Как найти работу при расширении воздуха

В этой статье рубрики «физика для чайников» рассмотрим подробное решение нескольких задач на работу в термодинамике. Тем, кто хочет научиться решать задачи, рекомендуем систематически тренироваться, предварительно ознакомившись с теорией. А еще, полезно почитать памятку по решению физических задач и держать под рукой основные физические формулы.

Чтобы не заскучать, подписывайтесь на наш телеграм-канал. Там вас ждет ежедневная рассылка, которая будет полезна всем учащимся.

Примеры решения задач на работу в термодинамике

Задача №1. Работа расширения

Условие

При адиабатическом расширении 1 кг воздуха его объем увеличился в 10 раз. Найти работу расширения, если начальное давление 1 атм, а начальная температура 15 °С.

Решение

Задача №1. Работа расширения

Зная молярную массу воздуха (29 г/моль), начальный объем можно найти из уравнения Клапейрона-Менделеева:

Задача №1. Работа расширения

Не забываем переводить все физические величины из условия в систему СИ.

Из условия находим конечный объем:

Задача №1. Работа расширения

Работа равна: 

Задача №1. Работа расширения

Ответ: 751 кДж.

Задача №2. Работа в цикле Карно

Условие

Температура нагревателя идеальной тепловой машины составляет 227 °С, а охладителя — 27 °С. За один рабочий цикл тепловая машина получает количество теплоты, равное 100Дж. Какую работу совершает рабочее тело идеальной тепловой машины за один цикл?

Решение

Из формулы для КПД можно выразить искомую работу:

Задача №2. Работа в цикле Карно

Ответ: 40 Дж.

Задача №3. Работа при выдувании мыльного пузыря

Условие

Определить работу, которую необходимо совершить, чтобы выдуть мыльный пузырь диаметром 10 см.

Решение

Работа, которую нужно совершить, чтобы, выдувая мыльный пузырь, увеличить площадь поверхности мыльной пленки на дельта S, равна:

Задача №3. Работа при выдувании мыльного пузыря

Здесь сигма – коэффициент поверхностного натяжения для мыльного раствора (берется из таблицы). S – общая площадь двух сферических поверхностей пленки мыльного пузыря (внешней и внутренней). S нулевое – площадь этих поверхностей до выдувания пузыря (этой величиной можно пренебречь).

Задача №3. Работа при выдувании мыльного пузыря

Ответ: 2,5 мДж.

Задача №4. Графическое представление работы

Условие

Газ расширяется от объёма V1 до объёма V2 один раз изотермически, другой изобарно и третий адиабатно. При каком процессе газ совершает большую работу и при каком газу передаётся большее количество теплоты?

Задача №4. Графическое представление работы

 
Решение

Работа численно равна площади криволинейной трапеции. Из рисунка очевидно, что работа при изобарном процессе будет максимальной, при адиабатном минимальной, т. е. 

Задача №4. Графическое представление работы

Ответ: см. выше.

Задача №5. Работа газа

Условие

Газ совершает круговой процесс, состоящий из нескольких этапов. Сначала газ изохорно охлаждается до температуры, при которой его давление равно P2 = 105 Па. Затем он изобарно охлаждается до состояния, из которого возвращается в начальное состояние таким образом, что его давление изменяется с изменением объема по закону Р = αV (α – постоянная величина). Начальные объем и давление газа известны: V1 = 2 м3, Р1 = 4·105 Па. Нарисовать график данного кругового процесса на РV-диаграмме и найти работу, совершенную газом.

Решение

Сначала выполним рисунок:

Задача №5. Работа газа

Точки состояния газа 1 и 3 лежат на прямой, проходящей через центр координат:

Задача №5. Работа газа

C учетом этого, получаем:

Задача №5. Работа газа

Работа газа в данном случае равна площади треугольника 123:

Задача №5. Работа газа

Подставим найденное ранее значение для V3, преобразуем и подставим значения из условия:

Задача №5. Работа газа

Ответ: 2,25*10^5 Дж.

Вопросы на тему «Работа в термодинамике»

Вопрос 1. Что такое работа в термодинамике?

Ответ. Работа – одна из форм обмена энергией термодинамической системы с окружающими телами. Работа, как и энергия, измеряется в Джоулях.

Вопрос 2. Сформулируйте первое начало термодинамики.

Ответ. Первое начало термодинамики гласит: 

Изменение внутренней энергии системы равно сумме совершаемой над системой работы внешних сил и количества теплоты, переданной системе.

У первого начала термодинамики исторически есть несколько формулировок. Одна из них: невозможно построить вечный двигатель первого рода.

Вопрос 3. При каком из изопроцессов работа газа равна нулю?

Ответ. При изохорном процессе объем системы остается неизменным. Следовательно, газ в данном процессе не совершает работу.

Вопрос 4. Как, совершая работу, можно изменить внутреннюю энергию?

Ответ. Если работа совершается над телом (системой), то его внутренняя энергия увеличивается, если же тело само совершает работу, это ведет к уменьшению его внутренней энергии.

Вопрос 5. Как определить работу газа геометрически?

Ответ. Величина работы газа равна площади фигуры под графиком на диаграмме pV

Нужна помощь в решении задач или в выполнении других студенческих заданий? Обращайтесь в профессиональный студенческий сервис.

Работа расширения или сжатия газа

Одним
из основных термодинамических процессов,
совершающихся в большинстве тепловых
машин, является процесс расширения газа
с совершением работы. Легко определить
работу, совершаемую при изобарном
расширении газа.

   Если
при изобарном расширении газа от объема
V1
до объема V2
происходит перемещение поршня в цилиндре
на расстояние l
(рис. 7.3), то работа A’,
совершенная газом, равна

,
(7.27)

где
p
— давление газа,

изменение его объема.

3

Рис
7.3 Рис 7.4

Как
видно из рисунка 7.4, при изображении
изобарного процесса расширения газа в
координатных осях p
, V
площадь фигуры, ограниченной графиком
процесса, координатами V1
и V2,
осью абсцисс, пропорциональна работе
газа A’.

Работа
при произвольном процессе расширения
газа.

Произвольный процесс расширения газа
от объема V1
до объема V2
можно представить как совокупность
чередующихся изобарных и изохорных
процессов.

   При
изохорных процессах работа равна нулю,
так как поршень в цилиндре не перемещается.
Работа при изобарных процессах
пропорциональна площади фигуры на
диаграмме p,
V
под соответствующим участком изобары
(рис. 7.5).

Рис.
7.5
Рис. 7.6

Следовательно,
работа при произвольном процессе
расширения газа прямо пропорциональна
площади фигуры под соответствующим
участком графика процесса на диаграмме
p,
V.

Работа
при изотермическом расширении газа.

Сравнивая площади фигур под участками
изотермы и изобары (рис. 7.6), можно сделать
вывод, что расширение газа от объема V1
до объема V2
при одинаковом начальном значении
давления газа сопровождается в случае
изобарного расширения совершением
большей работы.

Работа
при сжатии газа.

При расширении газа направление вектора
силы давления газа совпадает с направлением
вектора перемещения, поэтому работа
A’,
совершенная газом, положительна (A’
> 0), а работа А
внешних сил отрицательна: A
= –A’
< 0.

   При
сжатии газа направление вектора внешней
силы совпадает с направлением перемещения,
поэтому работа А
внешних сил положительна (A
> 0), а работа A’,
совершенная газом, отрицательна (A’
< 0).

Адиабатный
процесс.

Кроме изобарного, изохорного и
изотермического процессов, в термодинамике
часто рассматриваются адиабатные
процессы.

   Адиабатным
процессом

называется процесс, происходящий в
термодинамической системе при отсутствии
теплообмена с окружающими телами, т. е.
при условии Q
= 0
.

   Отсутствие
теплообмена с окружающей средой может
быть обеспечено хорошей теплоизоляцией
газа. Быстрые процессы расширения или
сжатия газа могут быть близкими к
адиабатному и при отсутствии теплоизоляции,
если время, за которое происходит
изменение объема газа, значительно
меньше времени, необходимого для
установления теплового равновесия газа
с окружающими телами.

 Примерами
адиабатных процессов могут служить
процессы сжатия воздуха в цилиндре
воздушного огнива, в цилиндре двигателя
внутреннего сгорания. В соответствии
с первым законом термодинамики, при
адиабатном сжатии изменение внутренней
энергии газа
равно
работе внешних сил А:

(7.28)

Так
как работа внешних сил при сжатии
положительна, внутренняя энергия газа
при адиабатном сжатии увеличивается,
его температура повышается.

   При
адиабатном расширении газ совершает
работу A’
за счет уменьшения своей внутренней
энергии:

,
(7.29)

поэтому
температура газа при адиабатном
расширении понижается. Это можно
обнаружить в следующем опыте. Если в
бутылку, содержащую насыщенный водяной
пар, накачивать с помощью насоса воздух,
то пробка вылетает (рис. 7.7).

Рис.
7.7

Работа
A’
по выталкиванию пробки совершается
воздухом за счет уменьшения его внутренней
энергии, так как расширение воздуха
происходит за очень короткое время и
теплообмен с окружающей средой не
успевает произойти. Образование капель
тумана доказывает, что при адиабатном
расширении воздуха его температура
понизилась и опустилась ниже точки
росы.

График
адиабатного процесса.

Поскольку при адиабатном сжатии
температура газа повышается, то давление
газа с уменьшением объема растет быстрее,
чем при изотермическом процессе.
Понижение температуры газа при адиабатном
расширении приводит к тому, что давление
газа убывает быстрее, чем при изотермическом
расширении.

   График
адиабатного процесса в координатных
осях p,
V
представлен на рисунке 1.8. На том же
рисунке для сравнения приведен график
изотермического процесса.

Рис.
7.8

Вну́тренняя
эне́ргия

тела (обозначается как E
или U) —
полная энергия этого тела за вычетом
кинетической
энергии
тела как целого и потенциальной
энергии
тела во внешнем поле сил. Следовательно,
внутренняя энергия складывается из
кинетической энергии хаотического
движения молекул,
потенциальной энергии взаимодействия
между ними и внутримолекулярной энергии.

Внутренняя
энергия является однозначной функцией
состояния системы. Это означает, что
всякий раз, когда система оказывается
в данном состоянии, её внутренняя энергия
принимает присущее этому состоянию
значение, независимо от предыстории
системы. Следовательно, изменение
внутренней энергии при переходе из
одного состояния в другое будет всегда
равно разности между ее значениями в
конечном и начальном состояниях,
независимо от пути, по которому совершался
переход.

Внутреннюю
энергию тела нельзя измерить напрямую.
Можно определить только изменение
внутренней энергии:

где

—подведённая
к телу теплота,
измеренная в джоулях

—работа,
совершаемая телом против внешних сил,
измеренная в джоулях

Эта
формула является математическим
выражением первого
начала термодинамики

Для
квазистатических
процессов
выполняется следующее соотношение:

где

—температура,
измеренная в кельвинах

—энтропия,
измеренная в джоулях/кельвин

—давление,
измеренное в паскалях

—химический
потенциал

—количество
частиц в системе

Идеальные
газы

Согласно
закону Джоуля, выведенному эмпирически,
внутренняя энергия идеального
газа
не зависит от давления или объёма. Исходя
из этого факта, можно получить выражение
для изменения внутренней энергии
идеального газа. По определению молярной
теплоёмкости
при постоянном объёме,
.
Так как внутренняя энергия идеального
газа является функцией только от
температуры, то

.
(7.30)

Эта
же формула верна и для вычисления
изменения внутренней энергии любого
тела, но только в процессах при постоянном
объёме (изохорных
процессах);
в общем случае CV
(T,V)
является функцией и температуры, и
объёма.

Если
пренебречь изменением молярной
теплоёмкости при изменении температуры,
получим:

ΔU
= νCVΔT,
(7.31)

где
ν — количеств о вещества, ΔT —
изменение температуры.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]

  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #
  • #

Тема: Определить работу расширения воздуха  (Прочитано 2251 раз)

0 Пользователей и 1 Гость просматривают эту тему.

10 кг воздуха расширяется адиабатически. Температура газа меняется от 600 до 300 К. Определить работу расширения воздуха ( воздух считать двухатомным газом, μ = 29 г/моль).


Записан


Решение.
Адиабатический процесс — термодинамический процесс в макроскопической системе, при котором не происходит процесс теплообмена системы с окружающими телами. С точки зрения первого начала термодинамики это означает, что работа совершается газом только за счет внутренней энергии:

Q = 0, А + ∆U = 0, А = -∆U   (1).

Запишем формулу для вычисления изменения внутренней энергии:

[ Delta U=frac{iota }{2}cdot frac{m}{M}cdot Rcdot ({{T}_{2}}-{{T}_{1}}) (2). ]

Газ двухатомный i = 5, R = 8,31 Дж/моль∙К, R – универсальная газовая постоянная.

[ A=-Delta U=frac{iota }{2}cdot frac{m}{M}cdot Rcdot ({{T}_{1}}-{{T}_{2}}) (3). ]

А = 2,15∙106 Дж.

« Последнее редактирование: 24 Мая 2015, 06:05 от alsak »


Записан


Напишите мини-сочинение на тему школьных дней (на английском), по плану вступление,преимущества(школы),недостатки(школы),итог. Используя данные выражения: Some of the advantages:

to become smarter, to develop your mind, to take part in school activities, to have good sports facilities, to have good and experienced teachers, to have interesting school traditions, to develop your imagination, to study interesting subjects, to learn new things, to prepare for adult life, to have a lot of friends, to enjoy school life and friendship…

Some of the disadvantages:

not to need so much knowledge, to have no time for sports and hobbies, to get up early in the morning every day, to be tired of doing homework, to work too hard, not to be allowed to do what you want to, to have boring lessons, to be afraid of some teachers, to have too many extra subjects, to worry about getting good marks, to have many tests, school has nothing to do with real life…

Добавить комментарий