Как найти работу проводника физика

1. Работа тока. Закон Джоуля-Ленца

Работа тока

Работу электрического поля по перемещению свободных зарядов в проводнике называют работой тока. При перемещении заряда q вдоль проводника поле совершает работу A = qU (см. § 53), где U – разность потенциалов на концах проводника. Поскольку q = It, работу тока можно записать в виде

A = UIt.

Закон Джоуля-Ленца

Рассмотрим практически важный случай, когда основным действием тока является тепловое действие. В таком случае согласно закону сохранения энергии количество теплоты, выделившееся в проводнике, равно работе тока: Q = A. Поэтому

Q = IUt.     (1)

? 1. Докажите, что количество теплоты Q, выделившееся в проводнике с током, выражается также формулами

Q = I2Rt,     (2)
Q = (U2/R)t.     (3)

Подсказка. Воспользуйтесь формулой (1) и законом Ома для участка цепи.

Мы вывели формулы (1) – (3), используя закон сохранения энергии, но исторически соотношение Q = I2Rt независимо друг от друга установили на опыте российский ученый Эмилий Христианович Ленц и английский ученый Дж. Джоуль за несколько лет до открытия закона сохранения энергии.

Закон Джоуля – Ленца: количество теплоты, выделившееся за время t в проводнике сопротивлением R, сила тока в котором равна I, выражается формулой

Q = I2Rt.

Применение закона Джоуля – Ленца к последовательно и параллельно соединенным проводникам

Выясним, в каких случаях для сравнения количества теплоты, выделившейся в проводниках, удобнее пользоваться формулой (2), а в каких случаях – формулой (3).

Формулу Q = I2Rt удобно применять, когда сила тока в проводниках одинакова, то есть когда они соединены последовательно (рис. 58.1).

Из этой формулы видно, что при последовательном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого больше. При этом

Q1/Q2 = R1/R2.

Формулу Q = (U2/R)t удобно применять, когда напряжение на концах проводников одинаково, то есть когда они соединены параллельно (рис. 58.2).

Из этой формулы видно, что при параллельном соединении проводников большее количество теплоты выделяется в проводнике, сопротивление которого меньше. При этом

Q1/Q2 = R2/R1.

? 2. При последовательном соединении в первом проводнике выделилось в 3 раза большее количество теплоты, чем во втором. В каком проводнике выделится большее количество теплоты при их параллельном соединении? Во сколько раз большее?

? 3. Имеются два проводника сопротивлением R1 = 1 Ом и R2 = 2 Ом. Их подключают к источнику напряжения 6 В. Какое количество теплоты выделится за 10 с, если:
а) подключить только первый проводник?
б) подключить только второй проводник?
в) подключить оба проводника последовательно?
г) подключить оба проводника параллельно?
д) чему равно отношение значений количества теплоты Q1/Q2, если проводники включены последовательно? Параллельно?

Поставим опыт
Будем включать в сеть две лампы накаливания с разными сопротивлениями нити накала параллельно и последовательно (рис. 58.3, а, б). Мы увидим, что при параллельном соединении ламп ярче светит одна лампа, а при последовательном – другая.

? 4. У какой из ламп (1 или 2) сопротивление больше? Поясните ваш ответ.

? 5. Объясните, почему при последовательном соединении накал нити каждой лампы меньше, чем накал этой же лампы при параллельном соединении.

? 6. Почему при включении лампы в осветительную сеть нить накала раскаляется добела, а последовательно соединенные в нею соединительные провода почти не нагреваются?

2. Мощность тока

Мощностью тока P называют отношение работы тока A к промежутку времени t, в течение которого эта работа совершена:

P = A/t.     (4)

Единица мощности – ватт (Вт). Мощность тока равна Вт, если совершаемая током за 1 с работа равна 1 Дж. Часто используют производные единицы, например киловатт (кВт).

? 7. Докажите, что мощность тока можно выразить формулами

P = IU,     (5)
P = I2R,     (6)
P = U2/R.     (7)

Подсказка. Воспользуйтесь формулой (4) и законом Ома для участка цепи.

? 8. Какой из формул (5) – (7) удобнее пользоваться при сравнении мощности тока:
а) в последовательно соединенных проводниках?
б) в параллельно соединенных проводниках?

? 9. Имеются проводники сопротивлением R1 и R2. Объясните, почему при последовательном соединении этих проводников

P1/P2 = R1/R2,

а при параллельном

P1/P2 = R2/R1.

? 10. Сопротивление первого резистора 100 Ом, а второго – 400 Ом. В каком резисторе мощность тока будет больше и во сколько раз больше, если включить их в цепь с заданным напряжением:
а) последовательно?
б) параллельно?
в) Чему будет равна мощность тока в каждом резисторе при параллельном соединении, если напряжение в цепи 200 В?
г) Чему при том же напряжении цепи равна суммарная мощность тока в двух резисторах, если они соединены: последовательно? параллельно?

Мощностью электроприбора называют мощность тока в этом приборе. Так, мощность электрочайника – примерно 2 кВт.

Обычно мощность прибора указывают на самом приборе.

Ниже приведены примерные значения мощности некоторых приборов.
Лампа карманного фонарика: около 1 Вт
Лампы осветительные энергосберегающие: 9-20 Вт
Лампы накаливания осветительные: 25-150 Вт
Электронагреватель: 200-1000 Вт
Электрочайник: до 2000 Вт

Все электроприборы в квартире включаются параллельно, поэтому напряжение на них одинакова.

? 11. В сеть напряжением 220 В включен электрочайник мощностью 2 кВт.
а) Чему равно сопротивление нагревательного элемента в рабочем режиме (когда чайник включен)?
б) Чему равна при этом сила тока?

? 12. На цоколе первой лампы написано «40 Вт», а на цоколе второй – «100 Вт». Это – значения мощности ламп в рабочем режиме (при раскаленной нити накала).
а) Чему равно сопротивление нити накала каждой лампы в рабочем режиме, если напряжение в цепи 220 В?
б) Какая из ламп будет светить ярче, если соединить эти лампы последовательно и подключить к той же сети? Будет ли эта лампа светить так же ярко, как и при параллельном подключении?

? 13. В электронагревателе имеются два нагревательных элемента сопротивлением R1 и R2, причем R1 > R2. Используя переключатель, элементы нагревателя можно включать в сеть по отдельности, а также последовательно или параллельно. Напряжение в сети равно U.
а) При каком включении элементов мощность нагревателя будет максимальной? Чему она при этом будет равна?
б) При каком включении элементов мощность нагревателя будет минимальной (но не равной нулю)? Чему она при этом будет равна?
в) Чему равно отношение R1/R2, если максимальная мощность в 4,5 раза больше минимальной?

Дополнительные вопросы и задания

14. На рисунке 58.4 изображена электрическая схема участка цепи, состоящего из четырех одинаковых резисторов. Напряжение на всем участке цепи постоянно. Примите, что зависимостью сопротивления резистора от температуры можно пренебречь.

а) На каком резисторе напряжение самое большое? самое маленькое?
б) В каком резисторе сила тока самая большая? самая маленькая?
в) В каком резисторе выделяется самое большое количество теплоты? самое маленькое количество теплоты?
г) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если резистор 1 замкнуть накоротко (то есть заменить проводником с очень малым сопротивлением)?
д) Как изменится количество теплоты, выделяемое в каждом из резисторов 2, 3, 4, если отсоединить провод от резистора 1 (то есть заменить этот резистор проводником с очень большим сопротивлением)?

При прохождении тока в цепи электрическое поле совершает работу по перемещению заряда. В этом случае работу электрического поля называют работой электрического тока.

При прохождении заряда (q) по участку цепи электрическое поле будет совершать работу: (A=qcdot U), где (U) — напряжение электрического поля, (A) — работа, совершаемая силами электрического поля по перемещению заряда (q) из одной точки в другую.

Для выражения любой из этих величин можно использовать приведённый ниже рисунок.

зависимость.svg

Рис. (1). Зависимость между работой, напряжением и зарядом

Количество заряда, прошедшее по участку цепи, пропорционально силе тока и времени прохождения заряда:

q=I⋅t

.

Работа электрического тока на участке цепи пропорциональна напряжению на её концах и количеству заряда, проходящего по этому участку:

A=U⋅q

.

Работа электрического тока на участке цепи пропорциональна силе тока, времени прохождения заряда и напряжению на концах участка цепи:

A=U⋅I⋅t

.

Чтобы выразить любую из величин из данной формулы, можно воспользоваться рисунком.

3.png

Рис. (2). Зависимость между работой, силой тока и временем прохождения заряда

Единицы измерения величин:

работа электрического тока ([A]=1) Дж;

напряжение на участке цепи ([U]=1) В;

сила тока, проходящего по участку ([I]=1) А;

время прохождения заряда (тока) ([t]=1) с.

Для измерения работы электрического тока нужны вольтметр, амперметр и часы. Например, для определения работы, которую совершает электрический ток, проходя по спирали лампы накаливания, необходимо собрать цепь, изображённую на рисунке. Вольтметром измеряется напряжение на лампе, амперметром — сила тока в ней. А при помощи часов (секундомера) засекается время горения лампы.

в_пример.svgpower-8191WKS.jpg

Рис. (3). Схема и часы для измерения

Например:

I = 1,2 АU = 5 Вt = 1,5 мин = 90 сА = U⋅I⋅t = 5⋅1,2⋅90 = 540 Дж 

Обрати внимание!

Работа чаще всего выражается в килоджоулях или мегаджоулях.

(1) кДж = 1000 Дж или (1) Дж = (0,001) кДж;
(1) МДж = 1000000 Дж или (1) Дж = (0,000001) МДж.

Для потребителей электрической энергии существуют приборы, позволяющие в пределах ошибки измерения получать числовые данные о ее расходе в единицу времени.

soe_52_60_11_sh.jpg

Рис. (4). Электросчетчик

Механическая мощность численно равна работе, совершённой телом в единицу времени:

N = Аt

.  Чтобы найти мощность электрического тока, надо поступить точно также, т.е. работу тока,

A=U⋅I⋅t

, разделить на время.

Мощность электрического тока обозначают буквой (Р):

P=At=U⋅I⋅tt=U⋅I

. Таким образом:

Мощность электрического тока равна произведению напряжения на силу тока:

P=U⋅I

.

Из этой формулы можно определить и другие физические величины.
Для удобства можно использовать приведённый ниже рисунок.

зависимость1.svg

Рис. (5). Зависимость между мощностью, напряжением и силой тока

За единицу мощности принят ватт: (1) Вт = (1) Дж/с.

Из формулы

P=U⋅I

следует, что

(1) ватт = (1) вольт ∙ (1) ампер, или (1) Вт = (1) В ∙ А.

Обрати внимание!

Используют также единицы мощности, кратные ватту: гектоватт (гВт), киловатт (кВт), мегаватт (МВт).
(1) гВт = (100) Вт или (1) Вт = (0,01) гВт;
(1) кВт = (1000) Вт или (1) Вт = (0,001) кВт;
(1) МВт = (1 000 000) Вт или (1) Вт = (0,000001) МВт.

Пример:

Измерим силу тока в цепи с помощью амперметра, а напряжение на участке — с помощью вольтметра.

в_пример.svg

Рис. (6). Схема

Так как мощность тока прямо пропорциональна напряжению и силе тока, протекающего через лампочку, то перемножим их значения:

I=1,2АU=5ВP =U⋅I=5⋅1,2=6Вт

.

Ваттметры измеряют мощность электрического тока, протекающего через прибор. По своему назначению и техническим характеристикам ваттметры разнообразны.

В зависимости от сферы применения у них различаются пределы измерения.

Аналоговый ваттметр

Аналоговый ваттметр

Аналоговый ваттметр

Цифровой ваттметр

0007-004-Vattmetr-pribor-dlja-izmerenija-moschnosti.jpg

791838.jpeg

c301 (1).jpg

0987.jpg

Рис. (7). Приборы для измерения

Подключим к цепи по очереди две лампочки накаливания, сначала одну, затем другую и измерим силу тока в каждой из них. Она будет разной.

1.png Jauda1.png

Рис. (8). Лампы различной мощности в цепи

Сила тока в лампочке мощностью (25) ватт будет составлять (0,1) А. Лампочка мощностью (100) ватт потребляет ток в четыре раза больше — (0,4) А. Напряжение в этом эксперименте неизменно и равно (220) В. Легко можно заметить, что лампочка в (100) ватт светится гораздо ярче, чем (25)-ваттовая лампочка. Это происходит оттого, что её мощность больше. Лампочка, мощность которой в (4) раза больше, потребляет в (4) раза больше тока. Значит: 

Обрати внимание!

Мощность прямо пропорциональна силе тока.

Что произойдёт, если одну и ту же лампочку подсоединить к источникам различного напряжения? В данном случае используется напряжение (110) В и (220) В.

2_1.png Jauda2.png 

Рис. (8). Лампа, подключенная к источнику тока с различным напряжением

Можно заметить, что при большем напряжении лампочка светится ярче, значит, в этом случае её мощность будет больше. Следовательно:

Обрати внимание!

Мощность зависит от напряжения.

Рассчитаем мощность лампочки в каждом случае:

I=0,2АU=110ВP=U⋅I=110⋅0,2=22Вт I=0,4АU=220ВP=U⋅I=220⋅0,4=88Вт.

Можно сделать вывод о том, что при увеличении напряжения в (2) раза мощность увеличивается в (4) раза.
Не следует путать эту мощность с номинальной мощностью лампы (мощность, на которую рассчитана лампа). Номинальная мощность лампы (а соответственно, ток через нить накала и её расчётное сопротивление) указывается только для номинального напряжения лампы (указано на баллоне, цоколе или упаковке).

Рис. (9). Маркировка

В таблице дана мощность, потребляемая различными приборами и устройствами:

Таблица (1). Мощность различных приборов

Название

Рисунок

Мощность

 Калькулятор

441.jpg

(0,001) Вт

 Лампы дневного света

lampy-dnevnogo-sveta-potolochnye1.jpg

(15 — 80) Вт

 Лампы накаливания

l1.png

(25 — 5000) Вт

 Компьютер

apple-1834328_640.jpg

(200 — 450) Вт

 Электрический чайник

skolko-elektroe-nergii-potreblyaet-chajnik-nowbest.ru_.jpg

(650 — 3100) Вт

 Пылесос

6a.jpg

(1500 — 3000) Вт

 Стиральная машина

atlant.jpeg

(2000 — 4000) Вт

 Трамвай

64216.jpg

(150 000 — 240000) Вт

Источники:

Рис. 1. Зависимость между работой, напряжением и зарядом. © ЯКласс.
Рис. 3. Схема и часы для измерения. © ЯКласс.
Рис. 5. Зависимость между мощностью, напряжением и силой тока. © ЯКласс.
Рис. 6. Схема. © ЯКласс.
Таблица 1.  Мощность различных приборов. Компьютер. Указание авторства не требуется, 2021-08-14, Pixabay License, https://pixabay.com/ru/photos/яблоко-стул-компьютер-1834328/.

Как и любая другая сила, сила Ампера имеет возможность совершить работу. По определению механической работы:

displaystyle A=FDelta rcos alpha (1)

Работа силы Ампера

Рис. 1. Работа силы Ампера

Пусть в нашей системе проводник длиной displaystyle B, находящийся в однородном магнитном поле индукции displaystyle I, по которому течёт ток displaystyle Delta r, движется под действием силы Ампера и перемещается на расстояние displaystyle {{F}_{A}}=IBl (рис. 1). Тогда, при условии, что сила Ампера равна displaystyle {{F}_{A}}=IBl, получим:

displaystyle A=IBlDelta rcos alpha (2)

Пометим displaystyle S=lDelta r — площадь, «заметаемая» при движении проводника. Т.е. площадь, которую «прошёл» проводник во время движения. Тогда, в общем случае:

displaystyle A=IBScos alpha (3)

Соотношение (3) указывает на работу сил Ампера. Однако, если использовать определение изменения потока магнитного поля:

displaystyle =BDelta Scos alpha Фdisplaystyle =BDelta Scos alpha (4)

получим:

displaystyle A=IDelta Ф (5)

  • где

Чтобы подсчитать работу электрического тока, вспомним определение понятия напряжения: U=А/q

Следовательно, работа электрического тока равна:

A=qU

Электрический заряд можно выразить через силу тока и его время протекания q=It:

А = IUt

Итак, работа электрического тока равна произведению силы тока на напряжение и на время протекания тока по цепи.

Работа электрического тока выражается в джоулях (Дж) . В качестве внесистемной единицы принята работа тока силой 1 А в течение 1 ч на участке цепи с напряжением 1 В. Эту единицу работы назвали ватт-час (1 Вт-ч) : 1 Вт-ч = 3600 Дж = 3,6 кДж. На практике используют более крупные, кратные ей единицы:

1 гВт-ч= 102 Вт-ч = 3,6·105Дж,
1 кВт-ч= 103 Вт-ч = 3,6·106Дж,
1 МВт-ч = 106 Вт-ч = 3,6·109Дж.

Из курса физики VII класса вы знаете, что мощность равна отношению совершенной работы ко времени, в течение которого эта работа была совершена. Мощность в механике принято обозначать буквой N, в электротехнике — буквой Р. Следовательно, мощность равна:

Р = А/t.

Пользуясь этой формулой, найдем мощность электрического тока. Так как работа тока определяется формулой А = IUt, то мощность электрического тока равна:

Р = IU.

За единицу мощности ватт (Вт) принята мощность тока силой 1 А на участке с напряжением 1 В. Следовательно, 1 Вт = 1 А·1 В.

Ватт сравнительно небольшая мощность, на практике используют более крупные единицы, кратные ватту: 1 гВт (гектоватт) = 102 Вт, 1 кВт (киловатт) = 103 Вт, 1 МВт (мегаватт) = 106 Вт, 1 ГВт (гигаватт) = 109 Вт.

Определение

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.

Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:

A=ΔqU

Но сила тока равна:

I=ΔqΔt

Выразим заряд:

Δq=IΔt

Тогда работа тока равна:

A=IUΔt

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:

A=I2RΔt=U2RΔt

Работа тока измеряется в Джоулях (Дж).

Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.

A=IUΔt=16·220·10=35200 (Дж)=35,2 (кДж)

Закон Джоуля-Ленца

В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.

Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:

Закон Джоуля—Ленца

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Q=I2RΔt

Количество теплоты измеряется в Джоулях (Дж).

Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.

Используем закон Ома и закон Джоуля—Ленца:

Q=I2RΔt=(UR)2Δt=U2RΔt=1222=72 (Дж)

Мощность тока

Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.

Определение

Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).

Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

P=AΔt

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:

P=IU=I2R=U2R

Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.

P=I2R=0,32·10=0,9 (Вт)

Выразив силу тока через заряд, прошедший за единицу времени, получим:

P=qUt

Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:

P=(εR+r)2R

Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.

Pmax=(εr+r)2r=ε24r

Мощность тока внутренней цепи:

Pвнутр=I2r=(εR+r)2r

Полная мощность:

Pполн=I2(R+r)=ε2R+r

Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P0 = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?

Используем формулу для нахождения полезной мощности:

P=(εR+r)2R

Применим закон Ома для полной цепи:

I=εR+r

Выразим сопротивление внешней цепи:

R=εIr

Отсюда:

P=(εεIr+r)2(εIr)=I2(εIr)=IεrI2

Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:

rI2Iε+P=0

I21I+0,75=0

Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.

Подсказки к задачам

Объем проводника цилиндрической формы

V=Sl

Масса проводника цилиндрической формы

m=ρV=ρSl

Количество теплоты и изменение температуры

Q=cmΔT

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

Электроемкость, заряд и напряжение

C=qU

Напряженность и напряжение

E=Ud

Энергия конденсатора

W=q22C=CU22

Количество теплоты

Q=ΔW

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

I=εR+r

Применим закон Ома:

I=UR

Приравняем правые части выражений и получим:

εR+r=UR

Отсюда напряжение на конденсаторе равно:

U=εRR+r

Напряженность электрического поля равна:

E=Ud=εRd(R+r)=9·80,002(8+1)=720,018=4000 (Вм)

Задание EF17564

Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?

Ответ:

а) 5 Дж

б) 4 Дж

в) 3 Дж

г) 1 Дж


Алгоритм решения

1.Записать исходные данные.

2.Записать формулу для нахождения количества теплоты, выделенной внутри источника тока.

3.Выполнить решение в общем виде.

4.Подставить известные данные и вычислить искомую величину.

Решение

Запишем исходные данные:

 ЭДС источника тока: ε = 3 В.

 Внутреннее сопротивление источника тока: r = 1 Ом.

 Сила тока в цепи: I = 2 А.

 Напряжение на внешней цепи: U = 5 В.

Количество теплоты, выделенной внутри источника тока, равно:

Q=I2rt=22·1·1=4 (Дж)

Ответ: б

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17573

При нагревании спирали лампы накаливания протекающим по ней электрическим током основная часть подводимой энергии теряется в виде теплового излучения. На рисунке изображены графики зависимости мощности тепловых потерь лампы от температуры спирали P=P(T) и силы тока от приложенного напряжения I=I(U). При помощи этих графиков определите примерную температуру спирали лампы при силе тока I=2 A.

Ответ:


Алгоритм решения

1.Записать исходные данные.

2.С помощью графика зависимости силы тока от напряжения вычислить мощность.

3.С помощью графика зависимости мощности от температуры спирали определить ее температуру.

Решение

Нас интересует сила тока, равная 2 А. По графику зависимости силы тока от напряжения этому значение соответствует U = 100 В. Мощность определяется формулой:

P=IU=2·100=200 (Вт)

Этой мощности соответствует температура, равная около 3600 К.

Ответ: г

pазбирался: Алиса Никитина | обсудить разбор

Задание EF17608

Ученик исследовал зависимость тепловой мощности Р, выделяющейся на реостате R, от силы тока в цепи. При проведении опыта реостат был подключён к источнику постоянного тока. График полученной зависимости приведён на рисунке.

Какое из утверждений соответствует результатам опыта?

А. При коротком замыкании в цепи сила тока будет равна 6 А.

Б. При силе тока в цепи 3 А на реостате выделяется минимальная мощность.

Ответ:

а) только А

б) только Б

в) и А, и Б

г) ни А, ни Б


Алгоритм решения

  1. Проверить истинность каждого из утверждений.
  2. Выбрать верный ответ.

Решение

Согласно первому утверждению, при коротком замыкании в цепи сила тока будет равна 6 А. Это действительно так, потому что при этом значении силы тока мощность равна нулю. А это значит, что сопротивление на внешней цепи было нулевым.

Согласно второму утверждению, при силе тока в цепи 3 А на реостате выделяется минимальная мощность. Это не так. На графике этой силе тока соответствует максимальная мощность.

Верно только первое утверждение  «А».

Ответ: а

pазбирался: Алиса Никитина | обсудить разбор

Алиса Никитина | Просмотров: 8.3k

Добавить комментарий