Как найти работу если известно ускорение

п.1. От ускорения к скорости и координате

Рассматривая применение производной в физике и технике (см. §51 данного справочника), мы во второй производной от уравнения прямолинейного равномерного движения (x(t)) пришли к постоянному ускорению (a=const).
С помощью интегрирования можно пройти обратный путь.
Начнем с постоянного ускорения (a=const).
Интеграл от ускорения по времени – это скорость: $$ v(t)=int adt=aint dt=at+C $$ Физический смысл постоянной интегрирования (C) в этом случае – начальная скорость (v_0). Получаем: $$ v(t)=at+v_0 $$ Интеграл от скорости по времени – это координата: $$ x(t)=int v(t)dt=int (at+v_0)dt=frac{at^2}{2}+v_0 t+C $$ Физический смысл постоянной интегрирования (C) в этом случае – начальная координата (x_0). Получаем: $$ x(t)=frac{at^2}{2}+v_0 t+x_0 $$ Таким образом, если нам известны ускорение (a), начальная скорость (v_0) и начальная координата (x_0), мы всегда сможем получить уравнение движения (x(t)).

п.2. Физические величины как интегралы других величин

Если (v(t)) – скорость некоторого физического процесса, уравнение этого процесса можно найти интегрированием: $$ f(t)=int v(t)dt $$ Такие величины часто встречаются в различных разделах физики и техники.

Исходная величина (скорость)

Уравнение процесса (интеграл по времени)

Ускорение (a(t))

Скорость (v(t)=int a(t)dt)

Скорость (v(t))

Координата (x(t)=int v(t)dt)

Угловое ускорение (beta(t))

Угловая скорость (omega(t)=int beta(t) dt)

Угловая скорость (omega(t))

Угол поворота (varphi(t)=intomega(t)dt)

Скорость расходования горючего (u(t))

Масса горючего ракеты (m(t)=int u(t)dt)

Сила тока (I(t))

Заряд (q(t)=int I(t)dt)

Мощность (N(t))

Работа (A(t)=int N(t)dt)

ЭДС индукции (varepsilon(t))

Магнитный поток (Ф(t)=-intvarepsilon(t)dt)

Скорость радиоактивного распада (I(t))

Число атомов радиоактивного вещества (N(t)=int I(t)dt)

Берутся интегралы и по другим переменным. Например, чтобы найти работу переменной силы (F(x)), нужно взять интеграл по координате: $$ A=int_{x_1}^{x_2}F(x)dx $$ В трехмерном пространстве интегралы могут браться по всем трем координатам.
При решении уравнений в частных производных интегралы берутся и по времени и по координатам.

В современной физике интеграл по времени берётся также и от самого уравнение движения. Полученная скалярная величина называется действием и носит фундаментальный характер. В простейшем случае: $$ S_0=int overrightarrow{p}cdot overrightarrow{v}dt $$ где (overrightarrow{p}cdot overrightarrow{v}) – скалярное произведение векторов импульса и скорости.

п.3. Примеры

Пример 1. Тело движется со скоростью (v(t)) (м/с). Найдите путь, пройденный за промежуток времени от (t_1) до (t_2) (с):
a) (v(t)=3t+2t^2, t_1=0, t_2=6)
Путь: begin{gather*} s(t)=int_{t_1}^{t_2}v(t)dt\ s=int_{0}^{6}(3t+2t^2)dt=left(frac{3t^2}{2}+frac{2t^3}{3}right)|_{0}^{6}=frac{3cdot 36}{2}+frac{2cdot 36cdot 6}{3}-0=\ =3cdot 18+4cdot 36=54+144=198 text{(м)} end{gather*}
б) (v(t)=2(t+2)^{5/2}, t_1=0, t_2=7) begin{gather*} s=int_{0}^{7}2(t+2)^{5/2}dt =2cdotfrac{(t+2)^{frac52+1}}{frac72}|_{0}^{7}=frac47cdot 9^{frac72}-0=frac47cdot 3^7approx 1250 text{(м)} end{gather*}

Пример 2. . Сила тока в проводнике изменяется по закону (I(t)=e^{-t}+2t) (время в секундах, ток в амперах). Какой заряд пройдет через поперечное сечение проводника за время от второй до шестой секунды?
Заряд: begin{gather*} Q(t)=int_{t_1}^{t_2}I(t)dt end{gather*} По условию: begin{gather*} Q=int_{2}^{6}(e^{-t}+2t)dt=(-e^{-t}+t^2)|_{2}^{6}=-e^{-6}+6^2+e^{-2}-2^2=frac{1}{e^2}-frac{1}{e^6}+32=\ =frac{e^4-1}{e^6}+32approx 32,1 text{(Кл)} end{gather*}

Пример 3*. Найдите путь, который пройдет тело от начала движения до возвращения в исходную точку, если его скорость (v(t)=18t-9t^2) (время в секундах, скорость в м/с). Движение тела прямолинейное.

Если тело вернулось в исходную точку, оно меняло направление движения.
В момент разворота скорость равна нулю. Решаем уравнение: $$ 18t-9t^2=0Rightarrow 9t(2-t)=0Rightarrow left[ begin{array}{l} t=0\ t=2 end{array} right. $$ (t=0) – начало движения, (t=2) – разворот.

Пример 3 Уравнение движения: $$ x(t)=int(18t-9t^2)dt=9t^2-3t^3+C $$ В начальный момент времени (x_0=0Rightarrow C=0) $$ x(t)=9t^2-3t^3 $$ В точке C(2;12) кривая (x(t)) имеет максимум.
Тело двигалось в течение 2 с в одну сторону и прошло 12 м, а затем за 1 с вернулось обратно.

Общий путь: 12+12 = 24 м.

Ответ: 24 м

Пример 4*. Найдите работу, которую необходимо совершить, чтобы выкачать воду из полусферического котла радиуса R м.

Пример 4
Найдем работу (dA), которую нужно совершить, чтобы выкачать слой воды толщиной (dH) с глубины (H).
Радиус слоя на глубине (H: r^2=R^2-H^2) – по теореме Пифагора.
Объем слоя воды: (dV=pi r^2 dH=pi(R^2-H^2)dH)
Масса слоя воды: (dm=rho dV=pirho(R^2-H^2)dH)
Работа по подъему слоя на высоту (H): $$ dA=dmcdot gH=pirho gH(R^2-H^2)dH $$ Получаем интеграл: begin{gather*} A=int_{0}^{R}dA=int_{0}^{R}pirho gH(R^2-H^2)dH=pirho gint_{0}^{R}(HR^2-H^3)dH=\ =pirho gleft(frac{H^2}{2}R^2-frac{H^4}{4}right)|_{0}^{R}=pirho gleft(frac{R^4}{2}-frac{R^4}{4}-0right)=fracpi 4=rho gR^4 end{gather*} Ответ: (A=fracpi 4=rho gR^4)

Пример 5*. Какую работу выполняют при запуске ракеты массой m кг с поверхности планеты на высоту h м, если радиус планеты равен R м и масса планеты равна M кг?
Сравните работу при запуске ракеты с Земли и Луны на высоту одного радиуса небесного тела, если ускорение свободного падения на поверхности Луны (g_M=1,62) м/с2, радиус Луны (R_M=1737) км; для Земли соответственно (g_E=9,81) м/с2 (R_E=6371) км.

Ускорение свободного падения на поверхности планеты: (g_0=Gfrac{M}{R^2})
Ускорение свободного падения при подъеме на высоту x: begin{gather*} g(x)=Gfrac{M}{(R+x)^2} end{gather*} Работа по преодолению силы тяжести (F(x)=mg(x)) при подъеме ракеты на высоту h: begin{gather*} A=int_{0}^{h}mg(x)dx=mint_{0}^{h}Gfrac{M}{(R+x)^2}dx=GmMint_{0}^{h}frac{dx}{(R+x^2)}=\ =GmMcdotleft(-frac{1}{R+x}right)|_{0}^{h}=GmMcdotleft(-frac{1}{R+h}+frac1Rright)=GmMleft(frac1R-frac{1}{R+g}right)=\ =GmMfrac{R+h-R}{R(R+h)}=GmMfrac{h}{R(R+h)} end{gather*} Также, если выразить работу через ускорение свободного падения на поверхности планеты: $$ A=frac{GM}{R^2}frac{mhR^2}{R(R+h)}=mg_0frac{hR}{R+h} $$ Работа по запуску на высоту одного радиуса небесного тела (h=R): $$ A(R)=mg_0frac{R^2}{2R}=frac{mg_0R}{2} $$ Отношение работ по запуску на один радиус на Земле и Луне: $$ frac{A_E(R_E)}{A_M(R_M)}=frac{mg_ER_E}{mg_MR_M}=frac{g_ER_E}{g_MR_M}, frac{A_E(R_E)}{A_M(R_M)}=frac{9,81cdot 6371}{1,62cdot 1737}approx 22,2 $$ На Земле работа в 22,2 раза больше.

Ответ: (A=GmMfrac{h}{R(R+h)}; frac{A_E(R_E)}{A_M(R_M)}approx 22,2)

Второй закон Ньютона в импульсной форме позволяет определить, как меняется скорость тела по модулю и направлению, если в течение некоторого времени на него действует определенная сила:

Работа силы

В механике также важно уметь вычислять изменение скорости по модулю, если при перемещении тела на некоторый отрезок на него действует некоторая сила. Воздействия на тела сил, приводящих к изменению модуля их скорости, характеризуется величиной, зависящей как от сил, так и от перемещений. Эту величину в механике называют работой силы.

Работа силы обозначается буквой А. Это скалярная физическая величина. Единица измерения — Джоуль (Дж).

Работа силы равна произведению модуля силы, модуля перемещения и косинусу угла между ними:


Важно!

Механическая работа совершается, если:

  1. На тело действует сила.
  2. Под действием этой силы тело перемещается.
  3. Угол между вектором силы и вектором перемещения не равен 90 градусам (потому что косинус прямого угла равен нулю).

Внимание! Если к телу приложена сила, но под ее действием тело не начинает движение, механическая работа равна нулю.

Пример №1. Груз массой 1 кг под действием силы 30 Н, направленной вертикально вверх, поднимается на высоту 2 м. Определить работу, совершенной этой силой.

Так как перемещение и вектор силы имеют одно направление, косинус угла между ними равен единице. Отсюда:

Работа различных сил

Любая сила, под действием которой перемещается тело, совершает работу. Рассмотрим работу основных сил в таблице.

Работа силы тяжести

Модуль силы тяжести: Fтяж = mg

Работа силы тяжести: A = mgs cosα

Работа силы трения скольжения

Модуль силы трения скольжения: Fтр = μN = μmg

Работа силы трения скольжения: A = μmgs cosα

Работа силы упругости

Модуль силы упругости: Fупр = kx

Работа силы упругости:

Работа силы упругости

Работа силы упругости не может быть определена стандартной формулой, так как она может применяться только для постоянной по модулю силы. Сила же упругости меняется по мере сжатия или растяжения пружины. Поэтому берется среднее значение, равное половине суммы сил упругости в начале и в конце сжатия (растяжения):

Нужно также учесть, что перемещение тела под действием силы упругости равно разности удлинения пружины в начале и конце:

s = x1 – x2

Перемещение и направление силы упругости всегда сонаправлены, поэтому угол между ними нулевой. А косинус нулевого угла равен 1. Отсюда работа силы упругости равна:

Работы силы трения покоя

Работы силы трения покоя всегда равна 0, так как под действием этой силы тело не сдвигается с места. Исключение составляет случай, когда покоящееся тело лежит на подвижном предмете, на который действует некоторая сила. Относительно системы координат, связанной с подвижным предметом, работа силы трения покоя будет нулевой. Но относительно системы отсчета, связанной с Землей, эта сила будет совершать работу, так как тело будет двигаться, оставаясь на поверхности движущегося предмета.

Пример №2. Груз массой 100 кг волоком перетащили на 10 м по плоскости, поверхность которой имеет коэффициент трения 0,4. Найти работу, совершенной силой трения скольжения.

A = μmgs cosα = 0,4∙100∙10∙10∙(–1) = –4000 (Дж) = –4 (кДж)

Знак работы силы

Знак работы силы определяется только косинусом угла между вектором силы и вектором перемещения:

  1. Если α = 0о, то cosα = 1.
  2. Если 0о < α < 90o, то cosα > 0.
  3. Если α = 90о, то cosα = 0.
  4. Если 90о < α < 180o, то cosα < 0.
  5. Если α = 180о, то cosα = –1.

Работа силы трения скольжения всегда отрицательна, так как сила трения скольжения направлена противоположно перемещению тела (угол равен 180о). Но в геоцентрической системе отсчета работа силы трения покоя будет отличной от нуля и выше нуля, если оно будет покоиться на движущемся предмете (см. рис. выше). В таком случае сила трения покоя будет направлена с перемещением относительно Земли в одну сторону (угол равен 0о). Это объясняется тем, что тело по инерции будет пытаться сохранить покой относительно Земли. Это значит, что направление возможного движения противоположно движению предмета, на котором лежит это тело. А сила трения покоя направлена противоположно направлению возможного движения.

Геометрический смысл работы

Графическое определение

Механическая работа численно равна площади фигуры, ограниченной графиком с осями OF и OX.

A = Sфиг

Мощность

Определение

Мощность — физическая величина, показывающая, какую работу совершает тело в единицу времени. Мощность обозначается буквой N. Единица измерения: Ватт (Вт). Численно мощность равна отношению работы A, совершенной телом за время t:

Рассмотрим частные случаи определения мощности в таблице.

Мощность при равномерном прямолинейном движении тела

Работа при равномерном прямолинейном движении определяется формулой:

A = Fтs

Fт — сила тяги, s — перемещение тела под действием этой силы. Отсюда мощность равна:

Мощность при равномерном подъеме груза

Когда груз поднимается, совершается работа, по модулю равная работе силе тяжести. За перемещение в этом случае можно взять высоту. Поэтому:

Мгновенная мощность при неравномерном движении

Выше мы уже получили, что мощность при постоянной скорости равна произведению этой скорости на силу тяги. Но если скорость постоянно меняется, можно вычислить мгновенную мощность. Она равна произведению силы тяги на мгновенную скорость:

Мощность силы трения при равномерном движении по горизонтали

Мощность силы трения отрицательна так же, как и работа. Это связано с тем, что угол между векторами силы трения и перемещения равен 180о (косинус равен –1). Учтем, что сила трения скольжения равна произведению силы нормальной реакции опоры на коэффициент трения:

Пример №3. Машина равномерно поднимает груз массой 10 кг на высоту 20 м за 40 с. Чему равна ее мощность?

Коэффициент полезного действия

Не вся работа, совершаемая телами, может быть полезной. В реальном мире на тела действует несколько сил, препятствующих совершению работы другой силой. К примеру, чтобы переместить груз на некоторое расстояние, нужно совершить работу гораздо большую, чем можно получить при расчете по формулам выше.

Определения:

  • Работа затраченная — полная работа силы, совершенной над телом (или телом).
  • Работа полезная — часть полной работы силы, которая вызывает непосредственно перемещение тела.
  • Коэффициент полезного действия (КПД) — процентное отношение полезной работы к работе затраченной. КПД обозначается буквой «эта» — η. Единицы измерения эта величина не имеет. Она показывает эффективность работы механизма или другой системы, совершающей работу, в процентах.

КПД определяется формулой:

Работа может определяться как произведение мощности на время, в течение которого совершалась работа:

A = Nt

Поэтому формулу для вычисления КПД можно записать в следующем виде:

Частые случаи определения КПД рассмотрим в таблице ниже:

Устройство

Работа полезная и полная

КПД

Неподвижный блок, рычаг

Aполезн = mgh

Асоверш.

Наклонная плоскость

Aполезн = mgh

Асоверш. = Fl

l — совершенный путь (длина наклонной плоскости).

Пример №4. Определите полезную мощность двигателя, если его КПД равен 40%, а его мощность по паспорту равна 100 кВт.

В данном случае необязательно переводить единицы измерения в СИ. Но в таком случае ответ мы тоже получим в кВт. Из этой формулы выразим полезную мощность:

Задание EF17557

Какую мощность развивает сила тяги трактора, перемещая прицеп со скоростью 18 км/ч, если она составляет 16,5 кН?

Ответ:

а) 916 Вт

б) 3300 Вт

в) 82500 Вт

г) 297000 Вт


Алгоритм решения

1.Записать исходные данные и перевести единицы измерения в СИ.

2.Записать формулу для расчета мощности.

3.Выполнить общее решение задачи.

4.Подставить известные данные и выполнить вычисления.

Решение

Запишем исходные данные:

 Сила тяги, перемещающая прицеп, равна: Fт = 16,5 кН.

 Скорость перемещения прицепа под действием силы тяги: v = 18 км/ч.

Переведем единицы измерения в СИ:

16,5 кН = 16,5∙103 Н

18 км/ч = 18000/3600 м/с = 5 м/с

Мощность равна отношению работы ко времени, в течение которого эта работа совершалась:

N=At

Но работа равна произведению силы, перемещения и косинуса угла между векторами силы и перемещения. В данном случае будем считать, что угол равен нулю, следовательно косинус — единице. Тогда работа равна:

A = Fs

Тогда мощность равна:

N=Fst=Fv=16,5·103·5=82500 (Вт)

Ответ: в

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17574

С вершины наклонной плоскости из состояния покоя скользит с ускорением лёгкая коробочка, в которой находится груз массой m (см. рисунок). Как изменятся время движения, ускорение и модуль работы силы трения, если с той же наклонной плоскости будет скользить та же коробочка с грузом массой m/2? Для каждой величины определите соответствующий характер изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждой физической величины. Цифры в ответе могут повторяться.

Время движения

Ускорение

Модуль работы силы трения


Алгоритм решения

1.Установить наличие и характер зависимости кинематических характеристик движения от массы тела.

2.Вывести формулу для модуля работы силы трения.

3.Установить, как изменится модуль работы силы трения при уменьшении массы тела вдвое.

Решение

При скольжении с наклонной плоскости происходит равноускоренное движение. Положение тела в любой момент времени при таком движении можно определить с помощью кинематических уравнений:

x=xo+v0xt+axt22

y=yo+v0yt+ayt22

Из этих уравнений видно, что ускорение и время никак не зависят от массы тела. Следовательно, при уменьшении массы тела в 2 раза его время движения и ускорение не изменятся.

Чтобы выразить модуль работы силы трения, выберем такую систему отсчета, чтобы вектор силы трения был расположен вдоль оси Ox.Тогда сила трения будет равна:

Fтр = μmg

Известно, что работа определяется формулой:

A = Fs cosα

Тогда работа силы трения равна:

A = μmgs cosα

Вектор силы трения всегда направлен противоположно вектору перемещения. Поэтому косинус угла между ними равен –1. Но нас интересует только модуль работы. Поэтому будем считать, что он равен:

A = μmgs

Модуль работы силы трения и масса тела зависят прямо пропорционально. Следовательно, если массу тела уменьшить вдвое, то и модуль работы силы трения уменьшится вдвое.

Поэтому правильная последовательность цифр в ответе: 332.

Ответ: 332

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18646

В первой серии опытов брусок перемещают при помощи нити равномерно и прямолинейно вверх по наклонной плоскости. Во второй серии опытов на бруске закрепили груз, не меняя прочих условий.

Как изменятся при переходе от первой серии опытов ко второй сила натяжения нити и коэффициент трения между бруском и плоскостью?

Для каждой величины определите соответствующий характер её изменения:

1) увеличится

2) уменьшится

3) не изменится

Запишите в таблицу выбранные цифры для каждого ответа. Цифры в ответе могут повторяться.

Сила натяжения нити Коэффициент трения

Алгоритм решения

  1. Определить, какая величина изменилась во второй серии опытов.
  2. Определить, как зависит от этой величины сила натяжения нити.
  3. Определить, как зависит от этой величины коэффициент трения.

Решение

Когда к бруску подвесили груз, увеличилась масса. Когда тело на нити перемещается вверх прямолинейно и равномерно, сила натяжения нити определяется модулем силы тяжести:

T = mg

Эта формула показывает, что сила натяжения нити и масса тела зависят прямо пропорционально. Если, добавив к бруску груз, масса увеличится, то сила натяжения нити тоже увеличится.

Коэффициент трения — это величина, которая зависит только от материалов и типа поверхности. Поэтому увеличение массы тела на него никак не повлияют.

Верная последовательность цифр в ответе: 13.

Ответ: 13

pазбирался: Алиса Никитина | обсудить разбор

Задание EF18271

Определите коэффициент полезного действия атомной электростанции, расходующей за неделю уран-235 23592U массой 1,4 кг, если её мощность равна 38 МВт. При делении одного ядра урана-235 выделяется энергия 200 МэВ.


Алгоритм решения

1.Записать исходные данные и перевести их в СИ.

2.Записать формулу для определения КПД атомной электростанции.

3.Решить задачу в общем виде.

4.Подставить известные данные и вычислить искомую величину.

5.Массовое число: A = 235.

6.Зарядовое число: Z = 92.

Решение

Запишем исходные данные:

 Энергия, выделяемая при делении одного ядра урана-235: Q0 = 200 МэВ.

 Масса урана-235: m = 1,4 кг.

 Время, в течение которого происходит деление: t = 1 неделя.

 Мощность атомной электростанции: N = 38 МВт.

Переведем все единицы измерения в СИ:

1 эВ = 1,6∙10–19 Дж

200 МэВ = 200∙106∙1,6∙10–19 Дж = 320∙10–13 Дж

1 неделя = 7∙24∙60∙60 с = 604,8∙103 с

38 МВт = 38∙106 Вт

КПД атомной электростанции есть отношение полезной работы к выделенной за это же время энергии:

η=AполезнQ100%

Полезную работу мы можем вычислить по формуле:

A=Nt

Выделенное количество теплоты мы можем рассчитать, вычислив количество атомов, содержащихся в 1,4 кг урана-235 и умножив их на энергию, выделяемую при делении одного такого атома.

Количество атомов равно произведению количество молей на постоянную Авогадро:

Nкол.атомов = νNA

Количество молей равно отношения массы вещества к его молярной массе, следовательно:

Молярная масса численно равна массовому числу в граммах на моль. Следовательно:

M = A (г/моль) = A∙10–3 (кг/моль)

Отсюда количество атомов равно:

Энергия, выделенная всеми атомами, равна:

Теперь можем вычислить КПД:

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 11.8k

Автор статьи

Сергей Феликсович Савельев

Эксперт по предмету «Физика»

Задать вопрос автору статьи

Скорость физического тела при воздействии на него силы меняется по модулю, т.е. увеличивается или уменьшается.

Определение 1

Работу можно рассматривать как изменение кинетической энергии движущегося тела в результате действия вызвавшей это изменение силы.

В простейшем случае, когда направления движения тела и приложенной к ней силы совпадают, работа прямопропорциональна интенсивности силы и расстоянию, пройденному телом под воздействием этой силы:

$A = F cdot s = m cdot v cdot s$,

где:

  • $F$ – сила,
  • $s$ – расстояние,
  • $m$ – масса,
  • $v$ – скорость.

В Международной системе СИ работа измеряется в джоулях. Один джоуль равен работе по перемещению тела силой в 1 ньютон на расстояние в 1 метр. Выразив силу через массу и скорость, получим:

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

$Дж = кг cdot frac{м}{с^2} cdot м = frac{кг cdot м^2}{с^2}$

На практике направления векторов движения тела и совершающей работу силы могут не совпадать. В таких случаях элементарную (выполненную на бесконечно малом, неотличимом от прямой участке траектории) работу удобно выражать как скалярное произведение векторов силы и элементарного перемещения точки по траектории. В пространственной системе координат это можно записать как

$delta A = F_x cdot dx + F_y cdot dy + Fz cdot dz$

, где $F_x, F_y, F_z$ – проекции силы на координатные оси, $dx, dy, dz$ – соответствующие изменения вектора траектории.

Угол между векторами силы и перемещения показывает ускоряющим или замедляющим является воздействие. Если угол острый – работа положительна, при тупом угле она, соответственно, отрицательна.

Представив расстояние как произведение скорости на время, можно найти соотношение между элементарной работой и импульсом:

$delta A = bar{F} cdot bar{v} cdot dt = bar{v} cdot dp $

, где $v$ – скорость, $dt$ – промежуток времени, за который совершается работа, $dp$ – изменение импульса тела за этот промежуток.

Если на физическое тело действуют сразу несколько сил, то следует провести векторное суммирование элементарных работ всех сил. При этом векторная сумма сил, действующих внутри тела, принимается равной нулю.

Работа для вращающегося тела определяется по формуле:

$delta A = bar{M} cdot bar{omega} cdot dt = bar{M} cdot dbar{phi}$

, где $bar{M}$ – совокупный вращающий момент действующих на тело сил, $bar{omega}$ – мгновенная угловая скорость, $dbar{phi}$ – элементарный вектор поворота.

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Содержание:

  • Определение и формула работы
  • Элементарная работа
  • Работа силы на конечном участке траектории
  • Единицы измерения работы
  • Примеры решения задач

Определение и формула работы

Определение

В том случае, если под воздействием силы происходит изменение модуля скорости движения тела, то говорят о том, что сила
совершает работу. Считают, что если скорость увеличивается, то работа является положительной, если скорость уменьшается,
то работа, которую совершает сила – отрицательна. Изменение кинетической энергии материальной точки в ходе ее движения
между двумя положениями равно работе, которую совершает сила:

$$A=Delta E_{k}=frac{m v_{2}^{2}}{2}-frac{m v_{1}^{2}}{2}(1)$$

Действие силы на материальную точку можно охарактеризовать не только с помощью изменения скорости движения тела, но при помощи
величины перемещения, которое совершает рассматриваемое тело под действием силы
($bar{F}$).

Элементарная работа

Элментарная реабота $(delta A)$ некоторой силы
$bar{F}$ определяется как скалярное произведение:

$$delta A=bar{F} cdot d bar{r}=F cdot d s cdot cos alpha(2)$$

$bar{r}$ радиус – вектор точки, к которой приложена сила,
$bar{r}$ –
элементарное перемещение точки по траектории,
$alpha$ – угол между векторами
$d s=|d bar{r}|$ и $d bar{r}$. Если
$alpha$ является тупым углом работа меньше нуля, если угол
$alpha$ острый, то работа положительная, при
$alpha=frac{pi}{2} delta A=0$

В декартовых координатах формула (2) имеет вид:

$$delta A=F_{x} d x+F_{y} d y+F_{z} d z(3)$$

где Fx,Fy,Fz – проекции вектора
$bar{F}$ на декартовы оси.

При рассмотрении работы силы, приложенной к материальной точке можно использовать формулу:

$$delta A=bar{F} bar{v} d t=bar{v} d bar{p}(4)$$

где $bar{v}$ – скорость материальной точки,
$bar{p}$ – импульс материальной точки.

Если на тело (механическую систему) действуют несколько сил одновременно, то элементарная работа, которую совершают эти силы над системой, равна:

$$delta A=sum_{i=1}^{n} delta A_{i}=sum_{i=1}^{n} bar{F}_{i} d bar{r}_{i}=sum_{i=1}^{n} bar{F}_{i} bar{v}_{i} d t(5)$$

где проводится суммирование элементарных работ всех сил, dt – малый промежуток времени, за который совершается элементарная работа
$delta$ над системой.

Результирующая работа внутренних сил, даже если твердое тело движется, равна нулю.

Пусть твердое тело вращается около неподвижной точки – начала координат (или неподвижной оси, которая проходит через эту точку).
В таком случае, элементарная работа всех внешних сил (допустим, что их число равно n), которые действуют на тело, равна:

$$delta A=bar{M} bar{omega} d t=bar{M} d bar{varphi}(6)$$

где $bar{M}$ – результирующий момент сил относительно точки вращения,
$d bar{varphi}$ – вектор элементарного поворота,
$bar{w}$ – мгновенная угловая скорость.

Работа силы на конечном участке траектории

Если сила выполняет работу по перемещению тела на конечном участке траектории его движения, то работа может быть найдена как:

$$A=int_{0}^{s} bar{F} cdot d bar{r}(7)$$

В том случае, если вектор силы – величина постоянная на всем отрезке перемещения, то:

$$A=F_{tau} cdot s$$

где $F_{tau}=F cos alpha$ – проекция силы на касательную к траектории.

Единицы измерения работы

Основной единицей измерения момента работы в системе СИ является: [A]=Дж=Н•м

В СГС: [A]=эрг=дин•см

1Дж=107 эрг

Примеры решения задач

Пример

Задание. Материальная точка движется прямолинейно (рис.1) под воздействием силы, которая задана
уравнением: $F=C sqrt{s}(C=$ const $)$ . Сила направлена по движению материальной точки.
Чему равна работа данной силы на отрезке пути от s=0 до s=s0?

Решение. За основу решения задачи примем формулу расчёта работы вида:

$$A=int_{0}^{s_{0}} F cos alpha d s(1.1)$$

где $alpha = 0$, та как по условию задачи
$bar{F} uparrow uparrow bar{s}$ . Подставим выражение для модуля силы заданное условиями, возьмем интеграл:

$$A=int_{0}^{s_{0}} F d s=int_{0}^{s_{0}} C sqrt{s} d s=frac{2}{3} C s^{frac{3}{2}}$$

Ответ. $A=frac{2}{3} C s^{frac{3}{2}}$

236

проверенных автора готовы помочь в написании работы любой сложности

Мы помогли уже 4 396 ученикам и студентам сдать работы от решения задач до дипломных на отлично! Узнай стоимость своей работы за 15 минут!

Пример

Задание. Материальная точка перемещается по окружности. Ее скорость изменяется в соответствии с
выражением: $v sim t^{2}$ . При этом работа силы, которая действует на точку,
пропорциональна времени: $A sim t^{n}$ . Каково значение n?

Решение. В качестве основы для решения задачи используем формулу:

$$delta A=bar{F} bar{v} d t=mleft(bar{a}_{n}+bar{a}_{tau}right) bar{v} d t=m bar{a}_{n} bar{v} d t+m bar{a}_{tau} bar{v} d t(2.1)$$

Зная зависимость скорости от времени найдем связь тангенциальной составляющей ускорения и времени:

$$a_{tau}=frac{d v}{d t} sim t(2.2)$$

Нормальная составляющая ускорения будет иметь вид:

$$a_{n}=frac{v^{2}}{R} sim t^{4}(2.3)$$

При движении по окружности нормальная составляющая ускорения будет всегда перпендикулярна вектору скорости, следовательно, вклад в
произведение силы на скорость будет вносить только тангенциальная составляющая, то есть выражение (2.1) преобразуется к виду:

$$delta A=m bar{a}_{tau} bar{v} d t=m a_{tau} v d t(2.5)$$

Выражение для работы найдем как:

$$A=C int_{0}^{t} t cdot t^{2} d t sim t^{4}$$

Ответ. n=4

Читать дальше: Формула силы Ампера.

Работа против силы тяжести, формула

Возле поверхности Земли, от самой поверхности до небольшой высоты можно пренебречь изменением ускорения свободного падения в зависимости от высоты и считать эту величину постоянной:

[
g = 9.81 (м/c^2)
]

Если тело равномерно поднимается, т.е. движется с постоянной скоростью в направлении, противоположном направлению действия силы тяжести, то согласно общей формуле работы, над телом совершается работа
W = Fs, где F — сила; она совпадает по направлению с перемещением s и равна по величине весу тела G = mg.

[
W = Fs
]
[
F = G = mg
]
[
W = mgs = mgh
]

Здесь:
W — работа по поднятию тела (Дж),
G — вес тела, сила тяжести (Ньютон),
g — ускорение свободного падения, 9.81 (м/с²),
s=h — высота на которую поднимают тело (метр),
m — масса тела (кг)

Вычислить, найти работу против силы тяжести по формуле (3)

Работа против силы тяжести

стр. 464

Добавить комментарий