята мощность тока силой 1 А на участке с напряжением 1 В. Следовательно, 1 Вт = 1 А·1 В.

Ватт сравнительно небольшая мощность, на практике используют более крупные единицы, кратные ватту: 1 гВт (гектоватт) = 102 Вт, 1 кВт (киловатт) = 103 Вт, 1 МВт (мегаватт) = 106 Вт, 1 ГВт (гигаватт) = 109 Вт.

Работа и мощность электрического тока

теория по физике 🧲 постоянный ток

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.

Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:

Но сила тока равна:

Тогда работа тока равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:

Работа тока измеряется в Джоулях (Дж).

Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.

Закон Джоуля-Ленца

В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.

Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Количество теплоты измеряется в Джоулях (Дж).

Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.

Используем закон Ома и закон Джоуля—Ленца:

Мощность тока

Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.

Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).

Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:

Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.

Выразив силу тока через заряд, прошедший за единицу времени, получим:

Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:

Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.

Мощность тока внутренней цепи:

Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P0 = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?

Используем формулу для нахождения полезной мощности:

Применим закон Ома для полной цепи:

Выразим сопротивление внешней цепи:

Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:

Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.

Подсказки к задачам

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

image1 4

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

Применим закон Ома:

Приравняем правые части выражений и получим:

Отсюда напряжение на конденсаторе равно:

Напряженность электрического поля равна:

Screenshot 1 2Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?

Источник

Мощность электрического тока: определение, формулы, единицы измерения, обозначение

В этой статье мы расскажем вам, что представляет собой мощность электрического тока и как её можно рассчитать.

Определение.

Мощность электрического тока (обозначается буквой P) — это физическая величина, определяемая как количество работы, которая совершается источником электрического напряжения для переноса электрического заряда (q) по проводнику за единицу времени t.

Если сказать в целом, то мощность электрического тока показывает, сколько электрической энергии преобразуется за определенное время. Она, в том числе, описывает энергопотребление потребителя.

Формулы

На многих бытовых электроприёмниках есть этикетки с указанием мощности. Мощность (P) говорит о работе (A), выполняемой электроприбором в единицу времени (t). Поэтому, дабы отыскать среднюю мощность электрического тока, необходимо поделить его работу на время, то есть P = A / t.

Давайте рассмотрим, что такое мощность электрического тока. Для этого рассмотрим электрическую цепь (см. рисунок 1), состоящую из источника тока, проводов и какого-либо электроприёмника, которым может быть резистор, аккумулятор, электродвигатель и т.д.

Elektricheskaya tsep v kotoroy napryazhenie i tok postoyannyРис. 1. Электрическая цепь, в которой напряжение и ток постоянны

Рекомендуемое электрическое напряжение также указывается на электрооборудовании. Как эти две величины связаны друг с другом? Из школьного курса физики мы знаем, что напряжение (U) между концами данного электроприёмника определяется следующим образом: U = A / q, где: A — работа, совершаемая источником электрического напряжения для переноса электрического заряда (q) по проводнику.

Величина электрического заряда рассчитывается по формуле: q = I * t

Имеем A = P * t; A = U*q, а q = I * t. После преобразования формул получаем: A = P*t = U*q = U*I*t

Отсюда следует (разделив обе стороны уравнения на t), что P = U*I. То есть мы можем сказать, что количество энергии, переданное от источника тока к резистору определяется по формуле: P = U * I

Согласно закону Ома для участка цепи I = U/R, где R — электрическое сопротивление участка цепи. Потому из формулы P = U*I следуют две другие формулы для мощности электрического тока, то есть P = U 2 /R, P = I 2 R.

Формулу P = I 2 R комфортно применять для электрических цепей с последовательным соединением проводников, потому что сила электрического тока при таком соединении в проводниках одинакова.

Для параллельно соединенных проводников работу и мощность удобнее выражать через одинаковое для их электрическое напряжение, исключая силу электрического тока, т.е. лучше применять формулу P = U 2 /R.

Если электроприборы соединены последовательно либо параллельно, их электрическая мощность суммируется. В данном случае для расчета полной мощности употребляется такая формула:

Единицы измерения и обозначение

Единицей измерения мощности в Международной системе единиц (СИ), является ватт. При этом русское обозначение: Вт, международное: W). 1 Вт = 1 Дж/c. Из формулы P = U*I следует, что: 1 ватт = 1 вольт * 1 ампер, или 1 Вт = 1 В*А.

Есть также единицы измерения мощности, кратные ваттам: гектаватт (гВт), киловатт (кВт), мегаватт (МВт). Другими словами 1 гВт = 100 Вт, 1 кВт = 1000 Вт, 1 МВт = 1 000 000 Вт.

Каждый электроприбор имеет определенную мощность (указана на приборе). Вот типовые значения мощности для некоторых электроприборов.

Прибор Мощность, Вт
Телевизор в режиме ожидания 0,5
Лампа карманного фонарика Около 1
Лампы накаливания 25-150
Холодильник 160
Электронагреватель 500-2000
Пылесос До 1300-1800
Электрочайник Около 2000
Утюг 1200-2200
Стиральная машина До 2300

Раньше для обозначения мощности использовалась единица измерения — лошадиная сила (л.с.), которая известна и сейчас. Переведите из лошадиных сил в ватты, используя выражение: 1 л.с. = 735.5 Вт.

Пример расчета мощности электрического тока

В конце концов, вы сможете проверить свои познания на 2-ух обычных примерах.

Представьте, что в первой задачке у вас есть резистор R = 50 Ом, через который течет электрический ток I = 0,3А. Какая электрическая мощность преобразуется в этом резисторе?

Вы можете отыскать решение, найдя соответствующую формулу и подставив в нее заданные значения. То есть у нас получается: P = I 2 R = 0,3 2 * 50 = 4,5 Вт

Во второй задаче дан резистор R, электрическое сопротивление которого 700 Ом. В техническом описании указано, что максимальная мощность этого резистора составляет 10 Вт. Насколько высоким может быть напряжение, подаваемое на этот резистор?

Для решения этой задачки подбираем подходящую формулу: P = U 2 /R, откуда мы находим Umax = Pmax * R = 700 * 10 = 83,67 В.

Это означает, что максимальное напряжение может составлять 83,67 В. Чтобы подстраховаться, следует выбирать электрическое напряжение значительно ниже этого предела.

Более подробно о том как можно находить мощность электрического тока я писал в статье: https://www.asutpp.ru/kak-nayti-moschnost.html

Измерение мощности электрического тока

Вы сможете измерить силу электрического тока при помощи вольтметра и амперметра. Чтобы высчитать нужную мощность, помножьте электрическое напряжение на силу тока. Электрический ток и напряжение можно найти по показаниям приборов.

Izmerenie moschnosti elektricheskogo tokaРис. 2. Измерение мощности электрического тока

Помните, что вы всегда должны определять электрическое напряжение параллельно нагрузке и электрический ток последовательно.

Есть особые приборы – ваттметры, определяющие мощность электрического тока в цепи, которые, по сути, подменяют два устройства – амперметр и вольтметр.

Единицы измерения электрического тока, применяемые на практике

В паспортах потребителей электроэнергии – лампочки, плиты, электродвигатели – обычно указывают силу электрического тока в них. Исходя из мощности, найти работу электрического тока за данный промежуток времени довольно просто, нужно лишь использовать формулу A = P*t.

Выразив мощность в ваттах, а время в секундах, мы получим работу в джоулях: 1 Вт = 1 Дж/с, где 1 Дж = 1 Вт*с.

Но эту единицу работы неудобно применять на практике, так как электроприёмники потребляют ее в течение долгих периодов времени, как, к примеру, в бытовых устройствах – в течение нескольких часов, в электропоездах – в течение нескольких часов либо даже суток, а расчет потребленной энергии по электросчетчику в большинстве случаев делается раз в месяц.

Потому при расчете работы тока либо затраченной и выработанной электроэнергии во всех этих случаях нужно переводить эти промежутки времени в секунды, что усложняет расчеты.

Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]

Потому на практике, при расчете работы электрического тока, более удобно выражать время в часах, а работу электрического тока не в джоулях, а в других единицах: например, ватт-час (Вт*ч), гектоватт*час (гВт*ч), киловатт-час (кВт*ч).

Перышкин А.В. Физика 8. – М.: Дрофа, 2010. [2]

Будут верны следующие соотношения:

Задача. Существует электрическая лампа, рассчитанная на ток в мощностью 100 ватт. Лампа работает в течение 6 часов каждый день. Нам нужно отыскать работу электрического тока за один месяц (30 дней) и стоимость потребленной электроэнергии, предполагая, что тариф составляет 500 копеек за один кВт/ч.

Запишем условие задачки и решим ее.

Решение задачи. Мы знаем, что A = P*t, потому получаем: A = 100 Вт*180 ч = 18 000 Вт*ч = 18 кВт*ч.

Мы рассчитываем стоимость так: Стоимость = 500 к / кВт*ч * 18 кВт*ч = 9000 копеек = 90 рублей.

Ответ: A = 18 кВт*ч, стоимость израсходованной электроэнергии = 90 рублей.

Связь мощности тока с действием тока в электрической цепи

Сравнение мощности тока с номинальной мощностью электрического прибора позволяет определить, насколько сильно нагружен в электрической цепи прибор. Если мощность тока меньше номинального, то действие тока не достаточно интенсивно или совсем не проявляется. Подключение мощного прибора к слабому источнику тока не вызывает в нем никаких действий. Приборы, рассчитанные на малую мощность работы тока, при подключении к источникам, создающим сильное поле, сгорают.

Источник

Работа и мощность электрического тока. Закон Джоуля-Ленца

img 5a65f6b32b89e e1516631744629

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​ ( (U) ) ​ на участке цепи равно отношению работы ​ ( (F) ) ​, совершаемой при перемещении электрического заряда ​ ( (q) ) ​ на этом участке, к заряду: ​ ( U=A/q ) ​. Отсюда ​ ( A=qU ) ​. Поскольку заряд равен произведению силы тока ​ ( (I) ) ​ и времени ​ ( (t) ) ​ ​ ( q=It ) ​, то ​ ( A=IUt ) ​, т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

​ ( [A] ) ​= 1 Дж = 1 В · 1 А · 1 с

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​ ( A=fract ) ​ или ​ ( A=I^2Rt ) ​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​ ( P=A/t ) ​ или ​ ( P=IUt/t ) ​; ​ ( P=IU ) ​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​ ( [P]=[I]cdot[U] ) ​; ​ ( [P] ) ​ = 1 А · 1 В = 1 Вт.

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​ ( P=frac;P=I^2R ) ​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​ ( Q=A ) ​ или ​ ( Q=IUt ) ​. Учитывая, что ​ ( U=IR ) ​, ​ ( Q=I^2Rt ) ​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ ( R_1 ) ​ в четыре раза меньше сопротивления резистора ​ ( R_2 ) ​. Работа тока в резисторе 2

img 5a65f49365916

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​ ( R_1 ) ​ в 3 раза больше сопротивления резистора ​ ( R_2 ) ​. Количество теплоты, которое выделится в резисторе 1

img 5a65f4e8cc316

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ ( A_1 ) ​ и ​ ( A_2 ) ​ в этих проводниках за одно и то же время.

img 5a65f510c85d4

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока ( A_1 ) ​ и ​ ( A_2 ) в этих проводниках за одно и то же время.

img 5a65f594f399d

1) ​ ( A_1=A_2 ) ​
2) ( A_1=3A_2 )
3) ( 9A_1=A_2 )
4) ( 3A_1=A_2 )

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Источник

Закон Джоуля-Ленца

613e2d7d59518379132215

Закон Джоуля-Ленца

На примере многих бытовых приборов понятно, что если через участок цепи проходит электроток и при этом не совершается какая-либо работа, то происходит нагревание проводника. Иногда оно идет на пользу — например, в лампе накаливания или в аппарате дуговой сварки. Но в других случаях тепловой эффект нежелателен — например, перегрев электрической проводки в здании может вызвать пожар. Поэтому в наших интересах управлять таким эффектом, и правило Джоуля-Ленца определяет, от чего зависит тепловое действие тока.

Правило было сформулировано в результате опытов двух ученых — англичанина Джеймса Прескотта Джоуля и российского физика Эмилия Христиановича Ленца. Поскольку ученые работали независимо друг от друга, новый закон назвали двойным именем.

Закон Джоуля-Ленца кратко: нагревание проводника или полупроводника прямо пропорционально его сопротивлению, времени действия тока и квадрату силы тока.

Поскольку сопротивление проводника определяют такие характеристики, как его длина, площадь и проводимость, верны следующие утверждения:

количество теплоты в проводнике снижается при увеличении площади его сечения;

тепловой эффект снижается при уменьшении длины проводника.

Это легко проиллюстрировать, подключив к источнику питания две лампы с разным сопротивлением вначале последовательно, а после — параллельно. При последовательном подключении лампа с большим сопротивлением будет светить ярче, а при параллельном — наоборот.

613f012052e45358820992

Природа тепла в проводниках

Разберемся, как происходит нагрев проводника и каким образом этот процесс отвечает формулировке законе Джоуля-Ленца. Как известно, электрический ток представляет собой направленный поток электронов, если речь идет о металлах, и направленный поток ионов — если о растворах электролитов. Проводником называют такой металл, в котором много свободных электронов.

При подключении проводника к сети электроны начинают двигаться в одном направлении под действием электрического поля. При движении они сталкиваются с атомами проводника и передают им свою кинетическую энергию. Чем выше скорость заряженных частиц, тем чаще происходят такие столкновения и больше выделяется кинетической энергии. Часть этой энергии трансформируется в тепло, поэтому проводник нагревается.

613f0164e9d16485386413

Высокая сила тока означает, что через сечение проводника проходит много свободных электронов и столкновения происходят часто. Соответственно, частицам проводника передается много энергии, и он греется сильнее. Именно поэтому в законе Ленца-Джоуля говорится о том, что количество выделяемой теплоты пропорционально квадрату силы тока.

Теперь представим, что сечение проводника увеличилось. Конечно, столкновений частиц будет меньше, а значит — выделится меньше тепла. Вспоминаем, что удельное сопротивление проводника обратно пропорционально его сечению. Чем меньше сечение материала, тем выше его сопротивление и тем сильнее он нагревается. Вот мы и описали тепловое действие тока в соответствии с законом Джоуля-Ленца.

Уравнение Джоуля-Ленца

Посмотрим, как данный закон выражается в математическом виде. Допустим, на некоем участке цепи проходит электрический ток и вызывает нагревание проводника. Если на этом участке нет каких-либо механических процессов или химических реакций, требующих энергозатрат, выделенная проводником теплота Q равна работе тока A.

Q = A

Поскольку А = IUt, где I — сила тока, U — напряжение, а t — время, Q = IUt.

Теперь вспомним, что напряжение можно выразить через сопротивление и силу тока U = IR. Подставим это в формулу:

Q = IUt = I(IR)t = I 2 Rt

Q = I 2 Rt

Мы выразили количество теплоты в проводнике через сопротивление — эта формула для закона Джоуля-Ленца называется интегральной.

Но бывает так, что сила электрического тока неизвестна, зато есть информация о напряжении на участке цепи. В таком случае нужно использовать закон Ома:

I = U/R

Исходя из этого, закон Джоуля-Ленца можно записать в виде дифференциальной формулы:

613e2f88bbb28453153058

Напомним, что такое уравнение, как и предыдущее, верно только в том случае, когда вся работа электрического тока уходит на выделение тепла и нет других потребителей энергии.

Итак, у нас есть две формулы для определения количества теплоты, выделяемой проводником при прохождении через него электричества:

613e2fcf82d5b079798315

При расчетах используют следующие единицы измерения:

количество тепла Q— в джоулях (Дж);

силу тока I — в амперах (А);

сопротивление R — в омах (Ом);

время t — в секундах (с).

Практическое применение

Применение на практике закона Джоуля-Ленца заключается в том, что тепловым действием электрического тока можно управлять, подбирая проводники с нужным сопротивлением. К примеру, для электрических нагревательных приборов, которые должны выделять максимум тепла, выбирают проводники с высоким сопротивлением.

Низкое сопротивление, напротив, позволяет проводнику практически не нагреваться при прохождении тока. Поэтому на промышленных предприятиях с усиленными требованиями к пожаробезопасности для прокладки линий электропередач используется медный кабель. Удельное сопротивление меди сечением 1 мм 2 равно 0,0175 Ом, в то время как у алюминия оно составляет 0,0271 Ом. Медь практически не нагревается, чем снижает риск возгораний.

Примеры задач

Задача 1

Электроплита подключена к сети с напряжением 220 В. Какое количество тепла выделит ее нагревательный элемент за 50 минут, если известно, что сила тока в цепи составляет 10 А.

Решение:

Для того, чтобы рассчитать количество тепла, в данном случае подойдет интегральная формула Джоуля-Ленца Q = I 2 Rt, однако мы не знаем, чему равно сопротивление R. Однако согласно закону Ома R = U/I.

Вычислим сопротивление: R = U/I = 220/10 = 22 Ом.

Подставим имеющиеся данные в формулу:

Q = I 2 Rt = 10 2 × 22 × 3000 = 6 600 000 Дж = 6,6 МДж.

Ответ: плита выделит 6,6 мегаджоулей тепла.

Задача 2

Для обогрева дома требуется, чтобы отопительный прибор выделял 125 кДж тепла в час. Напряжение в электрической сети составляет 220 В. Каким должно быть электрическое сопротивление проводника, чтобы обеспечить данную теплоотдачу?

Решение:

Q = 125 Дж = 125 000 Дж;

В данном случае подойдет уравнение

613e311f0b90a925070520

613e31439b556017467750

Ответ: сопротивление проводника 1393,92 Ом.

Источник

Добавить комментарий