как найти работу А зная массу, высоту, объем, и плотность воды
Знаток
(402),
закрыт
10 лет назад
Дополнен 10 лет назад
тело, имеющее массу 4кг и объем 0,001 м в кубе, находится на глубине 5м. при подъеме этого тела на высоту 5м над поверхностью воды совершается работа (Рводы = 1000кг/м в кубе).
NightWitch
Мыслитель
(6532)
10 лет назад
работа А есть произведение силы F на перемещение s.
F находим по закону Архимеда плотность*на объем*на ускорение свободного падения
А потом умножаем на высоту, которая и будет перемещением
Сила, перемещающая тело, совершает работу. Работа – это разность энергии тела в начале процесса и в его конце. А мощность – это работа за одну секунду. Коэффициент полезного действия (КПД) – это дробное число. Максимальный КПД равен единице, однако, часто, КПД меньше единицы.
Работы силы, формула
Сила, приложенная к телу и перемещающая его, совершает работу (рис. 1).
Рис. 1. Сила перемещает тело и совершает работу
Работа силы — это скалярное произведение вектора силы на вектор перемещения.
Работу, совершаемую силой, можно посчитать, используя векторный или скалярный вид записи такой формулы:
Векторный вид записи
[ large boxed{ A = left( vec{F} , vec{S} right) }]
Для решения задач правую часть этой формулы удобно записывать в скалярном виде:
[ large boxed{ A = left| vec{F} right| cdot left| vec{S} right| cdot cos(alpha) }]
( F left( H right) ) – сила, перемещающая тело;
( S left( text{м} right) ) – перемещение тела под действием силы;
( alpha ) – угол между вектором силы и вектором перемещения тела;
Работу обозначают символом (A) и измеряют в Джоулях. Работа – это скалярная величина.
В случае, когда сила постоянная, формула позволяет рассчитать работу, совершенную силой за полное время ее действия.
Если сила изменяется со временем, то в каждый конкретный момент времени будем получать мгновенную работу. Эти, мгновенные значения для разных моментов времени будут различаться.
Рассмотрим несколько случаев, следующих из формулы:
- Когда угол между силой и перемещением острый, работа силы положительная;
- А если угол тупой — работа отрицательная, так как косинус тупого угла отрицательный;
- Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
Работа — разность кинетической энергии
Работу можно рассчитать еще одним способом — измеряя кинетическую энергию тела в начале и в конце процесса движения. Рассмотрим такой пример. Пусть автомобиль, движется по горизонтальной прямой и, при этом увеличивает свою скорость (рис. 2). Масса автомобиля 1000 кг. В начале его скорость равнялась 1 м/с. После разгона скорость автомобиля равна 10 метрам в секунду. Найдем работу, которую пришлось проделать, чтобы ускорить этот автомобиль.
Рис. 2. Автомобиль движется прямолинейно и увеличивает свою скорость
Для этого посчитаем энергию движения автомобиля в начале и в конце разгона.
( E_{k1} left(text{Дж} right) ) – начальная кинетическая энергия машины;
( E_{k2} left(text{Дж} right) ) – конечная кинетическая энергия машины;
( m left( text{кг}right) ) – масса автомобиля;
( displaystyle v left( frac{text{м}}{c}right) ) – скорость, с которой машина движется.
Кинетическую энергию будем вычислять, используя формулу:
[ large E_{k} = m cdot frac{v^{2}}{2} ]
[ large E_{k1} = 1000 cdot frac{1^{2}}{2} = 500 left(text{Дж} right) ]
[ large E_{k2} = 1000 cdot frac{10^{2}}{2} = 50000 left(text{Дж} right) ]
Теперь найдем разницу кинетической энергии в конце и вначале разгона.
[ large boxed{ A = Delta E_{k} }]
[ large Delta E_{k} = E_{k2} — E_{k1} ]
[ large Delta E_{k} = 50000 – 500 = 49500 left(text{Дж} right) ]
Значит, работа, которую потребовалось совершить, чтобы разогнать машину массой 1000 кг от скорости 1 м/с до скорости 10 м/с, равняется 49500 Джоулям.
Примечание: Работа – это разность энергии в конце процесса и в его начале. Можно находить разность кинетической энергии, а можно — разность энергии потенциальной.
[ large boxed{ A = Delta E }]
Работа силы тяжести — разность потенциальной энергии
Рассмотрим теперь следующий пример. Яблоко массой 0,2 кг упало на садовый стол с ветки, находящейся на высоте 3 метра от поверхности земли. Столешница располагается на высоте 1 метр от поверхности (рис. 3). Найдем работу силы тяжести в этом процессе.
Рис. 3. На рисунке указано начальное 1 положение тела (яблока) и его конечное 2 положение, отмечены высоты для подсчета работы по вертикальному перемещению тела
Посчитаем потенциальную энергию яблока до его падения и энергию яблока на столешнице.
( E_{p1} left(text{Дж} right) ) – начальная потенциальная энергия яблока;
( E_{p2} left(text{Дж} right) ) – конечная потенциальная энергия яблока;
Примечание: Работу можно рассчитать через разность потенциальной энергии тела.
Потенциальную энергию будем вычислять, используя формулу:
[ large E_{p} = m cdot g cdot h]
( m left( text{кг}right) ) – масса яблока;
Величина ( displaystyle g approx 10 left(frac{text{м}}{c^{2}} right) ) – ускорение свободного падения.
( h left( text{м}right) ) – высота, на которой находится яблоко относительно поверхности земли.
Начальная высота яблока над поверхностью земли равна 3 метрам
[ large E_{p2} = 0,2 cdot 10 cdot 3 = 6 left(text{Дж} right) ]
Потенциальная энергия яблока на столе
[ large E_{p1} = 0,2 cdot 10 cdot 1 = 2 left(text{Дж} right) ]
Теперь найдем разницу потенциальной энергии яблока в конце падения и перед его началом.
[ large Delta E_{p} = E_{p2} — E_{p1} ]
[ large Delta E_{p} = 2 – 6 = — 4 left(text{Дж} right) ]
Важно помнить: Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
Чтобы работа получилась положительной, в правой части формулы перед ( Delta E_{p}) дополнительно допишем знак «минус».
[ large boxed{ A = — Delta E_{p} }]
Значит, работа, которую потребовалось совершить силе тяжести, чтобы яблоко массой 0,2 кг упало с высоты 3 м на высоту 1 метр, равняется 4 Джоулям.
Примечания:
- Если тело падает на землю, работа силы тяжести положительна;
- Когда мы поднимаем тело над землей, мы совершаем работу против силы тяжести. Наша работа при этом положительна, а работа силы тяжести будет отрицательной;
- Сила тяжести относится к консервативным силам. Для консервативных сил перед разностью потенциальной энергии мы дописываем знак «минус»;
- Работа силы тяжести не зависит от траектории, по которой двигалось тело;
- Работа для силы (displaystyle F_{text{тяж}}) зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени.
Рисунок 4 иллюстрирует факт, что для силы (displaystyle F_{text{тяж}}) работа зависит только от разности высот и не зависит от траектории, по которой тело двигалось.
Рис. 4. Разность высот между начальным и конечным положением тела во всех случаях на рисунке одинакова, поэтому, работа силы тяжести для представленных случаев будет одинаковой
Мощность
В механике мощность часто обозначают символами N или P и измеряют в Ваттах в честь шотландского изобретателя Джеймса Уатта.
Примечание: Символ (vec{N}) используется для обозначения силы реакции опоры — она измеряется в Ньютонах и является векторной величиной. Чтобы не возникло путаницы, мощность вместо N будем обозначать символом P. Символ P – первая буква в английском слове power – мощность.
Мощность – это работа, совершенная за одну секунду (энергия, затраченная за 1 сек).
Расчет работы осуществляем, используя любую из формул:
[ large A = Delta E_{k} ]
[ large A = Delta E_{p} ]
[ large A = F cdot S cdot cos(alpha) ]
Разделив эту работу на время, в течение которого она совершалась, получим мощность.
[ large boxed{ P = frac{A}{Delta t} }]
Если работа совершалась равными частями за одинаковые интервалы времени – мощность будет постоянной величиной.
Мощность переменная, когда в некоторые интервалы времени совершалось больше работы.
Еще одна формула для расчета мощности
Есть еще один способ расчета мощности, когда сила перемещает тело и при этом скорость тела не меняется:
[ large P = left( vec{F} , vec{v} right) ]
Формулу можно записать в скалярном виде:
[ large P = left| vec{F} right| cdot left| vec{v} right| cdot cos(alpha) ]
( F left( H right) ) – сила, перемещающая тело;
( displaystyle v left( frac{text{м}}{c} right) ) – скорость тела;
( alpha ) – угол между вектором силы и вектором скорости тела;
Когда векторы (vec{F}) и (vec{v}) параллельны, запись формулы упрощается:
[ large boxed{ P = F cdot v }]
Примечание: Такую формулу для расчета мощности можно получить из выражения для работы силы, разделив обе части этого выражения на время, в течение которого работа совершалась (а если точнее, найдя производную обеих частей уравнения).
КПД
КПД – коэффициент полезного действия. Обычно обозначают греческим символом (eta) «эта». Единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах.
Примечания:
- Процент – это дробь, у которой в знаменателе число 100.
- КПД — это либо правильная дробь, или дробь, равная единице.
Вычисляют коэффициент (eta) для какого-либо устройства, механизма или процесса.
[ large boxed{ eta = frac{ A_{text{полезная}}}{ A_{text{вся}}} }]
(eta) – КПД;
( large A_{text{полезная}} left(text{Дж} right)) – полезная работа;
(large A_{text{вся}} left(text{Дж} right)) – вся затраченная для выполнения работы энергия;
Примечание: КПД часто меньше единицы, так как всегда есть потери энергии. Коэффициент полезного действия не может быть больше единицы, так как это противоречит закону сохранения энергии.
[ large boxed{ eta leq 1 }]
Величина (eta) является дробной величиной. Если числитель и знаменатель дроби разделить на одно и то же число, полученная дробь будет равна исходной. Используя этот факт, можно вычислять КПД, используя мощности:
[ large boxed{ eta = frac{ P_{text{полезная}}}{ P_{text{вся затраченная}}} }]
Выводы
- Сила, приложенная к телу и перемещающая его, совершает работу;
- Когда угол между силой и перемещением острый, работа силы положительная, а если угол тупой — работа отрицательная; Если же угол прямой – работа равна нулю. Сила, перпендикулярная перемещению, работу не совершает!
- Работу можно вычислить, измеряя кинетическую энергию тела в начале и в конце его движения;
- Вычислить работу можно через разность потенциальной энергии тела в начальной и в конечной высотах над землей;
- Когда тело падает на землю, его потенциальная энергия уменьшается. Сила тяжести при этом совершает положительную работу!
- Мы совершаем работу против силы тяжести, когда поднимаем тело над землей. При этом наша работа положительная, а работа силы тяжести — отрицательная;
- Сила тяжести — это консервативная сила. Поэтому, работа силы (displaystyle F_{text{тяж}}) не зависит от траектории, по которой двигалось тело, а зависит только от разности высот, в которых тело находилось в конечный и начальный моменты времени;
- Мощность – это работа, совершенная за одну секунду, или затраченная за 1 сек. энергия;
- Коэффициент полезного действия обозначают греческим символом (eta) «эта», единиц измерения не имеет, выражается либо десятичной дробью, либо в процентах;
- КПД — это либо правильная дробь, или дробь, равная единице.
- Можно вычислять КПД, подставляя в формулу работу, или мощности
Еще один тип текстовых задач в вариантах ЕГЭ по математике — это задачи на работу.
Задачи на работу также решаются с помощью одной-единственной формулы: . Здесь — работа, — время, а величина , которая по смыслу является скоростью работы, носит специальное название — производительность. Она показывает, сколько работы сделано в единицу времени. Например, продавец в супермаркете надувает воздушные шарики. Количество шариков, которые он надует за час — это и есть его производительность.
Правила решения задач на работу очень просты.
- , то есть работа производительность время. Из этой формулы легко найти или .
- Если объем работы не важен в задаче и нет никаких данных, позволяющих его найти — работа принимается за единицу. Построен дом (один). Написана книга (одна). А вот если речь идет о количестве кирпичей, страниц или построенных домов — работа как раз и равна этому количеству.
- Если трудятся двое рабочих (два экскаватора, два завода…) — их производительности складываются. Очень логичное правило.
- В качестве переменной удобно взять именно производительность.
Покажем, как все это применяется на практике.
1. Заказ на деталей первый рабочий выполняет на час быстрее, чем второй. Сколько деталей в час делает второй рабочий, если известно, что первый за час делает на деталь больше?
Так же, как и в задачах на движение, заполним таблицу.
В колонке «работа» и для первого, и для второго рабочего запишем: . В задаче спрашивается, сколько деталей в час делает второй рабочий, то есть какова его производительность. Примем ее за . Тогда производительность первого рабочего равна (он делает на одну деталь в час больше). , время работы первого рабочего равно , время работы второго равно .
первый рабочий | |||
второй рабочий |
Первый рабочий выполнил заказ на час быстрее. Следовательно, на меньше, чем , то есть
Мы уже решали такие уравнения. Оно легко сводится к квадратному:
Дискриминант равен . Корни уравнения: , . Очевидно, производительность рабочего не может быть отрицательной — ведь он производит детали, а не уничтожает их 🙂 Значит, отрицательный корень не подходит.
Ответ: .
2. Двое рабочих, работая вместе, могут выполнить работу за дней. За сколько дней, работая отдельно, выполнит эту работу первый рабочий, если он за два дня выполняет такую же часть работы, какую второй — за три дня?
В этой задаче (в отличие от предыдущей) ничего не сказано о том, какая это работа, чему равен ее объем. Значит, работу можем принять за единицу.
А что же обозначить за переменные? Мы уже говорили, что за переменную удобно обозначить производительность. Пусть — производительность первого рабочего. Но тогда производительность второго нам тоже понадобится, и ее мы обозначим за .
По условию, первый рабочий за два дня делает такую же часть работы, какую второй — за три дня. Значит, . Отсюда .
Работая вместе, эти двое сделали всю работу за дней. При совместной работе производительности складываются, значит,
.
Итак, первый рабочий за день выполняет всей работы. Значит, на всю работу ему понадобится дней.
Ответ: .
3. Первая труба пропускает на литр воды в минуту меньше, чем вторая. Сколько литров воды в минуту пропускает первая труба, если резервуар объемом литров она заполняет на минуты дольше, чем вторая труба заполняет резервуар объемом литров?
Всевозможные задачи про две трубы, которые наполняют какой-либо резервуар для воды — это тоже задачи на работу. В них также фигурируют известные вам величины — производительность, время и работа.
Примем производительность первой трубы за . Именно эту величину и требуется найти в задаче. Тогда производительность второй трубы равна , поскольку она пропускает на один литр в минуту больше, чем первая. Заполним таблицу
первая труба | |||
вторая труба |
Первая труба заполняет резервуар на две минуты дольше, чем вторая. Значит, . Составим уравнение:
и решим его.
Ответ: .
. Андрей и Паша красят забор за часов. Паша и Володя красят этот же забор за часов, а Володя и Андрей — за часов. За сколько часов мальчики покрасят забор, работая втроем?
Мы уже решали задачи на движение. Правила те же. Отличие лишь в том, что здесь работают трое, и переменных будет тоже три. Пусть — производительность Андрея, — производительность Паши, а — производительность Володи. Забор, то есть величину работы, примем за — ведь мы ничего не можем сказать о его размере.
производительность | работа | |
Андрей | ||
Паша | ||
Володя | ||
Вместе |
Андрей и Паша покрасили забор за часов. Мы помним, что при совместной работе производительности складываются. Запишем уравнение:
Аналогично,
Тогда
.
Можно искать , и по отдельности, но лучше просто сложить все три уравнения. Получим, что
Значит, работая втроем, Андрей, Паша и Володя красят за час одну восьмую часть забора. Весь забор они покрасят за часов.
Ответ: .
Читаем дальше: Задачи на проценты
Благодарим за то, что пользуйтесь нашими статьями.
Информация на странице «Задачи на работу на ЕГЭ по математике» подготовлена нашими авторами специально, чтобы помочь вам в освоении предмета и подготовке к экзаменам.
Чтобы успешно сдать нужные и поступить в высшее учебное заведение или колледж нужно использовать все инструменты: учеба, контрольные, олимпиады, онлайн-лекции, видеоуроки, сборники заданий.
Также вы можете воспользоваться другими материалами из данного раздела.
Публикация обновлена:
07.05.2023
Еще одним классическим примером текстовых задач, которые могут встретиться в 11 задании профильного ЕГЭ, — это задачи на работу. Это всевозможные задачи про рабочих, которые делают детали, про трубы, которые наполняют бассейны, а также про совместную работу.
Научиться решать такие задачи довольно просто, главное – выучить одну единственную формулу, знать основные правила решения задач этого типа и следовать трем простым шагам.
- Формула, которую обязан знать каждый
- Как решать задачи на работу: основные правила
- Решение задачи на работу: 3 простых шага
- Примеры решения задач на работу: от простого к сложному
- Пример решения задачи на совместную работу – 2 способа
Формула, которую обязан знать каждый
Формула, без которой не получится решить не одну задачу на работу:Работа – это, по сути, объем выполненной работы, например, количество изготовленных деталей или количество построенных домов.
Время – это время, за которое выполняется заданный объем работы.
Производительность – это, по сути, скорость выполнения заданного объема работы за определенное время. Например, рабочий делает 10 деталей в час – это и есть его производительность.
Из данной формулы нужно уметь выражать производительность и время:
Как решать задачи на работу: основные правила
При решении задач на работу нужно знать следующие правила:
- Если работу выполняют двое рабочих, то их производительности складываются
- Если объем работы в задаче не задан и нет данных, позволяющих его найти, и при этом объем работы не важен для решения задачи, то работа принимается за единицу.
- За переменную Х, как правило, удобнее всего брать производительность
Решение задачи на работу: 3 простых шага
Решение задачи на работу сводится к трем шагам:
- Задаем переменную Х и составляем таблицу
- Составляем уравнение на основании таблицы и условий задачи, решаем его
- Возвращаемся к условиям задачи, вспоминаем, что требовалось найти и находим ответ
Не забывайте про третий шаг, так как часто ученики, верно решив уравнение, сразу записывают ответ к задаче, забывая о том, что требовалось найти по условиям задачи. И по сути правильная решенная задача не получает заслуженного балла.
Примеры решения задач на работу: от простого к сложному
Задача 1
Первый рабочий выполняет заказ из 120 деталей на 2 часа быстрее, чем второй. Также известно, что первый рабочий делает на 3 детали в час больше, чем второй. Сколько деталей в час изготавливает первый рабочий?
Решение:
1. Составим таблицу на основании условий задачи. Производительность первого рабочего примем за Х. Тогда производительность второго рабочего будет х — 3, так как второй рабочий делает на 3 детали в час меньше первого. Время выполнения всей работы получаем путем деления всей работы на производительность.2. Также из условий задачи нам известно, что всю работу (120 деталей) первый рабочий выполняет быстрее, чем второй на 2 часа. Следовательно, получаем следующее равенство:Решаем полученное уравнение. Для этого приводим все дроби к общему знаменателю:
120 (х- 3) + 2х (х-3) = 120х
120х – 360 + 2х2 – 6х – 120х =0
2х2 – 6х – 360 = 0
Делим обе части уравнения на 2:
х2 – 3х – 180 = 0
D = 729
х1 = 15
х2 = -12
3. Возвращаемся к условиям задачи. Нам нужно было найти, сколько деталей изготавливает первый рабочий. Именно эту величину мы обозначали за Х. Х2 нам не подходит по смыслу задачи. Следовательно, первый рабочий изготавливает 15 деталей в час.
Ответ: 15 деталей в час
Задача 2
Первая труба наполняет резервуар объемом 180 литров, а вторая труба наполняет резервуар объемом 120 литра. При этом известно, что одна из труб пропускает на 1 литр воды в минуту меньше, чем другая. Необходимо определить, сколько литров в минуту пропускает первая труба, если резервуары наполняются одновременно.
Решение:
1. На основании условия задачи составляем таблицу. Производительность первой трубы, то есть сколько воды она пропускает в минуту, обозначим за Х. Тогда производительность второй трубы будет либо на 1 литр в минуту больше, либо на 1 литр в минуту меньше. Это мы можем обозначить, как х ± 1. Время рассчитываем по формуле и заносим в таблицу:
2. Из условий задачи нам известно, что обе трубы выполняют свою работу за одинаковое количество времени. Следовательно, время работы первой и второй трубы мы можем приравнять, тогда получим: Теперь решаем два уравнения:Решаем первое уравнение:
180/х = 120/ (х -1)
180 (х-1) = 120х
180х – 120х = 180
60х = 180
х1 = 3
Решаем второе уравнение:
180/х = 120/ (х +1)
180 (х+1) = 120х
180х – 120х = -180
60х = -180
х2 = -3
3. Возвращаемся к условиям задачи. Нам необходимо было определить, сколько литров в минуту пропускает первая труба. Именно это – производительность первой трубы мы и обозначали за Х. Х2 нам не подходит по смыслу задачи. Следовательно, первая труба пропускает 3 литра в минуту.
Ответ: 3 литра в минуту
Задача 3
Первая труба пропускает на 5 литров воды в минуту меньше, чем вторая. Определить сколько литров воды в минуту пропускает первая труба, если известно, что бассейн объемом 300 литров она заполняет на 3 минуты дольше, чем вторая.
Решение:
1. На основании условий задачи составляем таблицу. Производительность второй трубы обозначим за Х. Тогда производительность первой трубы Х – 5, так как она пропускает на 5 литров воды в минуту меньше. Объем бассейна (это объем работы труб) равен 300 литрам. Время работы труб определяем по формуле и заносим в таблицу:
2. Из условий задачи известно, что первая труба заполняет бассейн на три минуты дольше, чем вторая труба. Следовательно:Решаем полученное уравнение:
300х – 3х (х-5) = 300 (х — 5)
300х – 3х2 + 15х – 300х + 1500 = 0
-3х2 + 15х + 1500 = 0
Делим обе части уравнения на -3:
х2 — 5х — 500 = 0
Находим дискриминант:
D = 2025
х1 = 25
х2 = -20
3. Возвращаемся к условиям задачи. Нам необходимо было найти производительность первой трубы, которую мы обозначили, как (х – 5).
Подставляем полученное значение Х:
Подставляем х1: 25 – 5 = 20
Подставляем х2: -20 – 5 = -25
Второй результат нам не подходит по смыслу задачи. Следовательно, производительность первой трубы равна 20 литров в минуту.
Ответ: 20 литров в минуту.
Примеры решения задачи на совместную работу
Задача 4
Двое рабочих, работая вместе, могут выполнить работу за 15 часов. За сколько часов, работая отдельно, выполнит эту работу первый рабочий, если он за 4 часа выполняет такую же часть работы, какую второй — за 5 часов.
Решение. Способ 1:
1. Составим таблицу на основании условий задачи. Так как общий объем работы нам не дан в задачи, то принимаем его за единицу. Этот объем работы двое рабочих выполняют за 15 часов, следовательно, их производительность труда равна 1/15. Обозначим за Х время, которое потребуется первому рабочему для выполнения всей работы. Тогда его производительность будет равна 1/х. Следовательно, за 4 часа первый рабочий выполнит 4 * 1/х= 4/х части работы. Эту же часть работы 4/х второй рабочий может выполнить за 5 часов, следовательно, его производительность труда равна 4/х / 5 =4/5х. Заносим полученные данные в таблицу:
2. Итак, мы получили, что производительность труда первого рабочего 1/х, производительность второго рабочего 4/5х. А их общая производительность при совместной работе складывается и при этом равна 1/15:Решаем полученное уравнение. Для этого умножаем каждый член уравнения на 15х и получаем:
15 + 12 = х
х = 27
3. Возвращаемся к условиям задачи. Нам нужно определить, за какое время выполнит всю работу первый рабочий. Именно это мы и обозначали за Х. Следовательно, первый рабочий выполнит всю работу, работая один, за 27 часов.
Ответ: 27 часов.
Теперь разберем, как эту же задачу можно решить с помощью системы уравнений.
Решение. Способ 2:
1. Составим таблицу на основании условий задачи. Обозначим производительность труда первого рабочего за х1, а производительность второго рабочего – за х2. Следовательно, их общая производительность равна х1 + х2. А их общая работа, выполненная за 15 часов, равна 15 (х1 + х2) = 1.
Также по условию задачи известно, что одинаковое количество работы первый работник выполняет за 4 часа (т.е. его работа равна 4х1), а второй работник за 5 часов (т.е. его работа равна 5х2). Таким образом:
4х1 = 5х2
2. Сведем в систему уравнений, полученные в первом пункте уравнения:Из второго уравнения выразим х1 = 5х2 / 4 и подставим в первое уравнение:
15 * (5х2 / 4) + 15 х2 = 1
75 х2 / 4 + 15 х2 = 1
Умножаем обе части уравнения на 4:
3. Возвращаемся к условию задачи. Нам нужно определить, за какое время выполнит всю работу первый рабочий. Производительность труда первого рабочего мы обозначали за х1. Вся работа равна 1. Следовательно, время первого рабочего равно 1/ х1. Таким образом, время, за которое выполнит всю работу первый рабочий:Ответ: 27 часов.
Таким образом, мы решили задачу на совместную работу двумя способами: с помощью уравнения и с помощью системы уравнений. Выбирайте тот, который вам понятнее.
Надеюсь, мы достаточно подробно разобрали, как решать задачи на работу и теперь вы легко с ними справитесь. Еще больше материалов по подготовке к ЕГЭ
Загрузить PDF
Загрузить PDF
В физике понятие “работа” имеет другое определение, чем то, которое используется в повседневной жизни. В частности, термин “работа” используется, когда физическая сила заставляет объект перемещаться. В общем, если мощная сила заставляет объект перемещаться очень далеко, то выполняется много работы. И если сила – небольшая или объект не перемещается очень далеко, – то только небольшая работа. Сила может быть рассчитана по формуле: Работа = F × D × косинус(θ), где F = сила (в Ньютонах), D = смещение (в метрах), и θ = угол между вектором силы и направлением движения.
-
1
Найдите направление вектора силы и направление движения. Чтобы начать, важно сначала определить в каком направлении движется объект, а также откуда применяется сила. Имейте в виду, что объекты не всегда движутся в соответствии с силой, приложенной к ним, — например, если вы потяните небольшую тележку за ручку, то вы применяете диагональную силу (если вы выше, чем тележка), чтобы переместить ее вперед. В этом разделе, однако, мы будем иметь дело с ситуациями, в которых сила (усилие) и перемещение объекта имеют одинаковое направление. Для получения информации о том, как найти работу, когда эти предметы не имеют одинакового направления, читайте ниже.
- Чтобы сделать этот процесс легким для понимания, давайте следовать примеру задачи. Скажем, игрушечный вагон тянется прямо вперед поездом перед ним. В этом случае вектор силы и направление движения поезда указывают на одинаковый путь — вперед. В следующих шагах мы будем использовать эту информацию, чтобы помочь найти работу, выполненную объектом.
-
2
Найдите смещение объекта. Первую переменную D или смещение, которая нам нужна для формулы работы, как правило, легко найти. Смещение – это просто расстояние, на которое сила заставила объект переместиться от его исходного положения. В учебных задачах эта информация, как правило, либо дана (известна), либо ее можно вывести (найти) из другой информации в задаче. В реальной жизни все, что вам нужно сделать, чтобы найти смещение, это измерить расстояние движения объектов.
- Обратите внимание, что единицы измерения расстояния должны быть в метрах в формуле для вычисления работы.
- В нашем примере игрушечного поезда, предположим, что находим работу, выполненную поездом, когда он проходит по трассе. Если он стартует в определенной точке и останавливается в месте около 2 метров по трассе, то мы можем использовать 2 метра для нашего значения “D” в формуле.
-
3
Найдите силу, применяющуюся к объекту. Далее найдите величину силы, которая используется для перемещения объекта. Это является мерой “прочности” силы — чем больше ее величина, тем сильнее она толкает объект и тем быстрее он ускоряет свой ход.[1]
Если величина силы не предусмотрена, ее можно вывести из массы и ускорения перемещения (при условии, что нет других конфликтующих сил, действующих на него) с помощью формулы F = M × A.[2]
- Обратите внимание, что единицы измерения силы должны быть в Ньютонах для вычисления формулы работы.
- В нашем примере, предположим, что не знаем величину силы. Тем не менее, давайте допустим, что знаем, что игрушечный поезд имеет массу 0,5 кг и что сила заставляет его ускоряться со скоростью 0,7 метров/секунду2. В этом случае можем найти величину путем умножения M × A = 0.5 × 0.7 = 0.35 Ньютон.
-
4
Умножьте Сила× Расстояние. После того, как узнаете величину силы, действующую на ваш объект, и расстояние, на которое он был перемещен, остальное будет сделать легко. Просто умножьте эти два значения друг на друга, чтобы получить значение работы.
- Пора решить наш пример задачи. При значении силы 0,35 Ньютон и значении смещения – 2 метра, наш ответ является вопросом простого умножения: 0.35 × 2 = 0.7 Джоулей.
- Вы, возможно, заметили, что в формуле, приведенной в введении, есть дополнительная часть к формуле: косинус (θ). Как обсуждалось выше, в этом примере сила и направление движения применяются в одном направлении. Это означает, что угол между ними равен 0o. Поскольку косинус (0) = 1, то мы не должны включать его — мы просто умножаем на 1.
-
5
Обозначьте ответ в Джоулях. В физике значения работы (и нескольких других величин) почти всегда даются в единице измерения, которая называется Джоуль. Один джоуль определяется как 1 Ньютон силы применяющейся на 1 метр, или другими словами, 1 Ньютон × метр.[3]
Это имеет смысл, — так как вы умножаете расстояние на силу, это логично, что ответ, который вы получите, будет иметь единицу измерения, равную умножению единицы величины вашей силы и расстояния.- Обратите внимание, что Джоуль также имеет альтернативное определение — 1 Ватт мощности, излучаемой за одну секунду.[4]
Читайте ниже о более детальном обсуждении мощности и ее соотношении к работе.
Реклама
- Обратите внимание, что Джоуль также имеет альтернативное определение — 1 Ватт мощности, излучаемой за одну секунду.[4]
-
1
Найдите силу и смещение, как обычно. Выше мы имели дело с задачей, в которой объект движется в том же направлении, что и сила, которая прилаживается к нему. На самом деле не всегда так бывает. В тех случаях, когда сила и движение объекта находятся в двух разных направлениях, разница между этими двумя направлениями также должна быть учтена в уравнении для получения точного результата. Для начала найдите величину силы и смещения объекта, как вы это обычно делаете.
- Давайте посмотрим на другой пример задачи. В этом случае, предположим, что мы тянем игрушечный поезд вперед, как в примере задачи выше, но, на этот раз мы на самом деле тянем вверх под диагональным углом. В следующем шаге будем принимать это во внимание, но сейчас будем придерживаться основ: перемещения поезда и величины силы, действующей на него. Для наших целей, скажем, сила имеет величину 10 Ньютон и что он проехал те же 2 метра вперед, как раньше.
-
2
Найдите угол между вектором силы и перемещением. В отличие от приведенных выше примеров с силой, которая находится в другом направлении, чем движение объекта, необходимо найти разницу между этими двумя направлениями в виде угла между ними. Если эта информация не предоставляется вам, то возможно, потребуется измерить угол самостоятельно или вывести его из другой информации в задаче.
- В нашем примере задачи, предположим, что сила, которая применяется, равна приблизительно 60o выше горизонтальной плоскости. Если поезд все еще движется прямо вперед (то есть, по горизонтали), то угол между вектором силы и движения поезда будет равен 60o.
-
3
Умножьте Force × Distance × Cosine(θ). После того, как узнаете смещение объекта, величину силы, действующей на него, и угол между вектором силы и его движением, решение почти такое же легкое, как и без того, чтобы принимать угол во внимание. Просто возьмите косинус угла (для этого может потребоваться научный калькулятор) и умножьте его на силу и перемещение, чтобы найти ответ на свою задачу в Джоулях.
- Решим пример нашей задачи. С помощью калькулятора находим, что косинус 60o равен 1/2. Включив это в формулу, можем решить задачу следующим образом: 10 Ньютонов × 2 метра × 1/2 = 10 Джоулей.
Реклама
-
1
Измените формулу, чтобы найти расстояние, силу или угол. Формула работы, указанная выше, является не просто полезной для нахождения работы — она также ценна для нахождения любых переменных в уравнении, когда вы уже знаете значение работы. В этих случаях просто выделите переменную, которую ищете, и решите уравнение в соответствии с основными правилами алгебры.
- Например, предположим, что мы знаем, что наш поезд тянут с силой в 20 Ньютон под диагональным углом более 5 метров пути для выполнения 86,6 Джоулей работы. Тем не менее, мы не знаем, угла вектора силы. Чтобы найти угол, мы просто выделим эту переменную и решим уравнение следующим образом:
-
- 86.6 = 20 × 5 × Косинус(θ)
- 86.6/100 = Косинус(θ)
- Arccos(0.866) = θ = 30o
-
- Например, предположим, что мы знаем, что наш поезд тянут с силой в 20 Ньютон под диагональным углом более 5 метров пути для выполнения 86,6 Джоулей работы. Тем не менее, мы не знаем, угла вектора силы. Чтобы найти угол, мы просто выделим эту переменную и решим уравнение следующим образом:
-
2
Разделите на время, проведенное в движении, чтобы найти мощность. В физике работа тесно связана с другим типом измерения под названием “мощность”. Мощность – это просто способ определения количества скорости, с которой работа проводится в определенной системе в течение долгого периода времени. Таким образом, чтобы найти мощность, все, что вам нужно сделать, это разделить работу, используемую для перемещения объекта на время, которое требуется для завершения перемещения. Измерения мощности обозначаются в единицах – Вт (которые равны Джоуль/секунду).[5]
- Например, для примера задачи в указанном выше шаге, предположим, что перемещение поезда на 5 метров заняло 12 секунд. В этом случае, все, что нужно сделать, это разделить работу, выполненную для перемещения его на 5 метров (86,6 Дж), на 12 секунд, чтобы найти ответ для вычисления мощности: 86.6/12 = ‘7.22 Вт.
-
3
Используйте формулу TMEi + Wnc = TMEf, чтобы найти механическую энергию в системе. Работа также может быть использована, чтобы найти количество энергии, содержащееся в системе. В приведенной выше формуле TMEi = начальная полная механическая энергия в системе TMEf = окончательная полная механическая энергия в системе и Wnc = работа, выполненная в системах связи за счет не-консервативных сил.[6]
. В этой формуле, если сила применяется в направлении движения, то она – положительная, а если давит на (против) него, то она – отрицательная. Заметим, что обе переменные энергии можно найти по формуле (½)mv2, где m = масса и V = объем.- Например, для примера задачи в двух шагах выше, предположим, что поезд изначально имел общую механическую энергию 100 Дж. Поскольку сила в задаче тянет поезд в направлении, которое он уже проходил, она – положительная. В этом случае конечная энергия поезда – TMEi + Wnc = 100 + 86.6 = 186.6 Дж.
- Обратите внимание, что не-консервативные силы – это силы, чья мощность для воздействия на ускорение объекта зависит от пути, пройденного объектом. Трение является хорошим примером — объект, который толкнули по короткому, прямому пути, будет ощущать последствия трения в течение короткого времени, в то время как объект, который толкнули по длинному, извилистому пути к такому же конечному местонахождению, в целом будет ощущать больше трения.
Реклама
Советы
- Если вам удастся решить задачу, то улыбнитесь и порадуйтесь за себя!
- Тренируйтесь в решении как можно большего числа задач, это гарантирует полное понимание.
- Продолжайте практиковаться, и пробуйте снова, если вам не удастся в первый раз.
- Изучите следующие моменты, касающиеся работы:
- Работа, проделанная силой, может быть либо положительной, либо отрицательной. (В этом смысле термины “положительные или отрицательные” несут свой математический смысл, а обычное значение).
- Выполненная работа является отрицательной, когда сила действует в противоположном к перемещению направлении.
- Выполненная работа является положительной, когда сила действует в направлении перемещения.
Реклама
Об этой статье
Эту страницу просматривали 11 098 раз.