Как найти работу плоского конденсатора

Условие задачи:

Определить работу, которую необходимо совершить, чтобы увеличить расстояние между пластинами плоского конденсатора на 3 см. Площадь пластины 200 см2, заряд составляет 0,2 мкКл.

Задача №6.4.55 из «Сборника задач для подготовки к вступительным экзаменам по физике УГНТУ»

Дано:

(Delta d=3) см, (S=200) см2, (q=0,2) мкКл, (A-?)

Решение задачи:

Работу (A) внешней силы, которую нужно совершить, чтобы увеличить расстояние между пластинами конденсатора, можно найти как разность конечной (W_2) и начальной (W_1) энергии конденсатора, то есть:

[A = {W_2} – {W_1};;;;(1)]

Начальную (W_1) и конечную (W_2) энергии конденсатора целесообразно находить по следующим формулам:

[left{ begin{gathered}
{W_1} = frac{{{q^2}}}{{2{C_1}}} hfill \
{W_2} = frac{{{q^2}}}{{2{C_2}}} hfill \
end{gathered} right.]

Начальную (C_1) и конечную (C_2) электроемкости плоского конденсатора легко найти таким образом:

[left{ begin{gathered}
{C_1} = frac{{{varepsilon _0}S}}{d} hfill \
{C_2} = frac{{{varepsilon _0}S}}{{d + Delta d}} hfill \
end{gathered} right.]

Электрическая постоянная (varepsilon _0) равна 8,85·10-12 Ф/м.

Тогда:

[left{ begin{gathered}
{W_1} = frac{{{q^2}d}}{{2{varepsilon _0}S}} hfill \
{W_2} = frac{{{q^2}left( {d + Delta d} right)}}{{2{varepsilon _0}S}} hfill \
end{gathered} right.]

Полученные выражения подставим в формулу (1):

[A = frac{{{q^2}left( {d + Delta d} right)}}{{2{varepsilon _0}S}} – frac{{{q^2}d}}{{2{varepsilon _0}S}}]

В итоге решение задачи в общем виде выглядит так:

[A = frac{{{q^2}Delta d}}{{2{varepsilon _0}S}}]

Посчитаем численный ответ:

[A = frac{{{{left( {0,2 cdot {{10}^{ – 6}}} right)}^2} cdot 3 cdot {{10}^{ – 2}}}}{{2 cdot 8,85 cdot {{10}^{ – 12}} cdot 200 cdot {{10}^{ – 4}}}} = 3,4 cdot {10^{ – 3}};Дж = 3,4;мДж]

Ответ: 3,4 мДж.

Если Вы не поняли решение и у Вас есть какой-то вопрос или Вы нашли ошибку, то смело оставляйте ниже комментарий.

Смотрите также задачи:

6.4.54 Напряженность электрического поля конденсатора электроемкостью 0,8 мкФ равна 1 кВ/м
6.4.56 Парафиновая пластинка заполняет все пространство между обкладками плоского конденсатора
6.4.57 Определить количество электрической энергии, перешедшей в тепло при соединении одноименно

КонденсаторВ статье поле плоской пластины была выведена формула напряжённости электрического поля бесконечной плоской пластины. Если эту пластину рассмотреть в разрезе и ввести понятие поверхностной плотности заряда σ, то согласно указанной статьи в любой точке пространства напряжённость электрического поля направлена перпендикулярно плоскости пластины и по величине равно:

Формула для напряжённости электрического поля бесконечной плоской пластины

E0 здесь жёстко определяется поверхностной плотностью заряда σ:

Формула для напряжённости электрического поля E0

где σ – поверхностная плотность заряда;
ε0 – диэлектрическая проницаемость для вакуума;
ε – относительная диэлектрическая проницаемость для вещества, которая для вакуума равна 1.

Формулы показывают, что величина напряжённости электрического поля плоской пластины, имеющей бесконечные размеры, не зависит от расстояния до неё.

Если σ положительная, то напряжённость электрического поля будет направлена от пластины и поле отталкивает положительные заряды.

Напряжённость электрического поля плоской пластины бесконечных размеров при положительной поверхностной плотности заряда σ

Если σ отрицательная, то напряжённость электрического поля направлена к пластине и поле притягивает положительные заряды.

Напряжённость электрического поля плоской пластины бесконечных размеров при отрицательной поверхностной плотности заряда σ

Плоским конденсатором будем называть пару параллельных плоских пластин с плотностью заряда одинаковой по модулю, но противоположной по знаку.

Расчёт и вывод формулы ёмкости плоского конденсатора

Напряжённость электрического поля конденсатора

Для расчёта плоского конденсатора расположим две пластины бесконечных размеров параллельно друг другу на некотором расстоянии d. Пусть одна пластина будет иметь поверхностную плотность заряда σ, а другая -σ. По модулю величины поверхностных плотностей зарядов будут равны. В такой ситуации общее поле плоского конденсатора по принципу суперпозиции равно сумме полей.

Напряжённость электрического поля плоского конденсатора

Обозначим напряжённости электрического поля от левой пластины плоского конденсатора как Eл, при этом положительные заряды будут отталкиваться от пластины.

Напряжённость электрического поля от правой пластины плоского конденсатора обозначим как Eп, при этом поле пластины будет притягивать к себе положительные заряды.

При равной плотности заряда напряжённость поля во всех точках пространства и от левой, и от правой пластин конденсатора будут равны по модулю. Это приведёт к тому, что слева и справа от пары пластин поля взаимно компенсируются и их сумма будет равна нулю. При этом поля между пластинами плоского конденсатора будут складываться.

Напряжённость электрического поля от левой и правой пластин плоского конденсатора

Формула напряжённости электрического поля между пластинами плоского конденсатора

где E0 – напряжённость поля при положительной σ.

Суммарная напряжённость электрического поля плоского конденсатора будет направлена от пластины с положительной σ к пластине с отрицательной σ.

Электрическая энергия плоского конденсатора отсутствует вне его пластин и вся накоплена в пространстве между пластинами.

Формула напряжённости электрического поля между пластинами плоского конденсатора

Работа по перемещению заряда

Для перемещения заряда от отрицательно заряженной пластины в направлении к положительно заряженной придётся совершить работу против электрической силы:

Формула работы по перемещению заряда от отрицательно заряженной пластины плоского конденсатора в направлении к положительно заряженной

При вычислении этой работы видно, что величина заряда q и напряжённость поля E постоянны, поэтому формула примет вид:

Формула работы по перемещению заряда от отрицательно заряженной пластины плоского конденсатора в направлении к положительно заряженной

В электрическом поле можно ввести понятие потенциала ϕ и выразить работу по перемещению заряда в точку 2 из точки 1 через разность потенциалов ϕ12.

Формула работы по перемещению заряда от отрицательно заряженной пластины плоского конденсатора в направлении к положительно заряженной, выраженная через потенциалы ϕ

Напряжение между пластинами плоского конденсатора

Разность электрических потенциалов между двумя точками называют напряжением и обозначают U12:

Формула напряжения между пластинами плоского конденсатора

Формула работы по перемещению заряда от отрицательно заряженной пластины плоского конденсатора в направлении к положительно заряженной, выраженная через напряжение

Таким образом, сравнивая две формулы для работы мы получим:

Приравнивание двух формул для работы по перемещению заряда между пластинами плоского конденсатора

Формула напряжения между пластинами плоского конденсатора, выраженная через напряжённость электрического поля

В реальном конденсаторе площадь пластин ограничена по естественным причинам, поэтому, как правило, мы не имеем возможности знать плотность заряда, а знаем только заряд пластины. В этом случае плотность заряда σ мы можем вычислить по формуле:

Формула плотности заряда на одной из пластин плоского конденсатора

где Q – заряд пластины;
S – площадь пластины.

Если пластины плоского конденсатора находятся достаточно близко друг к другу, то краевыми эффектами можно пренебречь и считать, что поле внутри конденсатора реальных размеров подобно полю внутри конденсатора с пластинами бесконечных размеров.

В таком случае имеем следующее выражение:

Формула напряжения между пластинами плоского конденсатора

Напряжение между пластинами пропорционально полному заряду этих пластин:

Формула полного заряда пластин плоского конденсатора

Электрическая ёмкость плоского конденсатора

Коэффициент пропорциональности между зарядом на обкладках плоского конденсатора и напряжением между ними носит название ёмкости плоского конденсатора и обозначается буквой C:

Формула электрической ёмкости плоского конденсатора

Подробности венецианская штукатурка для внутренней отделки цена на сайте.

Автор статьи

Демьян Бондарь

Эксперт по предмету «Электроника, электротехника, радиотехника»

преподавательский стаж — 5 лет

Задать вопрос автору статьи

Плоский конденсатор

Определение 1

Плоский конденсатор – это самый простой конденсатор, который представляет собой две плоские проводящие пластины, называемые обкладками, расположенные параллельно друг другу, разделенные диэлектриком, причем расстояние между пластинами должно быть намного меньше, чем размеры пластин.

Конденсаторы наравне с резисторами являются наиболее используемыми электронными компонентами. Самым интересным случаем является тот, когда заряды пластин плоского конденсатора противоположны по знаку и одинаковы по модулю, как представлено на рисунке ниже.

Конденсатор. Автор24 — интернет-биржа студенческих работ

Рисунок 1. Конденсатор. Автор24 — интернет-биржа студенческих работ

Логотип iqutor

Сделаем домашку
с вашим ребенком за 380 ₽

Уделите время себе, а мы сделаем всю домашку с вашим ребенком в режиме online

Бесплатное пробное занятие

*количество мест ограничено

На пластинах сосредоточен заряд – между ними возникает электрическое поле. У плоского конденсатора электрическое поле в основном сосредоточено между его обкладками, но в окружающем пространстве также имеет место быть электрическое поле, которое называется полем рассеяния. При решении задач им, в большинстве случаев, пренебрегают. Чтобы определить величины данного поля, необходимо рассмотреть схематическое изображение плоского конденсатора, которое представлено на рисунке ниже.

Плоский конденсатор. Автор24 — интернет-биржа студенческих работ

Рисунок 2. Плоский конденсатор. Автор24 — интернет-биржа студенческих работ

Каждой пластиной конденсатора создается электрическое поле:

  1. положительно заряженная частица +q создающая электрическое поле напряженностью Е+;
  2. отрицательно заряженная частица -q создающая электрическое поле напряженностью Е-.

«Плоский конденсатор: примеры решения задач» 👇

Формула для расчета напряженности поля для равномерно заряженной пластины выглядит следующим образом:

$Епл = j / (2*e¬_0*e)$

где: j – поверхностная плотность заряда; е – диэлектрическая проницаемость диэлектрического слоя между обкладками конденсатора.

Определение 2

Плотность заряда – это величина электрического заряда, который приходится на одну единицу объема, площади или длины, измеряющаяся в кулонах на метр.

Так как площадь пластин у рассматриваемого конденсатора одинакова, то модули напряженности равны между собой:

$Е+ = Е- = q / (2*e_0*e*S)$

где S – площадь пластин.

Однако направление векторов разные, то есть внутри конденсатора векторы направлены в одну сторону, а вне его в противоположные. Поэтому внутри пластин результирующее поле определяется следующим образом:

$Е = Е+ + Е- = (q / (2*e_0*e*S)) + (q / (2*e_0*e*S)) = q / (e_0*e*S)$

Таким образом вне плоского конденсатора электрические поля обкладок компенсируют друг друга – результирующая напряженность равна 0.

Примеры решения задач

Предположим, что необходимо рассчитать расстояние между пластинами плоского конденсатора при следующих условиях: разность потенциалов равняется 150 вольт, заряд на обкладке конденсатора равняется $10^{-8}$ кулон, площадь пластин 10^{-2}$ метра диэлектрический слой сделан из слюд, диэлектрическая проницаемость которой равняется 7. метра диэлектрический слой сделан из слюд, диэлектрическая проницаемость которой равняется 7.

Емкость конденсатора рассчитывается по следующей формуле:

$С = (е*е_0*S) / d$

где: е – диэлектрическая проницаемость слюды; е0 – диэлектрическая проницаемость вакуума; S – площадь пластин; d – расстояние между пластинами.

Определение 3

Диэлектрическая проницаемость – это коэффициент, который входит в математическую запись закона Кулона для силы взаимодействия между точечными зарядами, находящимися в однородной диэлектрической (изолирующей) среде на определенном расстоянии друг от друга.

Из представленной выше формулы можно вывести формулу для расчета расстояния между пластинами:

$d = (е*е_0*S) / С$

Емкость любого конденсатора может быть рассчитана по формуле:

$С = q/U$

где q – заряд на обкладке конденсатора; U – разность потенциалов.

Таким образом получается следующая формула для расчета расстояния между пластинами:

$d = (U*e*e_0*S) / q = (150*7*8.85*10^{-12}*10^{-2}) / 10^{-8} = 9.3 * 10^{-3}$

Предположим, что необходимо рассчитать первоначальную энергию плоского воздушного конденсатора и его энергию, если пластины раздвинуть до расстояния $1,5*10^{-2}$ при следующих исходных данных: первоначальная разность потенциалов 500 вольт, площадь пластин $2*10^{-2}$ метра, первоначальное расстояние между обкладками конденсатора $1,5-10^{-3}$, а источник напряжения в случае раздвижения пластин не отключается.

Энергия электрического поля конденсатора можно рассчитать по следующей формуле:

$W = (C*U^2) / 2$

где С – электрическая емкость конденсатора; U – разность потенциалов.

Электрическая емкость плоского конденсатора рассчитывается по формуле:

$С = (е*е_0*S) / d$

Если учесть, что рассматриваемый конденсатор воздушный, то первоначальная емкость может быть рассчитана – электрическая проницаемость воздуха равняется 1, по формуле:

$С_1 = (е_0*S) / d_1$

где, $d_1$ – первоначальная емкость конденсатора.

В таком случае первоначальная энергия конденсатора рассчитывается по формуле:

$W_1 = ((е_0*S) / d_1) * ((C*U^2) / 2) = (8.85 * 10 ^{-12}*2*10^{-2}*500^2) / (2*1.5*10^{-3}) = 14.8 * 10^{-6}$

При изменении расстоянии между обкладками конденсатора и не выключенном источнике напряжения разность потенциалов не меняется и, следовательно, формула для расчета энергии конденсатора при именном расстоянии между пластинами имеет следующий вид:

$W_2 = ((е_0*S)/d_2) * (U^2/2) = W_1*(d_1/d_2) = 14.8*10^{-6} * (1.5*10^{-3} / 1.5*10^{-2}) = 1.5 * 10^{-6}$

Находи статьи и создавай свой список литературы по ГОСТу

Поиск по теме

Добавить комментарий